CN110216276B - Powder metallurgy aluminum-based material and preparation method thereof - Google Patents

Powder metallurgy aluminum-based material and preparation method thereof Download PDF

Info

Publication number
CN110216276B
CN110216276B CN201910477614.1A CN201910477614A CN110216276B CN 110216276 B CN110216276 B CN 110216276B CN 201910477614 A CN201910477614 A CN 201910477614A CN 110216276 B CN110216276 B CN 110216276B
Authority
CN
China
Prior art keywords
powder
aluminum
sintering
calcium hydride
based material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910477614.1A
Other languages
Chinese (zh)
Other versions
CN110216276A (en
Inventor
颜巍巍
秦晓冬
杨浩
包崇玺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mbtm New Materials Group Co ltd
Original Assignee
Mbtm New Materials Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mbtm New Materials Group Co ltd filed Critical Mbtm New Materials Group Co ltd
Priority to CN201910477614.1A priority Critical patent/CN110216276B/en
Publication of CN110216276A publication Critical patent/CN110216276A/en
Application granted granted Critical
Publication of CN110216276B publication Critical patent/CN110216276B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a powder metallurgy aluminum-based material, which comprises 0.01-10 mass percent of calcium hydride powder and the balance of aluminum matrix powder, wherein the aluminum matrix powder is aluminum simple substance powder or aluminum alloy powder or aluminum matrix composite powder. The invention also relates to a preparation method for preparing the powder metallurgy aluminum-based material, which comprises the following steps of (a) mixing powder; (b) forming; (c) sintering; (d) and (6) heat treatment. The powder metallurgy aluminum-based material has small sintering deformation; the preparation method has the advantages of simple process, high production efficiency and suitability for mass production.

Description

Powder metallurgy aluminum-based material and preparation method thereof
Technical Field
The invention relates to the field of powder metallurgy, in particular to a powder metallurgy aluminum-based material and a preparation method thereof.
Background
The aluminum alloy is a light material with low density and high specific strength, is beneficial to reducing self weight, saving energy and reducing emission after replacing iron-based and copper-based parts, and has been widely applied to the fields of aerospace, automobiles, mechanical manufacturing, ships, chemical industry and the like. For example, the cross beam, high pressure cylinder, automobile cantilever member, engine blade, casing and cylinder sleeve, automobile engine and gear box parts of supersonic fighter are widely made of aluminum alloy. However, many parts require not only light weight and good mechanical properties such as hardness, strength, wear resistance, thermal expansion coefficient, high temperature mechanical properties, etc., but also high dimensional accuracy. In particular, structural parts, such as transmission mechanism parts of a gearbox, have extremely high requirements on dimensional accuracy. This puts high demands on the manufacturing accuracy of the aluminium alloy parts.
The powder metallurgy process is energy-saving, material-saving and near-net-shape forming, is a green manufacturing technology and is suitable for large-scale production. The powder metallurgy aluminum alloy part combines the advantages of powder metallurgy and aluminum alloy, has enough mechanical property, can partially replace the traditional iron-based and copper-based parts, and is beneficial to promoting the development of light weight. But the liquid phase sintering characteristic of the aluminum alloy causes the sintering deformation of the aluminum alloy to be serious, and the problem of sintering deformation is solved by the design of a common die in the field of powder metallurgy at present; however, the sintering deformation of the aluminum alloy has non-uniformity and randomness, and is difficult to eliminate through the design of the die. Sintering deformation is one of the key technical problems of powder metallurgy aluminum-based materials, and the mass production of the materials is seriously hindered. Therefore, there is a need for a powder metallurgy aluminum-based material and a method of making the same that can address this sintering distortion problem in other ways.
Disclosure of Invention
The invention aims to provide a powder metallurgy aluminum-based material with smaller sintering deformation aiming at the current situation of the prior art.
The invention aims to solve another technical problem of providing a preparation method which is used for preparing the powder metallurgy aluminum-based material and has the advantages of simple process, high production efficiency and suitability for mass production aiming at the current situation of the prior art.
The technical scheme adopted by the invention for solving the technical problems is as follows: the powder metallurgy aluminum-based material comprises 0.01-10% of calcium hydride powder by mass percent and the balance of aluminum matrix powder, wherein the aluminum matrix powder is aluminum simple substance powder or aluminum alloy powder or aluminum matrix composite powder.
Preferably, the mass fraction of the calcium hydride powder is 1-5.5%.
Preferably, the purity of the calcium hydride powder is 85% -99%.
A preparation method for preparing the powder metallurgy aluminum-based material comprises the following steps:
(a) mixing powder: uniformly mixing aluminum matrix powder and calcium hydride powder according to the component proportion to obtain raw material powder;
(b) forming: pressing and forming the powder obtained in the step (a) to obtain a blank body;
(c) and (3) sintering: sintering the green body obtained in the step (2) under a protective atmosphere to obtain a sintered part;
(d) and (3) heat treatment: sequentially carrying out solid solution treatment and artificial aging heat treatment on the sintered piece obtained in the step (c);
and (d) not performing the step (d) on the sintered part which is a pure aluminum matrix or an aluminum alloy matrix which cannot be strengthened by heat treatment.
Preferably, the protective atmosphere is N2,H2Or an Ar atmosphere.
Preferably, the sintering temperature of the sintering in the step (c) is 550-660 ℃, the heat preservation time is 5-60 min, and further preferably, the cooling time is 0.5-3 h.
Preferably, the solid solution temperature in the step (d) is 450-580 ℃, the solid solution time is 0.5-6 h, the artificial aging temperature is 100-200 ℃, and the artificial aging time is 3-24 h.
In order to facilitate demoulding and forming, in the powder mixing process in the step (a), a lubricant is added into the raw material powder, wherein the lubricant accounts for 0.5-2% of the raw material powder by mass. The lubricant can be selected from stearic acid lubricant or paraffin, and other common lubricants. The lubricant is added by hand mixing or mixer mixing, wherein the mixer mixing is preferably any one of a ball mill, a V-shaped mixer, a conical mixer, a wine barrel mixer and a screw mixer.
In order to prevent the composite material from being influenced by the lubricant, the blank is dewaxed before sintering in the step (c), wherein the dewaxing temperature is 350-450 ℃, and the dewaxing time is 20-50 min.
Preferably, the aluminum matrix powder of step (a) has an average particle size of 30 to 100 μm, and the calcium hydride powder has an average particle size of 0.1 to 100 μm. Further preferably, in the step (a), the average particle size of the aluminum matrix powder is 60-80 μm, the average particle size of the calcium hydride powder is 1-45 μm,
preferably, the mixing in the step (a) is performed by a ball mill, the rotating speed of the ball mill is 70-150 r/min, and the ball milling time is 6-14 h. More preferably, the rotating speed of the ball mill is 90-130 r/min, and the ball milling time is 8-12 h.
Preferably, the raw material powder in the step (b) is formed by compression molding, and the molding pressure is 150-500 MPa.
Compared with the prior art, the invention has the advantages that: the addition of calcium hydride in the aluminum-based powder metallurgy formula can significantly reduce sintering deformation, stabilize the size after sintering and contribute to maintaining the near-net-shape forming advantage. The factors causing sintering deformation are many, and the proper addition of calcium hydride can release hydrogen at high temperature, remove oxygen in a sintering blank, facilitate the formation of a good sintering neck and avoid sintering deformation caused by poor sintering. And secondly, the calcium hydride releases hydrogen along with the temperature rise, so that the wetting of the sintering liquid relative to solid particles is weakened in a proper amount, the mutual influence of the liquid phase and the solid particle framework is reduced, and the sintering deformation is reduced to a certain extent. In addition, active calcium is left after the added calcium hydride is dehydrogenated, which can form certain solid solution strengthening and second phase strengthening on an aluminum matrix and also can improve the mechanical property of a sintered piece to a certain extent. The cost of adding a small amount of calcium hydride is not high, the adding mode is simple, and the method is suitable for batch production;
the invention solves the problem of sintering deformation when the aluminum alloy is prepared by adopting the powder metallurgy method by improving the component proportion of the powder metallurgy aluminum-based material from the viewpoint of the raw material powder formula, the method does not need to greatly improve production equipment and process, is convenient to use, has lower cost and higher production efficiency, can carry out mass production, and solves the long-standing technical problem of aluminum alloy sintering deformation by adopting a simple and convenient method.
Drawings
FIG. 1 is a microscopic morphology of calcium hydride particles in example 3 of the present invention;
FIG. 2 is a fracture morphology graph of a sintered part in example 6 of the present invention;
FIG. 3 is a micro-topography of the mixed powder in example 9 of the present invention.
Detailed Description
The following detailed description of embodiments of the present invention is provided in connection with the accompanying drawings and examples.
Example 1:
in this embodiment, a method for preparing a powder metallurgy aluminum-based material is described by taking a pure aluminum substrate as an example, and specifically includes the following steps:
(1) mixing powder: and grinding and uniformly mixing the aluminum elementary substance powder with the average particle size of 60 mu m and the calcium hydride powder with the average particle size of 45 mu m by using a mortar to obtain raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 0.05 percent, and the balance is the aluminum elementary substance powder. The calcium hydride powder used in this step may preferably have a purity of 99%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 150MPa, and the pressure maintaining time is 15 s.
(3) And (3) sintering: sintering in a tubular furnace, wherein the sintering protective atmosphere is high-purity N2, the sintering temperature is 650 ℃, the sintering heat preservation time is 60min, and furnace cooling is carried out after the heat preservation is finished. The sintering environment for this step may preferably be below 10ppm oxygen and dew point below-40 ℃.
Tests show that the strength of pure aluminum powder without the hydrogenated calcium powder after sintering is 68MPa, and the sintering deformation reaches 3 percent; after 0.05 percent of calcium hydride powder is added into the pure aluminum powder, the strength of the sintered aluminum-based material of powder metallurgy is 71MPa, and the sintering deformation is 2.96 percent.
Example 2:
in this embodiment, taking 2014 aluminum alloy matrix as an example, a method for preparing a powder metallurgy aluminum-based material is described, which specifically includes the following steps:
(1) mixing powder: mixing 2014 aluminum alloy powder with the average particle size of 78 microns and calcium hydride powder with the average particle size of 10 microns to obtain raw material powder, ball-milling the raw material powder on a planetary ball mill at the rotating speed of 110r/min for 10 hours, and uniformly mixing, wherein the mass fraction of the calcium hydride powder in the raw material powder is 4%, and the balance is 2014 aluminum alloy powder. The calcium hydride powder used in this step is preferably 92% pure.
(2) Forming: mixing the powder obtained in the step (1) with zinc stearate accounting for 0.5 wt% of the raw material powder as a lubricant by using a V-shaped mixer, uniformly mixing, and then carrying out die pressing on the powder, wherein the pressing pressure is 400MPa, and the pressure maintaining time is 20 s;
(3) and (3) sintering: sintering by adopting a mesh belt type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 350 ℃, and the dewaxing time is 30 min; the sintering temperature is 595 ℃, the sintering heat preservation time is 40min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 2h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
(4) And (3) heat treatment: and sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 510 ℃, the solid solution time is 1h, the artificial aging temperature is 180 ℃, and the artificial aging time is 15 h.
Through tests, the 2014 aluminum alloy powder without the calcium hydride powder has the strength of 235MPa after sintering, and the deformation amount reaches 1.63%; after 4 percent of calcium hydride powder is added into 2014 aluminum alloy powder, the intensity of the sintered calcium hydride modified powder metallurgy 2014 aluminum alloy material is 217MPa, and the deformation is 0.45 percent.
Example 3:
in this embodiment, a 7039 aluminum alloy substrate is taken as an example to illustrate a method for preparing a powder metallurgy aluminum-based material, which specifically includes the following steps:
(1) mixing powder: mixing 7039 aluminum alloy powder with the average particle size of 45 microns and calcium hydride powder with the average particle size of 16 microns to obtain raw material powder, ball-milling the raw material powder on a planetary ball mill with the rotating speed of 70r/min for 6 hours, and uniformly mixing, wherein the mass fraction of the calcium hydride powder in the raw material powder is 0.01%, and the balance is 7039 aluminum alloy powder. The calcium hydride powder used in this step may preferably have a purity of 99%.
(2) Forming: mixing zinc stearate accounting for 0.8% of the mass fraction of the raw material powder into the powder obtained in the step (1) by using a spiral mixer as a lubricant, uniformly mixing, and then carrying out die pressing on the powder to form the powder, wherein the pressing pressure is 180MPa, and the pressure maintaining time is 15 s;
(3) and (3) sintering: sintering by adopting a mesh belt type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 350 ℃, and the dewaxing time is 22 min; the sintering temperature is 550 ℃, the sintering heat preservation time is 5min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 0.5h, so that a sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
(4) And (3) heat treatment: and sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 450 ℃, the solid solution time is 0.8h, the artificial aging temperature is 150 ℃, and the artificial aging time is 3 h.
Tests show that after being sintered, the 7039 aluminum alloy powder without the calcium hydride powder has the strength of 134MPa and the deformation amount of 0.75 percent; after 0.01 percent of calcium hydride powder is added into 7039 aluminum alloy powder, the strength of the sintered 7039 aluminum alloy material modified by calcium hydride powder is 115MPa, and the deformation reaches 0.61 percent.
Example 4:
in this embodiment, a 6061 aluminum alloy substrate is taken as an example to illustrate a method for preparing a powder metallurgy aluminum-based material, which specifically includes the following steps:
(1) mixing powder: 6061 aluminum alloy powder with the average particle size of 80 microns and calcium hydride powder with the average particle size of 0.1 microns are mixed to obtain raw material powder, wherein the calcium hydride powder accounts for 2% of the mass fraction of the raw material powder, and the balance is 6061 aluminum alloy powder. Ball-milling the raw material powder for 8 hours on a planetary ball mill with the rotating speed of 120r/min, adding stearic acid accounting for 1.5 percent of the mass fraction of the raw material powder into the raw material powder as a lubricant for 0.5 hour before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 95%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 200MPa, and the pressure maintaining time is 10 s.
(3) And (3) sintering: sintering by adopting a push rod type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the oxygen content of the sintering environment is lower than 10ppm, the dew point is lower than minus 40 ℃, the dewaxing temperature is 450 ℃, and the dewaxing time is 20 min; and the sintering temperature is 590 ℃, the sintering heat preservation time is 60min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 3h, so that the sintered part is obtained. The sintering environment for this step is preferably below 10ppm oxygen and dew point below-40 ℃.
(4) And (3) heat treatment: sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 580 ℃, and the solid solution time is 0.5 h; the artificial aging temperature is 160 ℃, and the artificial aging time is 24 h.
Tests show that the strength of 6061 aluminum alloy powder without the calcium hydride powder after sintering is 127MPa, and the deformation can reach 1.58%; after 2 percent of calcium hydride powder is added into 6061 aluminum alloy powder, the strength of the sintered calcium hydride modified powder metallurgy 6061 aluminum alloy material is 109MPa, and the deformation reaches 0.57 percent.
Example 5:
in this embodiment, a 6061 aluminum alloy substrate is taken as an example to illustrate a method for preparing a powder metallurgy aluminum-based material, which specifically includes the following steps:
(1) mixing powder: 6061 aluminum alloy powder with the average particle size of 75 microns and calcium hydride powder with the average particle size of 35 microns are mixed to obtain raw material powder, wherein the calcium hydride powder accounts for 10% of the mass fraction of the raw material powder, and the balance is 6061 aluminum alloy powder. Ball-milling the raw material powder for 13h on a planetary ball mill with the rotating speed of 150r/min, adding stearic acid accounting for 1.8 percent of the mass fraction of the raw material powder into the raw material powder as a lubricant 0.5h before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 85%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 350MPa, and the pressure maintaining time is 25 s.
(3) And (3) sintering: sintering by adopting a push rod type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the oxygen content of the sintering environment is lower than 10ppm, the dew point is lower than minus 40 ℃, the dewaxing temperature is 370 ℃, and the dewaxing time is 45 min; the sintering temperature is 660 ℃, the sintering heat preservation time is 55min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 2.5h, so that the sintered part is obtained. The sintering environment for this step is preferably below 10ppm oxygen and dew point below-40 ℃.
(4) And (3) heat treatment: sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 550 ℃, and the solid solution time is 3.5 h; the artificial aging temperature is 200 ℃, and the artificial aging time is 15 h.
Tests show that the strength of the 6061 aluminum alloy powder without the calcium hydride powder after sintering is 193MPa, and the deformation reaches 1.96 percent; after 10 percent of calcium hydride powder is added into 6061 aluminum alloy powder, the strength of the sintered calcium hydride modified powder metallurgy 6061 aluminum alloy material is 198MPa, and the deformation reaches 1.03 percent.
Example 6:
in this embodiment, a 7075 aluminum alloy substrate is taken as an example to illustrate a method for preparing a powder metallurgy aluminum-based material, which specifically includes the following steps:
(1) mixing powder: mixing 7075 aluminum alloy powder with the average particle size of 100 μm and calcium hydride powder with the average particle size of 1 μm to obtain raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 7%, and the balance is 7075 aluminum alloy powder. Ball-milling the raw material powder for 14h on a planetary ball mill with the rotation speed of 110r/min, adding paraffin accounting for 2% of the mass fraction of the raw material powder into the raw material powder as a lubricant 0.5h before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 95%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 450MPa, and the pressure maintaining time is 30 s.
(3) And (3) sintering: sintering by using a push rod type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 350 ℃, and the dewaxing time is 50 min; the sintering temperature is 620 ℃, the sintering heat preservation time is 30min, the furnace is cooled after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 3h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃. As shown in figure 2, the cross section of the sintered piece of the 7075 aluminum alloy material modified by calcium hydride is obvious in dimple, which shows that the sintered piece realizes good metallurgical bonding and has high mechanical properties.
(4) And (3) performing solid solution and artificial aging heat treatment on the sintered piece in sequence, wherein the solid solution temperature is 460 ℃, the solid solution time is 6 hours, the artificial aging temperature is 100 ℃, and the artificial aging time is 8 hours.
Tests show that after being sintered, the 7075 aluminum alloy powder without the calcium hydride powder has the strength of 241MPa and the deformation amount of 1.70 percent; after 7 percent of calcium hydride powder is added into 7075 aluminum alloy powder, the strength of the sintered 7075 aluminum alloy material obtained by calcium hydride modified powder metallurgy is 243MPa, and the deformation reaches 0.84 percent.
Example 7:
in this embodiment, a method for preparing a powder metallurgy aluminum-based material is described by taking a high silicon aluminum alloy 4a11 aluminum alloy matrix as an example, and specifically includes the following steps:
(1) mixing powder: the method comprises the steps of mixing 4A11 aluminum alloy powder with the average particle size of 30 mu m and calcium hydride powder with the average particle size of 100 mu m to obtain raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 0.1%, and the balance is 4A11 aluminum alloy powder. Ball-milling the raw material powder for 7 hours on a planetary ball mill with the rotating speed of 130r/min, adding stearic acid accounting for 1.5 percent of the mass fraction of the raw material powder into the raw material powder 0.5 hour before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 98%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 250MPa, and the pressure maintaining time is 10 s.
(3) And (3) sintering: sintering by using a tubular furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 400 ℃, and the dewaxing time is 35 min; the sintering temperature is 610 ℃, the sintering heat preservation time is 50min, the furnace is cooled after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 1h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
(4) And (3) heat treatment: and (3) sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 525 ℃, the solid solution time is 1.5h, the artificial aging temperature is 175 ℃, and the artificial aging time is 10 h.
Through tests, the strength of the 4A11 aluminum alloy powder without the calcium hydride powder after sintering is 186MPa, and the deformation can reach 2.10%; after 0.1% of calcium hydride powder is added into the 4A11 aluminum alloy powder, the strength of the sintered calcium hydride modified powder metallurgy 4A11 aluminum alloy material is 178MPa, and the deformation reaches 1.32%.
Example 8:
in this embodiment, a method for preparing a powder metallurgy aluminum-based material is described by taking a high silicon aluminum alloy Al-10Si substrate as an example, and specifically includes the following steps:
(1) mixing powder: mixing Al-10Si aluminum alloy powder with the average grain diameter of 50 mu m and calcium hydride powder with the average grain diameter of 62 mu m to obtain raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 5.5 percent, and the balance is Al-10Si aluminum alloy powder. Ball-milling the raw material powder for 12 hours on a planetary ball mill with the rotating speed of 90r/min, adding paraffin accounting for 1.5 percent of the mass fraction of the raw material powder into the raw material powder as a lubricant for 0.5 hour before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 90%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 250MPa, and the pressure maintaining time is 10 s.
(3) And (3) sintering: sintering by adopting a mesh belt type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 380 ℃, and the dewaxing time is 40 min; the sintering temperature is 595 ℃, the sintering heat preservation time is 45min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 3h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
(4) And (3) heat treatment: and sequentially carrying out solid solution and artificial aging heat treatment on the sintered piece, wherein the solid solution temperature is 520 ℃, the solid solution time is 2 hours, the artificial aging temperature is 170 ℃, and the artificial aging time is 10 hours.
Tests show that the strength of the Al-10Si aluminum alloy powder without the calcium hydride powder after sintering is 130MPa, and the deformation can reach 1.89%; after 5.5 percent of calcium hydride powder is added into the Al-10Si aluminum alloy powder, the strength of the sintered calcium hydride modified powder metallurgy Al-10Si aluminum alloy material is 112MPa, and the deformation reaches 1.25 percent.
Example 9:
in this embodiment, taking an Al2O3-2024 aluminum-based composite material matrix reinforced by ceramic particles as an example, a method for preparing a powder metallurgy aluminum-based material is described, which specifically includes the following steps:
(1) mixing powder: mixing Al2O3-2024 aluminum-based composite material powder with the average particle size of 85 μm and calcium hydride powder with the average particle size of 15 μm to obtain raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 1.5%, and the balance is Al2O3-2024 aluminum-based composite material powder. Ball-milling the raw material powder for 9h on a planetary ball mill with the rotating speed of 100r/min, adding zinc stearate accounting for 1% of the raw material powder by mass as a lubricant into the raw material powder for 0.5h before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. As shown in FIG. 3, it can be seen that the Al2O3-2024 aluminum-based powder was uniformly mixed with the calcium hydride powder. The calcium hydride powder used in this step may preferably have a purity of 99%.
(2) Forming: and (2) carrying out die pressing forming on the powder obtained in the step (1), wherein the pressing pressure is 300MPa, and the pressure maintaining time is 20 s.
(3) And (3) sintering: sintering by adopting a mesh belt type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 440 ℃, and the dewaxing time is 25 min; the sintering temperature is 580 ℃, the sintering heat preservation time is 40min, the furnace is cooled after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 2h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
(4) And (3) heat treatment: and carrying out solid solution and artificial aging heat treatment on the sintered part, wherein the solid solution temperature is 490 ℃, the solid solution time is 1h, the artificial aging temperature is 190 ℃, and the artificial aging time is 20 h.
Through tests, the strength of the Al2O3-2024 powder without the hydrogenated calcium powder after sintering is 226MPa, and the deformation can reach 1.50%; after the Al2O3-2024 powder is added with 1.5 percent of calcium hydride powder, the strength of the calcium hydride modified Al2O3-2024 aluminum matrix composite material obtained by sintering is 174MPa, and the deformation reaches 0.59 percent.
Example 10:
this example illustrates a method for preparing a powder metallurgy aluminum-based material by heat treating a non-strengthenable 3003 aluminum alloy substrate, which specifically comprises the following steps:
(1) mixing powder: the 3003 aluminum alloy powder with the average particle size of 70 μm and the calcium hydride powder with the average particle size of 70 μm are mixed to obtain the raw material powder, wherein the mass fraction of the calcium hydride powder in the raw material powder is 1%, and the balance is the 3003 aluminum alloy powder. Ball-milling the raw material powder for 12 hours on a planetary ball mill with the rotating speed of 90r/min, adding paraffin accounting for 1.5 percent of the mass fraction of the raw material powder into the raw material powder as a lubricant for 0.5 hour before the ball-milling is finished, and obtaining mixed powder after the ball-milling is finished. The calcium hydride powder used in this step may preferably have a purity of 95%.
(2) And (3) forming, namely performing die pressing forming on the product obtained in the step (1), wherein the pressing pressure is 500MPa, and the pressure maintaining time is 10 s.
(3) And (3) sintering: sintering by adopting a push rod type continuous furnace, wherein the sintering protective atmosphere is high-purity N2, the dewaxing temperature is 400 ℃, and the dewaxing time is 30 min; the sintering temperature is 570 ℃, the sintering heat preservation time is 40min, furnace cooling is carried out after the heat preservation is finished, and the cooling speed is controlled to reduce the temperature to the room temperature within 3h, so that the sintered part is obtained. The sintering environment for this step of sintering may preferably be less than 10ppm oxygen with a dew point of less than-40 ℃.
Tests show that the strength of the 3003 aluminum alloy powder without the calcium hydride powder after sintering is 112MPa, and the deformation can reach 0.80%; after 1 percent of calcium hydride powder is added into the 3003 aluminum alloy powder, the strength of the calcium hydride modified 3003 aluminum alloy material obtained by sintering is 77MPa, and the deformation reaches 0.46 percent.

Claims (8)

1. A preparation method of powder metallurgy aluminum-based material is characterized by comprising the following steps:
(a) mixing powder: uniformly mixing aluminum matrix powder and calcium hydride powder according to the component proportion to obtain raw material powder; the raw material powder comprises 0.01-10% of calcium hydride powder by mass percent, and the balance of aluminum matrix powder, wherein the aluminum matrix powder is aluminum simple substance powder or aluminum alloy powder or aluminum matrix composite powder;
(b) forming: pressing and forming the powder obtained in the step (a) to obtain a blank body;
(c) and (3) sintering: sintering the green body obtained in the step (b) in a protective atmosphere to obtain a sintered part; the sintering temperature is 550-660 ℃, and the heat preservation time is 5-60 min;
(d) and (3) heat treatment: sequentially carrying out solid solution treatment and artificial aging heat treatment on the sintered piece obtained in the step (c);
and (d) not performing the step (d) on the sintered part which is a pure aluminum matrix or an aluminum alloy matrix which cannot be strengthened by heat treatment.
2. The method of preparing a powder metallurgy aluminum-based material of claim 1, wherein: the mass fraction of the calcium hydride powder is 1-5.5%.
3. The method of preparing a powder metallurgy aluminum-based material of claim 1 or 2, wherein: the purity of the calcium hydride powder is 85-99%.
4. The method of preparing a powder metallurgy aluminum-based material of claim 1, wherein: the solid solution temperature of the solid solution treatment in the step (d) is 450-580 ℃, the solid solution time is 0.5-6 h, the artificial aging temperature is 100-200 ℃, and the artificial aging time is 3-24 h.
5. The method of preparing a powder metallurgy aluminum-based material of claim 1, wherein: in the powder mixing process of the step (a), a lubricant is added into the raw material powder, wherein the lubricant accounts for 0.5-2% of the raw material powder by mass.
6. The method of preparing a powder metallurgy aluminum-based material of claim 5, wherein: dewaxing the blank before sintering in the step (c), wherein the dewaxing temperature is 350-450 ℃, and the dewaxing time is 20-50 min.
7. The method of preparing a powder metallurgy aluminum-based material of claim 1, wherein: the average particle size of the aluminum matrix powder of the step (a) is 30 to 100 μm, and the average particle size of the calcium hydride powder is 0.1 to 100 μm.
8. The method of preparing a powder metallurgy aluminum-based material of claim 1, wherein: and (b) mixing in the step (a) by adopting a ball mill, wherein the rotating speed of the ball mill is 70-150 r/min, and the ball milling time is 6-14 h.
CN201910477614.1A 2019-06-03 2019-06-03 Powder metallurgy aluminum-based material and preparation method thereof Active CN110216276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910477614.1A CN110216276B (en) 2019-06-03 2019-06-03 Powder metallurgy aluminum-based material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910477614.1A CN110216276B (en) 2019-06-03 2019-06-03 Powder metallurgy aluminum-based material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110216276A CN110216276A (en) 2019-09-10
CN110216276B true CN110216276B (en) 2022-01-25

Family

ID=67819111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910477614.1A Active CN110216276B (en) 2019-06-03 2019-06-03 Powder metallurgy aluminum-based material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110216276B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112760526A (en) * 2020-12-08 2021-05-07 东睦新材料集团股份有限公司 Powder metallurgy aluminum alloy chain wheel or gear and preparation method thereof
CN113564398A (en) * 2021-07-06 2021-10-29 北京科技大学 Preparation method of powder metallurgy lithium-containing aluminum-based composite material added with sintering activator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972285A (en) * 1997-06-10 1999-10-26 Th. Goldschmidt Ag Foamable metal articles
JP2008527167A (en) * 2005-01-10 2008-07-24 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト Metal powder mixture
CN103436759A (en) * 2013-09-10 2013-12-11 株洲硬质合金集团有限公司 Zr element-toughened WC-Ni3Al hard alloy and preparation method thereof
CN104745853A (en) * 2015-04-23 2015-07-01 苏州第一元素纳米技术有限公司 Preparation method of foamed aluminum/ nano carbon composite material
CN105161698A (en) * 2015-08-06 2015-12-16 苏州第一元素纳米技术有限公司 Fabrication method for aluminum/carbon composite electrode
CN106191493A (en) * 2016-07-15 2016-12-07 湖南大学 A kind of preparation method of powder metallurgy titanium alloy
CN109763012A (en) * 2019-01-22 2019-05-17 山东理工大学 The preparation method of flux foaming enhancing foamed aluminium composite foamable agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972285A (en) * 1997-06-10 1999-10-26 Th. Goldschmidt Ag Foamable metal articles
JP2008527167A (en) * 2005-01-10 2008-07-24 ハー ツェー シュタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト Metal powder mixture
CN103436759A (en) * 2013-09-10 2013-12-11 株洲硬质合金集团有限公司 Zr element-toughened WC-Ni3Al hard alloy and preparation method thereof
CN104745853A (en) * 2015-04-23 2015-07-01 苏州第一元素纳米技术有限公司 Preparation method of foamed aluminum/ nano carbon composite material
CN105161698A (en) * 2015-08-06 2015-12-16 苏州第一元素纳米技术有限公司 Fabrication method for aluminum/carbon composite electrode
CN106191493A (en) * 2016-07-15 2016-12-07 湖南大学 A kind of preparation method of powder metallurgy titanium alloy
CN109763012A (en) * 2019-01-22 2019-05-17 山东理工大学 The preparation method of flux foaming enhancing foamed aluminium composite foamable agent

Also Published As

Publication number Publication date
CN110216276A (en) 2019-09-10

Similar Documents

Publication Publication Date Title
CN110273092B (en) CoCrNi particle reinforced magnesium-based composite material and preparation method thereof
CN110358941B (en) Tungsten-based alloy material and preparation method thereof
CN110142402B (en) Powder metallurgy aluminum-based material and preparation method thereof
CN108251695B (en) Preparation method of titanium-aluminum-niobium-zirconium-molybdenum alloy
CN110216276B (en) Powder metallurgy aluminum-based material and preparation method thereof
CN104630639B (en) A kind of nano silicon nitride yttrium dispersion strengthening iron-base alloy and preparation method
CN111455204B (en) Method for preparing NiAl intermetallic compound
CN111118325B (en) Preparation method of fine-grain niobium-titanium alloy
CN101643862A (en) Preparation method of nanometer rare earth oxide-doped molybdenum alloy plate
CN111471896B (en) Preparation method of nano hafnium oxide reinforced NiAl composite material
CN110216275B (en) Powder metallurgy aluminum-based material and preparation method thereof
CN110157930B (en) Powder metallurgy aluminum-based material and preparation method thereof
CN110184487B (en) Powder metallurgy aluminum-based material and preparation method thereof
CN110983152B (en) Fe-Mn-Si-Cr-Ni based shape memory alloy and preparation method thereof
US20190185974A1 (en) Method for Preparing Nano-SiO2 Reinforced Aluminum Matrix Composites
CN114774728B (en) Wear-resistant aluminum alloy and preparation method thereof
CN113604720B (en) Large-size deformation-resistant molybdenum alloy bar and preparation method thereof
CN106399732B (en) A kind of powder sintered method for preparing Al Sn base bearing alloy
CN110484786B (en) High-densification core-shell structure particle reinforced Al-based composite material and preparation method thereof
CN114605158A (en) Nitride composite refractory material for titanium alloy smelting and preparation method thereof
CN111299597A (en) Preparation method of nano MgO particle reinforced magnesium-based composite material
CN111020395A (en) Iron-based powder metallurgy composite material and preparation method thereof
CN111893337B (en) Preparation method of high-temperature alloy
CN115608994A (en) Preparation and forming process of magnesium-based composite material lath
CN116604019A (en) High-efficiency extrusion preparation method of high-temperature-resistant aluminum-based composite material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 1508, Jingjiang Road, Yinzhou Industrial Park, Ningbo City, Zhejiang Province

Applicant after: MBTM New Materials Group Co.,Ltd.

Address before: 315191 No.8 Jingjiang Road, Yinzhou Industrial Park, Ningbo, Zhejiang Province

Applicant before: MBTM New Materials Group Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant