CN110216291A - 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法 - Google Patents

钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法 Download PDF

Info

Publication number
CN110216291A
CN110216291A CN201910548038.5A CN201910548038A CN110216291A CN 110216291 A CN110216291 A CN 110216291A CN 201910548038 A CN201910548038 A CN 201910548038A CN 110216291 A CN110216291 A CN 110216291A
Authority
CN
China
Prior art keywords
foil
composite materials
laminated composite
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910548038.5A
Other languages
English (en)
Other versions
CN110216291B (zh
Inventor
原梅妮
韩方洲
姚宇航
辛乐
姚磊斌
魏泽源
郑丽荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201910548038.5A priority Critical patent/CN110216291B/zh
Publication of CN110216291A publication Critical patent/CN110216291A/zh
Application granted granted Critical
Publication of CN110216291B publication Critical patent/CN110216291B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0442Layered armour containing metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种钛封装陶瓷/Al3Ti‑Al‑TC4仿生叠层复合材料,将陶瓷粉末引入钛铝金属间化合物基叠层复合材料,以提高其抗侵彻性能。其制备方法为:首先用球磨工艺制备均匀混合的陶瓷和金属复合粉末,然后将TC4箔、复合粉末、Al箔依次叠层,接着TC4箔材封装,最后采用真空热压烧结工艺制备出钛封装陶瓷/Al3Ti‑Al‑TC4新型叠层复合材料。本发明将高硬度、低密度的陶瓷粉末引入钛铝金属间化合物中提高其硬度,借鉴鳞角腹足蜗牛具有机械性能放大作用的外壳结构,制备出具有脆/超硬‑韧‑软独特层状结构的叠层复合材料,使其具有优良的抗侵彻能力。而且本发明所述制备过程工艺简单易行,适于商业化生产。

Description

钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法
技术领域
本发明属于复合材料领域,具体为一种钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法。
背景技术
金属间化合物叠层复合材料具有优异的高温韧性、抗蠕变能力、低温断裂强度、断裂韧度,是当前研究的热点。其中Ti- Al3Ti叠层复合材料用高温金属Ti作韧化元素,能有效防止裂纹扩展,很好地克服了金属间化合物Al3Ti脆性大这一缺点,从而使Ti- Al3Ti叠层复合材料具有良好的损伤容限性能,但是值得注意的是Ti- Al3Ti(密度约为3.26g/cm3、维氏硬度为5.5GPa左右)金属间化合物叠层复合装甲的性能参数对于装甲防护而言尚且不是最佳,其硬度低于标准穿甲弹弹丸的硬度(维氏硬度为8GPa左右)。故而其抗侵彻能力具有一定的局限性。B4C等陶瓷具有极高的硬度(37.7GPa)和相对较低的密度(2.52g/cm3)。大量研究表明,将陶瓷引入复合材料可提高复合材料抗侵彻性能。目前常用的将陶瓷引入复合材料的方法是将陶瓷板与金属层胶结或者焊接。但是这两种方法陶瓷板与金属层结合强度低,在高速弹丸打击作用下,吸收弹丸能量的效果不明显,陶瓷板易破碎失效,缺乏二次抗击打能力。
在印度洋深处,生活着一种鳞角腹足蜗牛,其外壳坚硬无比,子弹难以击穿。鳞角腹足蜗牛外壳性能是自然界已存在的其他保护壳性能的数百倍,具有很强的机械性能放大作用。其外壳结构由硬质硫化亚铁层、有机层、文石层组成。当鳞角腹足蜗牛遭受攻击时,硫化亚铁层出现大量的微裂纹,使得攻击力量分散、消退;中间的糊状有机层随攻击力改变形状,且糊状有机材料会迅速进入文石层裂纹,避免裂纹扩展;文石层起加强作用。
本发明将陶瓷粉末引入钛铝金属间化合物Al3Ti中,并借鉴鳞角腹足蜗牛具有机械性能放大作用的外壳结构,制造出具有脆/超硬-韧-软独特层状结构的叠层复合材料。
发明内容
本发明旨在提高钛铝金属间化合物叠层复合材料的抗侵彻性能并降低其质量。将陶瓷粉末引入钛铝金属间化合物叠层复合材料中,并借鉴鳞角腹足蜗牛具有机械性能放大作用的外壳结构,制造出具有脆/超硬-韧-软独特层状结构的叠层复合材料。
本发明是采用如下技术方案实现的:
一种钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料,由TC4层1以下设置若干重复的叠层单元4后采用包套5封装;每个叠层单元4自上而下依次为陶瓷增强Al3Ti层2、Al层3、TC4层1。制备时,首先用球磨工艺制备均匀混合的金属陶瓷复合粉末,然后将TC4箔、复合粉末、Al箔依次叠层,接着用20μm厚的TC4箔材封装,最后采用真空热压烧结工艺制备出钛封装陶瓷/Al3Ti-Al-TC4新型叠层复合材料。
上述钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料的具体制备工艺如下:
(1)、制备均匀混合的复合粉末
将粒度分别为20μm、10μm的高纯Ti粉和Al粉装入高能球磨机进行球磨,球料比为10:1,转速为100~200r/min,球磨时间为8h,然后将Ti、Al混合粉末与陶瓷粉末(粒度为1μm)装入球磨罐中进行均匀混合,球磨8h。球磨过程中通入氩气以避免粉体氧化,并加入1%(质量分数)的乙醇作为过程控制剂。
(2)、酸碱清洗TC4、Al箔
将0.15mm厚的TC4箔、0.1mm厚的Al箔按50×35mm的尺寸裁剪;将所裁TC4箔放入HF与水按体积比为1:20配制的酸溶液中处理、将所裁Al箔放入5%浓度的NaOH溶液中处理,二者反应时间均为2min,以除去其表面氧化物;将反应后的两种箔材用清水冲洗;再用酒精对两种箔材超声波清洗5min,最后将两种材料烘干备用。
(3)、叠层封装
将准备好的TC4箔、复合粉末、Al箔叠层,从上至下依次为TC4箔和若干重复的叠层单元,叠层单元从上至下依次为复合粉末层、Al箔层、TC4箔层,叠层单元数为15~20。混合粉末铺层厚度为0.2mm,将叠层好的试样用20μm厚的TC4箔材封装。
(4)、真空热压烧结
将所得封装体置于石墨模具中,按照如下工艺真空热压烧结获得所述钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料:
①对所得封装体施加1GPa压力,以10℃/min速率升高烧结温度到60℃,而后保温300min,保温期间压力为1GPa;
②以10℃/min的速率升高烧结温度到350~430℃,保温270~600min,保温期间压力为0.5Mpa;
③以10℃/min的速率升高烧结温度到660℃,保温30min,保温期间压力为0.5MPa;
④随炉冷却,冷却期间压力为0.5MPa,退模,即可制备出所述钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料。
本发明所述仿生叠层复合材料将陶瓷粉末引入钛铝金属间化合物Al3Ti中,即将陶瓷粉末与Ti粉、Al粉均匀混合,热压烧结过程中Ti粉和Al粉反应生成Al3Ti,陶瓷粉末均匀分布在Al3Ti中。陶瓷密度低且硬度高于标准穿甲弹弹丸硬度(维氏硬度约为8GPa),经陶瓷增强的Al3Ti具有高硬度高脆性,整体密度更低,具有更好的抗侵彻性能。
本发明借鉴鳞角腹足蜗牛具有机械性能放大作用的外壳结构,制造出具有脆/超硬-韧-软独特层状结构的叠层复合材料,即由金属陶瓷复合粉末反应生成的陶瓷增强Al3Ti层为具有超高硬度高脆性的刚性层,Al层为软质层,Ti为具有高强度的韧性层。各层间为冶金结合,界面结合强度高。当受到弹丸打击时,三层材料相互作用,具有超高硬度和脆性的刚性层产生大量裂纹耗散能量,抵抗弹丸的侵彻;较软的Al层吸收大量的热融化进而愈合刚性层产生的裂纹,提高其二次抗打击能力;高强度韧性Ti层起加强作用;从而整体提高了复合材料的抗侵彻能力。此外,由于陶瓷密度低于钛合金密度,故而该发明又可减轻复合材料的重量。
本发明设计合理,具有很好的实际应用价值。
附图说明
图1表示钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料叠层示意图。
图2表示钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料热压制备工艺图。
图3表示Ti-Al3Ti叠层复合材料和钛封装B4C/Al3Ti-Al-TC4仿生叠层复合材料压缩应力应变曲线对比图。
图中:1、(韧性)TC4(箔)层,2、陶瓷增强Al3Ti层,3、Al(箔)层,4、叠层单元,5、包套。
具体实施方式
为了进一步阐明本发明的技术方案和技术效果,下面结合附图与具体实施例对本发明做进一步介绍。
实施例1
以B4C作为增强体制备钛封装B4C/Al3Ti-Al-TC4仿叠层复合材料的制备方法如下:
(1)、制备均匀混合的复合粉末
首先将粒度分别为20μm、10μm的高纯Ti粉和Al粉按质量分数比为6:3的比例装入高能球磨机进行球磨,球料比为10:1,转速为150r/min,球磨时间为8h,然后将Ti、Al混合粉末与B4C粉末(粒度为1μm)按照质量分数比为9:1的比例装入球磨罐中进行均匀混合,球磨8h。球磨过程中为避免粉体氧化通入氩气进行保护,并加入1%(质量分数)的乙醇作为过程控制剂。
(2)、酸碱清洗TC4、Al箔
将0.15mm厚的TC4箔、0.1mm厚的Al箔按50×35mm的尺寸裁剪;将所裁TC4箔放入HF与水按体积比为1:20配制的酸溶液中处理、将所裁Al箔放入5%浓度的NaOH溶液中处理,二者反应时间均为2min,以除去其表面氧化物;将反应后的两种箔材用清水冲洗;再用丙酮对两种箔材超声波清洗5min,最后将两种材料烘干备用。
(3)、叠层封装
将准备好的TC4箔、复合粉末、Al箔叠层,从上至下依次为TC4箔和若干重复的叠层单元,叠层单元从上至下依次为复合粉末层、Al箔层、TC4箔层,叠层单元数为15。混合粉末铺层厚度为0.2mm,将叠层好的试样用20μm厚的TC4箔材封装。
(4)、真空热压烧结
将所得包套体置于石墨模具中(可一次制备多个复合材料,中间用石墨垫片隔开即可)按照如下工艺真空热压烧结获得所述钛封装B4C/Al3Ti-Al-TC4新型仿生叠层复合材料:
①对所得包套体施加1GPa压力,以10℃/min速率升高烧结温度到60℃,而后保温300min,保温期间压力为1GPa;
②以10℃/min的速率升高烧结温度到400℃,保温500min,保温期间压力为0.5Mpa;
③以10℃/min的速率升高烧结温度到660℃,保温30min,保温期间压力为0.5MPa;
④随炉冷却,冷却期间压力为0.5MPa,冷却至室温,退模,即可制备出所述钛封装B4C/Al3Ti-Al-TC4新型仿生叠层复合材料。
如图3所示,Ti-Al3Ti叠层复合材料和钛封装B4C/Al3Ti-Al-TC4仿生叠层复合材料压缩应力应变曲线对比图。其中带三角形曲线表示目前制备出的性能领先国际国内的Ti-Al3Ti叠层复合材料的应力应变曲线,其最佳压缩强度为1213MPa。带圆点曲线表示本实施时所制备的新型钛封装B4C/Al3Ti-Al-TC4仿生叠层复合材料压缩应力应变曲线,最佳压缩强度可达到1432MPa,优于Ti-Al3Ti叠层复合材料。
实施例2
以SiC作为增强体制备钛封装陶瓷/Al3Ti-Al-TC4仿叠层复合材料的制备方法如下:
(1)、制备均匀混合的复合粉末
首先将粒度分别为20μm、10μm的高纯Ti粉和Al粉按质量分数比为6:3的比例装入高能球磨机进行球磨,球料比为10:1,转速为150r/min,球磨时间为8h,然后将Ti、Al混合粉末与SiC粉末(粒度为1μm)按照质量分数比为9:1的比例装入球磨罐中进行均匀混合,球磨8h。球磨过程中为避免粉体氧化通入氩气进行保护,并加入1%(质量分数)的乙醇作为过程控制剂。
(2)、酸碱清洗TC4、Al箔
将0.15mm厚的TC4箔、0.1mm厚的Al箔按50×35 mm的尺寸裁剪;将所裁TC4箔放入HF与水按体积比为1:20配制的酸溶液中处理、将所裁Al箔放入5%浓度的NaOH溶液中处理,二者反应时间均为2min,以除去其表面氧化物;将反应后的两种箔材用清水冲洗;再用丙酮对二种箔材超声波清洗5min,最后将二种材料烘干备用。
(3)、叠层封装
将准备好的TC4箔、金属陶瓷复合粉末、Al箔叠层,从上至下依次为TC4箔和若干重复的叠层单元,叠层单元从上至下依次为复合粉末层、Al箔层、TC4箔层,叠层单元数为15。混合粉末铺层厚度为0.2mm,将叠层好的试样用20μm厚的TC4箔材封装。
(4)、真空热压烧结
将所得包套体置于石墨模具中(可一次制备多个复合材料,中间用石墨垫片隔开即可)按照如下工艺真空热压烧结获得所述钛封装SiC/Al3Ti-Al-TC4新型仿生叠层复合材料:
①对所得包套体施加1GPa压力,以10℃/min速率升高烧结温度到60℃,而后保温300min,保温期间压力为1GPa;
②以10℃/min的速率升高烧结温度到400℃,保温500min,保温期间压力为0.5Mpa;
③以10℃/min的速率升高烧结温度到660℃,保温30min,保温期间压力为0.5MPa;
④随炉冷却,冷却期间压力为0.5MPa,冷却至室温,退模,即可制备出所述钛封装SiC/Al3Ti-Al-TC4新型仿生叠层复合材料。
总之,本发明具有如下特点:
1、本发明将陶瓷粉末引入钛铝金属间化合物Al3Ti中提高其硬度,并依据仿生学原理,综合了陶瓷颗粒增强Al3Ti高脆性、高硬度和低密度,TC4箔高强度、高韧性,Al箔塑性及其低熔点高吸热易于融化可愈合裂纹等特点,制备出具有脆/超硬-韧-软独特层状结构的仿生叠层复合材料,进一步提升钛铝金属间化合物基叠层复合材料的抗侵彻性能。
2、本发明采用了高能球磨和热压烧结相结合的方法:制备均匀混合的陶瓷和金属复合粉末,将其与钛箔铝箔叠层封装,然后在真空下冷压成形,接着高温热压烧结,从而制备得钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料。
3、本发明所述制备过程工艺简单易行,适于商业化生产。
以上对本发明所提供的一种钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料及其制备方法行了详细阐述,文中应用了具体实施例对本发明的原理及实施方式进行了介绍,以上仅为本发明的较佳实施例,并非用于限定本发明的保护范围。故而,凡在本发明的精神和原则之内所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料,其特征在于:由TC4层(1)以下设置若干重复的叠层单元(4)后采用包套(5)封装;每个叠层单元(4)自上而下依次为陶瓷增强Al3Ti层(2)、Al层(3)、TC4层(1)。
2.根据权利要求1所述的钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料,其特征在于:叠层单元(4)的数量为15~20。
3.一种钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料的制备方法,其特征在于:包括如下步骤:
(1)、制备均匀混合的复合粉末
将粒度为20μm的Ti粉和10μm 的Al粉装入高能球磨机进行球磨,球料比为10:1,转速为100~200r/min,球磨时间为8h,然后将Ti、Al混合粉末与粒度为1μm的陶瓷粉末装入球磨罐中进行均匀混合,球磨8 h,球磨过程中通入氩气以避免粉体氧化,并加入1%的乙醇作为过程控制剂;
(2)、酸碱清洗TC4箔、Al箔
将0.15mm厚的TC4箔、0.1mm厚的Al箔按尺寸裁剪;将所裁TC4箔放入HF与水按体积比为1:20配制的酸溶液中处理、将所裁Al箔放入5%浓度的NaOH溶液中处理,二者反应时间均为2min,以除去其表面氧化物;将反应后的两种箔材用清水冲洗;再用酒精对两种箔材超声波清洗5min,最后将两种材料烘干备用;
(3)、叠层封装
将准备好的TC4箔、复合粉末、Al箔叠层,从上至下依次为TC4箔和若干重复的叠层单元,叠层单元从上至下依次为复合粉末层、Al箔层、TC4箔层,叠层单元数为15~20;混合粉末铺层厚度为0.2mm,将叠层好的试样用20μm厚的TC4箔材封装;
(4)、真空热压烧结
将所得封装体置于石墨模具中,按照如下工艺真空热压烧结获得所述钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料:
①对所得封装体施加1GPa压力,以10℃/min速率升高烧结温度到60℃,而后保温300min,保温期间压力为1GPa;
②以10℃/min的速率升高烧结温度到350~430℃,保温270~600min,保温期间压力为0.5Mpa;
③以10℃/min的速率升高烧结温度到660℃,保温30min,保温期间压力为0.5MPa;
④随炉冷却,冷却期间压力为0.5MPa,退模,即可制备出所述钛封装陶瓷/Al3Ti-Al-TC4新型仿生叠层复合材料。
CN201910548038.5A 2019-06-24 2019-06-24 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法 Expired - Fee Related CN110216291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910548038.5A CN110216291B (zh) 2019-06-24 2019-06-24 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910548038.5A CN110216291B (zh) 2019-06-24 2019-06-24 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110216291A true CN110216291A (zh) 2019-09-10
CN110216291B CN110216291B (zh) 2021-03-19

Family

ID=67814669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910548038.5A Expired - Fee Related CN110216291B (zh) 2019-06-24 2019-06-24 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110216291B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172228A (zh) * 2021-04-26 2021-07-27 中北大学 一种TC4-Al3Ti叠层复合板及其制备方法
CN113415063A (zh) * 2021-06-22 2021-09-21 西安理工大学 一种锡铅青铜/钛合金双金属的制备方法
CN113458400A (zh) * 2021-07-23 2021-10-01 中北大学 一种Ti-Al3Ti金属间化合物叠层复合板制备方法
CN113696558A (zh) * 2021-08-25 2021-11-26 宁波江丰热等静压技术有限公司 一种热压层状复合板材及其制备方法和用途
CN115365504A (zh) * 2022-08-25 2022-11-22 西安工业大学 一种B4C/Al仿贝壳梯度装甲及其制备方法
DE102022000992A1 (de) 2022-03-22 2023-09-28 Ceramtec-Etec Gmbh Körperschutzelement geformt aus einem Schichtsystem, mit wenigstens einer keramischen Schicht, dessen Herstellung sowie Verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197360A (en) * 1978-05-01 1980-04-08 The United States Of America As Represented By The Secretary Of The Army Multilayer laminate of improved resistance to fatigue cracking
CN102501457A (zh) * 2011-09-30 2012-06-20 哈尔滨工业大学 陶瓷-TiAl微叠层复合材料板材及其制备方法
US20140311326A1 (en) * 2013-04-22 2014-10-23 CONSTELLIUM VALAIS SA (AG-Ltd) Composite panel for armor shielding of vehicles
CN108274007A (zh) * 2018-02-06 2018-07-13 吉林大学 一种仿生刚柔耦合抗冲击材料的制备方法
CN108871073A (zh) * 2018-06-04 2018-11-23 中北大学 一种TC4-Al3Ti-TC4-陶瓷叠层复合装甲及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197360A (en) * 1978-05-01 1980-04-08 The United States Of America As Represented By The Secretary Of The Army Multilayer laminate of improved resistance to fatigue cracking
CN102501457A (zh) * 2011-09-30 2012-06-20 哈尔滨工业大学 陶瓷-TiAl微叠层复合材料板材及其制备方法
US20140311326A1 (en) * 2013-04-22 2014-10-23 CONSTELLIUM VALAIS SA (AG-Ltd) Composite panel for armor shielding of vehicles
CN108274007A (zh) * 2018-02-06 2018-07-13 吉林大学 一种仿生刚柔耦合抗冲击材料的制备方法
CN108871073A (zh) * 2018-06-04 2018-11-23 中北大学 一种TC4-Al3Ti-TC4-陶瓷叠层复合装甲及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAO Q,LIANG YH,ZHANG ZH,LI XJ,REN LQ: "Study on the Impact Resistance of Bionic Layered Composite of TiC-TiB2/Al from Al-Ti-B4C System", 《MATERIALS》 *
王寒冰,王立石,张健,梁云虹,张志辉: "B4C陶瓷/Al仿生层状高强复合材料制备与性能", 《航空材料学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113172228A (zh) * 2021-04-26 2021-07-27 中北大学 一种TC4-Al3Ti叠层复合板及其制备方法
CN113172228B (zh) * 2021-04-26 2022-05-13 中北大学 一种TC4-Al3Ti叠层复合板及其制备方法
CN113415063A (zh) * 2021-06-22 2021-09-21 西安理工大学 一种锡铅青铜/钛合金双金属的制备方法
CN113458400A (zh) * 2021-07-23 2021-10-01 中北大学 一种Ti-Al3Ti金属间化合物叠层复合板制备方法
CN113696558A (zh) * 2021-08-25 2021-11-26 宁波江丰热等静压技术有限公司 一种热压层状复合板材及其制备方法和用途
DE102022000992A1 (de) 2022-03-22 2023-09-28 Ceramtec-Etec Gmbh Körperschutzelement geformt aus einem Schichtsystem, mit wenigstens einer keramischen Schicht, dessen Herstellung sowie Verwendung
CN115365504A (zh) * 2022-08-25 2022-11-22 西安工业大学 一种B4C/Al仿贝壳梯度装甲及其制备方法
CN115365504B (zh) * 2022-08-25 2023-08-15 西安工业大学 一种B4C/Al仿贝壳梯度装甲及其制备方法

Also Published As

Publication number Publication date
CN110216291B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN110216291A (zh) 钛封装陶瓷/Al3Ti-Al-TC4仿生叠层复合材料及其制备方法
CN108380892B (zh) 一种陶瓷/高熵合金叠层材料的制备方法
CN111516314B (zh) 一种aba型三明治复合材料及其制备方法
US4987033A (en) Impact resistant clad composite armor and method for forming such armor
CN110280769B (zh) 一种圆柱交错堆叠结构的Ti-Ti2AlC/TiAl3叠层复合材料及其制备方法
CN108871073A (zh) 一种TC4-Al3Ti-TC4-陶瓷叠层复合装甲及其制备方法
CN108146031B (zh) 一种层状增韧钨基复合材料及其制备方法
CN107117981B (zh) 一种层状Ti/B4C复合材料及其制备方法
CN1924510A (zh) 纤维增强的金属/陶瓷层状复合材料防护板
CN104525954B (zh) 一种层状增韧钨的制备方法
CN104099540B (zh) 用于减振降噪的NiTi纤维增强金属间化合物基层状复合材料的制备方法
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN108656691A (zh) 一种可防御7.62mm穿甲燃烧弹陶瓷基复合材料
CN112831678B (zh) 一种铝/氟化铝复合陶瓷中子慢化体及其制备方法
CN112080676A (zh) 一种片状粉末微叠层w基复合材料及其制备方法
CN103724032A (zh) 一种二维纤维布增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN111043909B (zh) 一种Ti-Al金属间化合物微叠层复合装甲及其制备方法
US11253919B2 (en) Toughened TiAl-based alloy sheet with periodically misaligned through-hole titanium alloy layers and preparation method thereof
CN113458400B (zh) 一种Ti-Al3Ti金属间化合物叠层复合板制备方法
CN107498057B (zh) 一种层状铝碳化硼复合材料及其制备方法
US20160363418A1 (en) Reinforced ceramic tile armor
CN108164254B (zh) 一种具有环状结构的防弹陶瓷片、防弹靶板及其制备方法
CN107721430A (zh) 一种带有止裂通孔的碳化硼‑铝合金复合板的制备方法
CN113083895B (zh) 实现异质结构的方法
CN110317047A (zh) 一种温度梯度自修复叠层陶瓷刀具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210319