CN105530026A - 一种小型化毫米波收发组件 - Google Patents

一种小型化毫米波收发组件 Download PDF

Info

Publication number
CN105530026A
CN105530026A CN201510955978.8A CN201510955978A CN105530026A CN 105530026 A CN105530026 A CN 105530026A CN 201510955978 A CN201510955978 A CN 201510955978A CN 105530026 A CN105530026 A CN 105530026A
Authority
CN
China
Prior art keywords
amplifier
ohm microstrip
alundum
al2o3
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510955978.8A
Other languages
English (en)
Other versions
CN105530026B (zh
Inventor
韩琳
张君
杨广举
欧阳建伟
马生广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING CAIHUA TECHNOLOGY GROUP Co Ltd
Original Assignee
NANJING CAIHUA TECHNOLOGY GROUP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING CAIHUA TECHNOLOGY GROUP Co Ltd filed Critical NANJING CAIHUA TECHNOLOGY GROUP Co Ltd
Priority to CN201510955978.8A priority Critical patent/CN105530026B/zh
Publication of CN105530026A publication Critical patent/CN105530026A/zh
Application granted granted Critical
Publication of CN105530026B publication Critical patent/CN105530026B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

一种小型化毫米波收发组件,通过改进结构和工艺,解决了现有毫米波收发组件结构复杂、体积庞大、调试量大、可靠性低、通信频带窄这样的缺点,提供一种性能优良的小型化毫米波收发组件,其结构紧凑、易于调试,能够有效满足超宽带、高速率的毫米波通信系统需求。

Description

一种小型化毫米波收发组件
技术领域
本发明属于毫米波通信技术领域,具体涉及一种小型化毫米波收发组件。
背景技术
毫米波无线收发系统将高频信号与中频信号之间的变换主要依赖毫米波收发组件,它是毫米波通信系统的重要组成部分。现有毫米波收发组件均采用导电银浆将PCB印制板、MMIC芯片等粘贴到铝质屏蔽盒体上,MMIC芯片之间通过PCB印制板上的微带线连接,导致结构复杂、体积庞大、调试量大、可靠性低。同时波导同轴转换采用微带线过渡,受加工工艺精度限制,致使通信频带窄。严重制约毫米波通信超宽带、高速率的发展和应用。
发明内容
本发明的目的提供一种小型化毫米波收发组件,通过改进结构和工艺,解决了现有毫米波收发组件结构复杂、体积庞大、调试量大、可靠性低、通信频带窄这样的缺点,提供一种性能优良的小型化毫米波收发组件,其结构紧凑、易于调试,能够有效满足超宽带、高速率的毫米波通信系统需求。
为了克服现有技术中的不足,本发明提供了一种小型化毫米波收发组件的解决方案,具体如下:
一种小型化毫米波收发组件,具体包括一个屏蔽盒体202、本振倍频链路101、功率分配链路4、接收链路103、发射链路104,本振倍频链路101同功率分配链路4连接,功率分配链路4分别同接收链路103和发射链路104连接;
所述屏蔽盒体202采用85:15钨铜合金,其膨胀系数7.3与MMIC基板膨胀系数7.5接近,表面镀金3um,便于高温无压烧结,使烧结过程中MMIC基板不易变形,内部集成本振倍频链路101、功率分配链路4、接收链路103、发射链路104,从而实现小型化;
所述功率分配链路4采用介电常数9.9的99.6%三氧化二铝基板,便于与其他链路键合连接,其膨胀系数为7.5,便于与屏蔽盒体烧结;
所述本振倍频链路101包含50欧姆微带线16、三倍频器1、本振带通滤波器2、本振放大器3,其中三倍频器1和本振放大器3采用MMIC工艺方法制造,50欧姆微带线16和本振带通滤波器2采用介电常数9.9的99.6%三氧化二铝基板;
所述接收链路103包含接收波导探针的同轴转换11、50欧姆微带线16、低噪声放大器12、镜像抑制滤波器13、增益放大器14、下变频器15,其中低噪声放大器12、增益放大器14和下变频器15采用MMIC工艺方法制造,50欧姆微带线16和镜像抑制滤波器13采用介电常数9.9的99.6%三氧化二铝基板;
所述发射链路104包含采发射波导探针的同轴转换10、50欧姆微带线16、功率放大器9、驱动放大器8、前级放大器7、发射带通滤波器6、上变频器5,其中功率放大器9、驱动放大器8、前级放大器7和上变频器5采用MMIC工艺方法制造,50欧姆微带线16和发射带通滤波器6采用介电常数9.9的99.6%三氧化二铝基板;
所述接收链路103中的接收波导探针的同轴转换11和发射链路104中的发射波导探针的同轴转换10,其波导口采用标准BJ320矩形波导,为防止信号泄露、提高收发隔离度,矩形波导与屏蔽盒体一体化设计,其探针206采用直径0.3mm的玻璃绝缘子205和直径1.1mm的铜棒204高温烧结一体,弥补机械加工缺陷、提高定位精度、拓宽通信频带。
从上面可以看到,50欧姆微带线16的作用是便于射频同轴电路与微波电路的连接、转接。
所述高温无压无缝烧结是将焊料203经高温均匀扩散在屏蔽盒体202凸台上,再将MMIC201和三氧化二铝基板211轻放至焊料上,不需按压,焊料经高温自由扩散,使MMIC201和三氧化二铝基板211与屏蔽盒体202无缝镶接。
所述探针206经过计算,内导体所需理论值一头直径0.3mm长度2mm一头直径1.1mm长度0.8mm,此理论值物理结构无法机械加工。现采用高温烧结技术将内导体直径0.3mm长度2.8mm的现有技术的玻璃绝缘子205与镀金铜棒204一体化镶接,满足理论及实际应用需求。
为降低发射链路发射信号泄露,提高收发隔离,波导口与屏蔽盒体采用一体化设计,这将给探针装配造成很大难度,采用高温烧结技术将探针206与载体压块207一体化镶接,形成探针载体208。然后将探针载体208固定到已完成MMIC芯片和三氧化二铝基板无缝镶接的屏蔽盒体202上,较好解决了探针装配复杂性问题。
应用本发明上述方案,通过采用85:15钨铜合金屏蔽盒体,导热快,膨胀系数与MMIC芯片、99.6%三氧化二铝基板相近,适于高温无压无缝烧结,使MMIC芯片,三氧化二铝基板滤波器、50欧姆微带线、功率分配链路接地充分、导热充分,减少寄生干扰,并满足所有零部件一次工艺成型,降低生产环节生产成本及二次损坏;通过采用25um金丝直接键合连接相邻MMIC芯片,不再增加任何辅助连接零件,大大改善各级、各端口匹配,缩小体积,减少调试量,降低链路损耗,减少寄生干扰,提高性能参数;通过采用玻璃绝缘子和铜棒高温烧结一体的探针波导转换,解决了机械加工无法完成的直径0.3mm长度2.8mm与直径1.1mm长度0.8mm一体化金属导体的加工工艺,拓宽通信频带,有效满足超宽带、高速率的毫米波通信系统需求。
附图说明
图1为本发明的原理框图。
图2为本发明的电路原理图。
图3为本发明的内部烧结布局图。
图4为本发明的MMIC芯片高温无压无缝烧结工艺示意图。
图5为本发明的三氧化二铝基板高温无压无缝烧结工艺示意图。
图6为本发明的探针烧结工艺示意图。
图7为本发明的探针烧结装配工艺示意图。
图8为本发明的波导探针同轴转换装配工艺示意图。
具体实施方式
下面结合附图和实施例对发明内容作进一步说明:
在现有技术中,本产品采用较多MMIC芯片,而MMIC芯片均采用99.6%的三氧化二铝基板材质,该基板材料膨胀系数为7.5,现有毫米波收发组件所选屏蔽盒体基本为铜或铝合金,该型材膨胀系数为20左右,与基板材料膨胀系数相差较大,很难进行高温无缝烧结。同时现有毫米波收发组件各MMIC之间采用微带印制板连接,微带印制板和MMIC芯片通过导电银浆粘贴到屏蔽盒体上,导电银浆涂镀不均,MMIC芯片厚度(0.1mm)太薄,无法按压,导致接地不够充分、容易产生寄生干扰,使MMIC芯片间端口匹配严重受到影响,并使体积庞大。再者现有毫米波频段组件所选微带印制板均为罗杰斯的RT5880板材,该板材膨胀系数为125,无法与MMIC芯片一次工艺成型,导致需要多次工艺装配,故障发生几率相应提高,该板材导热系数为0.2,不易传导热量,使产品寿命周期可靠性受到影响。还有现有毫米波通信系统收发端口不宜采用同轴连接(损耗太大),均采用波导连接,而现有毫米波电路无法支持全波导传输,必须进行同轴波导转换,现有同轴波导转换技术有微带、阶梯和探针三种形式,微带形式是普遍采用的技术,但受到装配工艺、定位精度的影响,致使端口匹配性差、通信频带窄、一致性不高等缺点;阶梯形式主要是针对特种信号传输路径要求(同一平面)产生的,受加工精度及本身特征制约,损耗较大,不宜应用于收发端口;探针形式定位精度高,可达到机械加工精度,但由于毫米波频段波长短,尺寸小,理论计算出来的数据,机械加工无法实现,现有探针形式的同轴波导转换主要是通过调谐螺钉使其激励在一个较窄的频带范围,而且调谐螺钉也会泄露一定的信号能量,严重影响收发隔离,不适于高速率、超宽带毫米波通信需求。
为了克服现有技术中的不足,本发明提供了一种小型化毫米波收发组件的解决方案,具体如下:
一种小型化毫米波收发组件,毫米波收发组件,包括本振倍频链路101、功率分配链路4、接收链路103、发射链路104,全部集成在一个屏蔽盒体内;本振倍频链路101同功率分配链路4连接,功率分配链路4分别同接收链路103和发射链路104连接;所述屏蔽盒体采用85:15钨铜合金。
如图2所示,所述本振倍频链路包含50欧姆微带线16、三倍频器1、本振带通滤波器2、本振放大器3,三倍频器1和本振放大器3采用MMIC工艺方法制造,50欧姆微带线16和本振带通滤波器2采用介电常数9.9的99.6%三氧化二铝基板;所述接收链路包含接收波导探针的同轴转换11、50欧姆微带线16、低噪声放大器12、镜像抑制滤波器13、增益放大器14、下变频器15,低噪声放大器12、增益放大器14和下变频器15采用MMIC工艺方法制造,50欧姆微带线16和镜像抑制滤波器13采用介电常数9.9的99.6%三氧化二铝基板;所述发射链路包含发射波导探针的同轴转换10、50欧姆微带线16、功率放大器9、驱动放大器8、前级放大器7、发射带通滤波器6、上变频器5,功率放大器9、驱动放大器8、前级放大器7和上变频器5采用MMIC工艺方法制造,50欧姆微带线16和发射带通滤波器6采用介电常数9.9的99.6%三氧化二铝基板。
如图3所示,所述本振倍频链路、接收链路、发射链路中的MMIC芯片、50欧姆微带线、发射带通滤波器、本振带通滤波器、接收镜像抑制滤波器、功率分配链路采用高温无压无缝一次烧结成型。本振信号输入经50欧姆微带线16将同轴过渡到射频电路后,经三倍频器1提升本振信号频率、本振带通滤波器2滤除谐杂波、本振放大器3提升本振信号功率电平后进入功率分配链路4将信号分为两路,一路进入接收链路中的下变频器15、一路进入发射链路中的上变频器5待用。34-38GHz频段内接收信号经接收波导探针的同轴转换11、50欧姆微带线16将同轴过渡到射频电路后,经低噪声放大器12放大进镜像抑制滤波器13滤除谐杂波后,再经增益放大器14提升增益,进入下变频器15与本振信号下变频后,经50欧姆微带线16将射频电路过渡到同轴后输出。发射信号经50欧姆微带线16将同轴过渡到射频电路后,进入上变频5与本振信号上变频后输出34-38GHz频段内信号,经发射带通滤波器6滤除谐杂波,经前级放大器7、驱动放大器8放大后、经50欧姆微带线16隔离散热,进入功率放大器9放大后,再经50欧姆微带线16将射频电路过渡到同轴后,经发射波导探针同轴转换10输出1W功率信号。所有相邻MMIC芯片及三氧化二铝基板之间采用25um金丝直接键合连接,实现产品尺寸53mm*41mm*18mm。
如图4和图5所示,所述高温无压无缝烧结是将焊料203经高温均匀扩散在屏蔽盒体202凸台上(凸台的作用是利用自身厚度高低矫正MMIC和三氧化二铝基板厚度不一致性,最终使MMIC和三氧化二铝基板上表面在一个水平面,易于金丝键合,保持各端口间的连接一致性),再将MMIC201和三氧化二铝基板211轻放至焊料上,不需按压,焊料经高温自由扩散,使MMIC201和三氧化二铝基板211与屏蔽盒体202无缝镶接。
如图6所示,所述探针206经过计算,内导体所需理论值一头直径0.3mm长度2mm一头直径1.1mm长度0.8mm,此理论值物理结构无法机械加工。现采用高温烧结技术将内导体直径0.3mm长度2.8mm的现有技术的玻璃绝缘子205与镀金铜棒(204)一体化镶接,满足理论及实际应用需求。
如图7和图8所示,为降低发射链路发射信号泄露,提高收发隔离,波导口与屏蔽盒体采用一体化设计,这将给探针装配造成很大难度,采用高温烧结技术将探针206与载体压块207一体化镶接,形成探针载体208。然后将探针载体208固定到已完成MMIC芯片和三氧化二铝基板无缝镶接的屏蔽盒体202上,较好解决了探针装配复杂性问题。
本发明采用85:15钨铜合金屏蔽盒体,利用高温无压无缝烧结技术解决了接地不均、导热性差、寄生干扰严重等问题,达到满足所有零部件一次工艺成型,降低生产环节生产成本及二次损坏,提高参数性能;采用25um金丝直接键合连接相邻MMIC芯片,不再增加任何辅助连接零件,解决了端口间匹配性差、链路损耗过大、组件尺寸过大等问题,达到各级、各端口匹配良好,体积缩小,几乎无需调试量,链路损耗较小,寄生干扰较小;通过采用玻璃绝缘子和铜棒高温烧结一体的探针波导转换,解决了机械加工无法完成的直径0.3mm长度2.8mm与直径1.1mm长度0.8mm一体化金属导体的加工工艺,达到拓宽通信频带,有效满足超宽带、高速率的毫米波通信系统需求。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (3)

1.一种小型化毫米波收发组件,其特征在于,包括一个屏蔽盒体、本振倍频链路、功率分配链路、接收链路、发射链路,本振倍频链路同功率分配链路连接,功率分配链路分别同接收链路和发射链路连接;
所述屏蔽盒体采用85:15钨铜合金,表面镀金3um,内部集成本振倍频链路、功率分配链路、接收链路、发射链路;
所述功率分配链路采用介电常数9.9的99.6%三氧化二铝基板;
所述本振倍频链路包含50欧姆微带线、三倍频器、本振带通滤波器、本振放大器,其中三倍频器和本振放大器采用MMIC工艺方法制造,50欧姆微带线和本振带通滤波器采用介电常数9.9的99.6%三氧化二铝基板;
所述接收链路包含接收波导探针的同轴转换、50欧姆微带线、低噪声放大器、镜像抑制滤波器、增益放大器、下变频器,其中低噪声放大器、增益放大器和下变频器采用MMIC工艺方法制造,50欧姆微带线和镜像抑制滤波器13采用介电常数9.9的99.6%三氧化二铝基板;
所述发射链路包含发射波导探针的同轴转换、50欧姆微带线、功率放大器、驱动放大器、前级放大器、发射带通滤波器、上变频器,其中功率放大器、驱动放大器、前级放大器和上变频器采用MMIC工艺方法制造,50欧姆微带线和发射带通滤波器采用介电常数9.9的99.6%三氧化二铝基板;
本振信号输入经50欧姆微带线将同轴过渡到射频电路后,经三倍频器提升本振信号频率、本振带通滤波器滤除谐杂波、本振放大器提升本振信号功率电平后进入功率分配链路将信号分为两路,一路进入接收链路中的下变频器、一路进入发射链路中的上变频器待用;4-38GHz频段内接收信号经接收波导探针的同轴转换、50欧姆微带线将同轴过渡到射频电路后,经低噪声放大器放大进镜像抑制滤波器滤除谐杂波后,再经增益放大器提升增益,进入下变频器与本振信号下变频后,经50欧姆微带线将射频电路过渡到同轴后输出。发射信号经50欧姆微带线将同轴过渡到射频电路后,进入上变频与本振信号上变频后输出34-38GHz频段内信号,经发射带通滤波器滤除谐杂波,经前级放大器、驱动放大器放大后、经50欧姆微带线隔离散热,进入功率放大器放大后,再经50欧姆微带线将射频电路过渡到同轴后,经发射波导探针同轴转换输出1W功率信号;
所述接收链路中的接收波导探针的同轴转换和发射链路中的发射波导探针的同轴转换,其波导口采用标准BJ320矩形波导,其探针采用直径0.3mm的玻璃绝缘子和直径1.1mm的铜棒204高温烧结一体;
所述高温无压无缝烧结是将焊料经高温均匀扩散在屏蔽盒体凸台上,再将MMIC和三氧化二铝基板轻放至焊料上,不需按压,焊料经高温自由扩散,使MMIC和三氧化二铝基板与屏蔽盒体无缝镶接;
另外还采用高温烧结技术将内导体直径0.3mm长度2.8mm的玻璃绝缘子与镀金铜棒一体化镶接;
采用高温烧结技术将探针与载体压块一体化镶接,形成探针载体;然后将探针载体固定到已完成MMIC芯片和三氧化二铝基板无缝镶接的屏蔽盒体上。
2.根据权利要求1所述的小型化毫米波收发组件,其特征在于,50欧姆微带线的作用是便于射频同轴电路与微波电路的连接、转接。
3.根据权利要求3所述的小型化毫米波收发组件,其特征在于,所有相邻MMIC芯片及三氧化二铝基板之间采用25um金丝直接键合连接,实现产品尺寸53mm*41mm*18mm。
CN201510955978.8A 2015-12-18 2015-12-18 一种小型化毫米波收发组件 Active CN105530026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510955978.8A CN105530026B (zh) 2015-12-18 2015-12-18 一种小型化毫米波收发组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510955978.8A CN105530026B (zh) 2015-12-18 2015-12-18 一种小型化毫米波收发组件

Publications (2)

Publication Number Publication Date
CN105530026A true CN105530026A (zh) 2016-04-27
CN105530026B CN105530026B (zh) 2018-05-18

Family

ID=55772055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510955978.8A Active CN105530026B (zh) 2015-12-18 2015-12-18 一种小型化毫米波收发组件

Country Status (1)

Country Link
CN (1) CN105530026B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603091A (zh) * 2017-01-20 2017-04-26 成都瑞迪威科技有限公司 毫米波16通道收发变频信道组件
CN116979988A (zh) * 2023-09-21 2023-10-31 电子科技大学 一种小型化高度集成毫米波前端组装模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373217A (zh) * 2008-08-28 2009-02-25 阮树成 毫米波船用调频多通道防撞雷达
CN101625262A (zh) * 2009-08-11 2010-01-13 中国人民解放军第四军医大学 一种基于毫米波雷达的非空气传导语音探测仪
CN102496612A (zh) * 2011-12-21 2012-06-13 重庆西南集成电路设计有限责任公司 一种采用陶瓷外壳封装的具有高隔离度的集成电路
WO2015041125A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373217A (zh) * 2008-08-28 2009-02-25 阮树成 毫米波船用调频多通道防撞雷达
CN101625262A (zh) * 2009-08-11 2010-01-13 中国人民解放军第四军医大学 一种基于毫米波雷达的非空气传导语音探测仪
CN102496612A (zh) * 2011-12-21 2012-06-13 重庆西南集成电路设计有限责任公司 一种采用陶瓷外壳封装的具有高隔离度的集成电路
WO2015041125A1 (ja) * 2013-09-17 2015-03-26 株式会社村田製作所 高周波モジュールおよび通信装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603091A (zh) * 2017-01-20 2017-04-26 成都瑞迪威科技有限公司 毫米波16通道收发变频信道组件
CN106603091B (zh) * 2017-01-20 2022-11-01 成都瑞迪威科技有限公司 毫米波16通道收发变频信道组件
CN116979988A (zh) * 2023-09-21 2023-10-31 电子科技大学 一种小型化高度集成毫米波前端组装模块
CN116979988B (zh) * 2023-09-21 2023-12-22 电子科技大学 一种小型化高度集成毫米波前端组装模块

Also Published As

Publication number Publication date
CN105530026B (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN107317081B (zh) 太赫兹无跳线倒置共面波导单片电路封装过渡结构
CN112382837B (zh) 一种端接电容圆弧探针形式的波导-微带转换结构
CN105743533A (zh) 一种基于高温无压无缝烧结技术的小型化毫米波收发组件
WO2019095691A1 (zh) 一种信号收发装置以及基站
CN104753468A (zh) 一种毫米波偶次谐波混频器结构
CN107275735B (zh) 一种新型的同轴微带转换器
CN202373675U (zh) 毫米波超薄tr组件
CN105530026A (zh) 一种小型化毫米波收发组件
CN108428975B (zh) 一种基于介质集成波导异面馈电的内埋式w波段波导滤波器
CN206432957U (zh) 一种超宽带毫米波变频组件
CN101185194A (zh) 高频电磁波接收器和宽带波导混频器
CN104868212A (zh) 基于GaN MMIC功率放大器的混合集成有源环行器
US9105956B2 (en) Laminated waveguide diplexer with shielded signal-coupling structure
CN103152066B (zh) 多芯片集成e波段接收模块
CN215989171U (zh) 一种适用于w波段的波导微带径向探针转换装置
US9059498B2 (en) Laminated waveguide diplexer
CN113534056B (zh) 一种宽带毫米波二次谐波混频器
CN201536349U (zh) Ka波段毫米波上变频器
CN205142138U (zh) 一种超宽带大瞬时带宽下变频模块
CN114374094A (zh) 基于脊间隙波导和倒置微带线间隙波导的垂直传输结构
CN113871368A (zh) 毫米波表贴气密封装结构及封装方法
CN113572430A (zh) 一种固态太赫兹单片二次谐波混频器电路
CN201536348U (zh) Ka波段毫米波下变频器
CN220796746U (zh) 一种大功率功放芯片模块
CN113131106B (zh) 太赫兹混频器以及电子组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Miniature millimeter wave transceiver module

Effective date of registration: 20200424

Granted publication date: 20180518

Pledgee: Jiangsu Credit Financing Guarantee Co., Ltd.

Pledgor: NANJING CAIHUA TECHNOLOGY GROUP Co.,Ltd.

Registration number: Y2020980001755

PE01 Entry into force of the registration of the contract for pledge of patent right