CN110223978B - 一种基于砷化镓的微波整流芯片 - Google Patents

一种基于砷化镓的微波整流芯片 Download PDF

Info

Publication number
CN110223978B
CN110223978B CN201910471431.9A CN201910471431A CN110223978B CN 110223978 B CN110223978 B CN 110223978B CN 201910471431 A CN201910471431 A CN 201910471431A CN 110223978 B CN110223978 B CN 110223978B
Authority
CN
China
Prior art keywords
chip
circuit
gallium arsenide
parallel
schottky diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910471431.9A
Other languages
English (en)
Other versions
CN110223978A (zh
Inventor
程飞
卢萍
张冰
杨阳
陈星�
刘长军
黄卡玛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910471431.9A priority Critical patent/CN110223978B/zh
Publication of CN110223978A publication Critical patent/CN110223978A/zh
Application granted granted Critical
Publication of CN110223978B publication Critical patent/CN110223978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Rectifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种基于砷化镓的微波整流芯片,解决传统整流电路尺寸大、重量相对较重的问题。芯片采用0.25微米砷化镓pHEMT工艺制成,芯片厚度为0.1毫米,芯片表面的电路由射频输入端口(1)、隔直电容(2)、输入匹配电路(3)、肖特基二极管阵列(4)、输出滤波电路(5)、直流输出端口(6)依次相连构成,划片道(7)用于切割芯片。本发明具有集成化程度高、尺寸小的优点,能应用于无线能量传输、电磁能量收集系统等领域。

Description

一种基于砷化镓的微波整流芯片
技术领域
本发明属于微波射频器件技术领域,尤其涉及微波射频器件中的整流芯片。
背景技术
无线能量传输是一种先进的电能传输方式,不通过电缆就能将电能从空间中的一端传输到另一端,电磁能量收集是将自由空间中分布的电磁波通过天线接收,再整流为直流电直接使用或存储起来的技术,对于提高能源利用效率具有重要意义。微波整流电路是无线能量传输、电磁能量收集系统的关键器件,一般位于接收天线之后,将天线接收到的射频信号转化为直流电。传统的微波整流电路是将二极管和三极管等非线性器件焊接到高频电路板上,并结合电路板上的微带匹配电路、电容、电感等实现微波到直流的转换,其电路尺寸通常在几十毫米的量级。对于一些集成化程度要求较高的应用场景,传统的整流电路已不适用。砷化镓工艺作为第二代半导体工艺,具有工作频率高、功率密度大的优点。又因为砷化镓的相对介电常数较高,能实现电路的小型化,砷化镓工艺已广泛用于设计各种微波芯片,包括射频放大器、开关电路等。
发明内容
本发明的目的是提出一种基于砷化镓的微波整流芯片,克服现有整流电路尺寸过大、重量相对重的缺点。
本发明的技术方案是:一种基于砷化镓的微波整流芯片,芯片采用0.25微米砷化镓pHEMT工艺制成,芯片厚度为0.1毫米,芯片表面的电路由射频输入端口1、隔直电容2、输入匹配电路3、肖特基二极管阵列4、输出滤波电路5、直流输出端口6依次相连构成,划片道7用于切割芯片,射频输入端口1的输入频率包含5.8GHz,隔直电容2允许该频率的微波信号通过,输入匹配电路3由一个并联的螺旋电感与一个串联的螺旋电感构成,并联的螺旋电感通过金属化通孔接地,其螺旋的圈数为7.25圈,串联的螺旋电感圈数为5.5圈,肖特基二极管阵列4由8个肖特基二极管并联之后,与另外8个并联的肖特基二极管串联构成,每个肖特基二极管的左端为阴极,右端为阳极,阳极的栅宽为40微米,输出滤波电路5与直流输出端口6并联,包含一短微带线和一大电容,大电容通过金属化通孔接地。
本发明的技术方案的原理是:5.8GHz的微波信号从射频输入端口1进入,通过隔直电容2,输入匹配电路3进入到肖特基二极管阵列4,输入匹配电路3能对在其之后的电路在基波频率进行阻抗匹配,同时也会对高次谐波起到阻碍其通过的作用,肖特基二极管阵列4能将5.8GHz微波信号转化为直流及各次谐波,由于隔直电容2的存在,直流无法反馈到射频输入端口1,只能通过输出滤波电路5和直流输出端口6进入到负载,输出滤波电路5将输出的信号进行滤波整形。
本发明的优点和有益效果:
本发明的基于砷化镓的微波整流芯片,具有集成化程度高、尺寸小、重量相对较轻、便于批量加工的优点,避免了电路加工中电感、电容、二极管等器件焊接带来的麻烦,及由此产生的不一致性。
附图说明
图1是本发明的结构示意图;
图2是本发明接不同负载时效率随输入功率变化的测试曲线。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明:一种基于砷化镓的微波整流芯片,芯片采用0.25微米砷化镓pHEMT工艺制成,芯片厚度为0.1毫米,芯片表面的电路由射频输入端口1、隔直电容2、输入匹配电路3、肖特基二极管阵列4、输出滤波电路5、直流输出端口6依次相连构成,划片道7用于切割芯片,射频输入端口1的输入频率包含5.8GHz,隔直电容2允许该频率的微波信号通过,输入匹配电路3由一个并联的螺旋电感与一个串联的螺旋电感构成,并联的螺旋电感通过金属化通孔接地,其螺旋的圈数为7.25圈,串联的螺旋电感圈数为5.5圈,肖特基二极管阵列4由8个肖特基二极管并联之后,与另外8个并联的肖特基二极管串联构成,每个肖特基二极管的左端为阴极,右端为阳极,阳极的栅宽为40微米,输出滤波电路5与直流输出端口6并联,包含一短微带线和一大电容,大电容通过金属化通孔接地。
为进一步说明上述技术方案的可实施性,下面给出一个具体设计实例,一种基于砷化镓的微波整流芯片,芯片通过导电胶粘贴到金属腔体上,用金丝将芯片的射频输入端口、直流输出端口连接到微带线上,并在输出端连接直流负载,负载分别为200、400、600欧姆,当射频输入端口馈入5.8GHz的微波信号后,整流效率的测试结果如图2所示,可以看出,该芯片能承受25dBm的输入功率,负载为400欧姆时,其整流效率高达54%。

Claims (1)

1.一种基于砷化镓的微波整流芯片,其特征在于:芯片采用0.25微米砷化镓pHEMT工艺制成,芯片厚度为0.1毫米,芯片表面的电路由射频输入端口(1)、隔直电容(2)、输入匹配电路(3)、肖特基二极管阵列(4)、输出滤波电路(5)、直流输出端口(6)依次相连构成,划片道(7)用于切割芯片,射频输入端口(1)的输入频率包含5.8GHz,隔直电容(2)允许该频率的微波信号通过,输入匹配电路(3)由一个并联的螺旋电感与一个串联的螺旋电感构成,并联的螺旋电感通过金属化通孔接地,其螺旋的圈数为7.25圈,串联的螺旋电感圈数为5.5圈,肖特基二极管阵列(4)由8个肖特基二极管并联之后,与另外8个并联的肖特基二极管串联构成,每个肖特基二极管的左端为阴极,右端为阳极,阳极的栅宽为40微米,输出滤波电路(5)与直流输出端口(6)并联,包含一短微带线和一大电容,大电容通过金属化通孔接地。
CN201910471431.9A 2019-05-31 2019-05-31 一种基于砷化镓的微波整流芯片 Active CN110223978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910471431.9A CN110223978B (zh) 2019-05-31 2019-05-31 一种基于砷化镓的微波整流芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910471431.9A CN110223978B (zh) 2019-05-31 2019-05-31 一种基于砷化镓的微波整流芯片

Publications (2)

Publication Number Publication Date
CN110223978A CN110223978A (zh) 2019-09-10
CN110223978B true CN110223978B (zh) 2021-04-20

Family

ID=67819274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910471431.9A Active CN110223978B (zh) 2019-05-31 2019-05-31 一种基于砷化镓的微波整流芯片

Country Status (1)

Country Link
CN (1) CN110223978B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934566A (zh) * 2020-08-20 2020-11-13 西安电子科技大学 多氮化镓肖特基二极管串并联结构的大功率微波整流电路
CN113364149A (zh) * 2021-06-28 2021-09-07 上海电机学院 一种微波无线能量传输系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993312B1 (en) * 2002-01-30 2006-01-31 Northrop Grumman Corporation Double balanced diode mixer with high output third order intercept point
CN201018450Y (zh) * 2007-03-09 2008-02-06 东莞市友美电源设备有限公司 抽油机变频节能控制装置
WO2016096992A1 (en) * 2014-12-16 2016-06-23 Selex Es Ltd Integrated circuits and methods of manufacturing
CN107546871A (zh) * 2017-06-14 2018-01-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种多路的宽输入功率范围的射频整流器
CN109690905A (zh) * 2016-09-13 2019-04-26 麦克赛尔株式会社 电功率输送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993312B1 (en) * 2002-01-30 2006-01-31 Northrop Grumman Corporation Double balanced diode mixer with high output third order intercept point
CN201018450Y (zh) * 2007-03-09 2008-02-06 东莞市友美电源设备有限公司 抽油机变频节能控制装置
WO2016096992A1 (en) * 2014-12-16 2016-06-23 Selex Es Ltd Integrated circuits and methods of manufacturing
CN109690905A (zh) * 2016-09-13 2019-04-26 麦克赛尔株式会社 电功率输送装置
CN107546871A (zh) * 2017-06-14 2018-01-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种多路的宽输入功率范围的射频整流器

Also Published As

Publication number Publication date
CN110223978A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
CN106941359B (zh) 毫米波大功率低噪声接收前端
CN110223978B (zh) 一种基于砷化镓的微波整流芯片
CN213401533U (zh) 一种应用于无线通信和输能的整流谐振环电小天线
CN212992223U (zh) 一种宽带低功率射频能量整流器
CN112701485A (zh) 一种应用于无线通信和输能的整流谐振环电小天线
CN105743533A (zh) 一种基于高温无压无缝烧结技术的小型化毫米波收发组件
Wang et al. Design of a rectifier for 2.45 GHz wireless power transmission
CN112737363B (zh) 一种紧凑型大功率微波整流电路
CN110855245A (zh) 一种毫米波/太赫兹功率倍频电路
CN113534056B (zh) 一种宽带毫米波二次谐波混频器
CN113364149A (zh) 一种微波无线能量传输系统
CN203984356U (zh) 基于雪崩二极管的毫米波及太赫兹十六次谐波混频器
CN210350056U (zh) 一种Ka波段的微带过渡转换体
Suh et al. A novel dual frequency rectenna for high efficiency wireless power transmission at 2.45 and 5.8 GHz
CN100511830C (zh) 基片集成波导分谐波上变频器
CN110994185A (zh) 一种微带线调谐电路及基站天线
CN105530026A (zh) 一种小型化毫米波收发组件
CN202513878U (zh) 一种毫米波有源倍频器集成电路
CN110190685B (zh) 一种用于电磁能量收集的宽带整流电路
CN105914902B (zh) 一种高效率的双频平面无线能量传输系统
CN203930048U (zh) 多频段毫米波防撞雷达信号源
CN212255694U (zh) 一种高隔离度小型测距仪
CN114094848B (zh) 一种频段动态范围可重构整流电路及整流器
Zhou et al. A Novel 5.8 GHz Harmonic-suppressed Rectenna for Wireless Power Transmission
CN105162421A (zh) 基于雪崩二极管的毫米波及太赫兹十六次谐波混频器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant