CN110212914B - Numerical control oscillator based on multi-order bridge capacitor array - Google Patents
Numerical control oscillator based on multi-order bridge capacitor array Download PDFInfo
- Publication number
- CN110212914B CN110212914B CN201910653701.8A CN201910653701A CN110212914B CN 110212914 B CN110212914 B CN 110212914B CN 201910653701 A CN201910653701 A CN 201910653701A CN 110212914 B CN110212914 B CN 110212914B
- Authority
- CN
- China
- Prior art keywords
- capacitor
- order
- bridge
- bridge capacitor
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 231
- 238000003491 array Methods 0.000 claims description 6
- 238000004088 simulation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
- H03L7/0991—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator being a digital oscillator, e.g. composed of a fixed oscillator followed by a variable frequency divider
Landscapes
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
Abstract
本发明提供一种基于多阶桥接电容阵列的数控振荡器,包括负阻模块、电感L和多阶桥接电容阵列,负阻模块包括PMOS晶体管Mp和NMOS晶体管Mn,负阻模块的正端口连接电感L的上端,负阻模块的负端口接电感L的下端;负阻模块的正端口分别接PMOS晶体管Mp的栅极与NMOS晶体管Mn的漏极,负阻模块的负端口分别接PMOS晶体管Mp的漏极与NMOS晶体管Mn的栅极;PMOS晶体管Mp的源极接电源,NMOS晶体管Mn的源极接地;电感L与多阶桥接电容阵列并联;本发明通过改变振荡器开关电容调谐模块的结构,在原来频率分辨率的基础上,使得频率分辨率提高为原来的几百倍,从而获得更高精度的频率分辨率,同时具有较高的线性度、频率稳定度。
The invention provides a numerically controlled oscillator based on a multi-stage bridge capacitor array, which includes a negative resistance module, an inductor L and a multi-stage bridge capacitor array. The negative resistance module includes a PMOS transistor Mp and an NMOS transistor Mn, and the positive port of the negative resistance module is connected to the inductor. The upper end of L, the negative port of the negative resistance module is connected to the lower end of the inductor L; the positive port of the negative resistance module is respectively connected to the gate of the PMOS transistor Mp and the drain of the NMOS transistor Mn, and the negative port of the negative resistance module is respectively connected to the PMOS transistor Mp. The drain is connected to the gate of the NMOS transistor Mn; the source of the PMOS transistor Mp is connected to the power supply, and the source of the NMOS transistor Mn is grounded; the inductor L is connected in parallel with the multi-level bridge capacitor array; the invention changes the structure of the oscillator switched capacitor tuning module, On the basis of the original frequency resolution, the frequency resolution is increased to several hundred times of the original, so as to obtain a higher-precision frequency resolution, and at the same time, it has higher linearity and frequency stability.
Description
技术领域technical field
本发明涉及一种基于多阶桥接电容阵列的数控振荡器。The invention relates to a numerically controlled oscillator based on a multi-order bridge capacitor array.
背景技术Background technique
振荡器是一种广泛应用于电子系统中的电路模块。从处理器到载波合成技术芯片,振荡器无处不在。在不同的电子系统中,对振荡器的要求也不同。由于数控振荡器相较于其他类型的振荡器具有频率精度高、转换时间短、频谱纯度高以及频率相位易编程、输出频率稳定度高等优点,广泛应用于现代通信系统中,包括频率合成和各种数字频率相位数字调制解调系统中。于是在数字通信系统中,数控振荡器是调制解调单元必不可少的部分。An oscillator is a circuit module widely used in electronic systems. Oscillators are everywhere, from processors to carrier synthesis technology chips. In different electronic systems, the requirements for oscillators are also different. Compared with other types of oscillators, numerically controlled oscillators have the advantages of high frequency accuracy, short conversion time, high spectral purity, easy programming of frequency and phase, and high output frequency stability. They are widely used in modern communication systems, including frequency synthesis and various In a digital frequency phase digital modulation and demodulation system. So in the digital communication system, the numerical control oscillator is an indispensable part of the modulation and demodulation unit.
随着通信、卫星定位、数字电视、航空航天技术和电子技术等技术的发展,对数控振荡器的频率分辨率要求越来越高。With the development of technologies such as communications, satellite positioning, digital television, aerospace technology and electronic technology, the frequency resolution requirements for numerically controlled oscillators are getting higher and higher.
目前提高数控振荡器的频率分辨率主要有以下两种方法:At present, there are two main methods to improve the frequency resolution of numerically controlled oscillators:
采用MOS电容是提高数控振荡器分辨率一种方法,MOS电容可以减少单位电容的容值,但是这种MOS管电容的容值减小有限,当容值降低到fF级别时,非常容易受寄生电容的影响导致频率准确度降低,线性度变差。The use of MOS capacitors is a way to improve the resolution of numerically controlled oscillators. MOS capacitors can reduce the capacitance value of the unit capacitor, but the capacitance value of this MOS tube capacitor is limited. When the capacitance value is reduced to the fF level, it is very susceptible to parasitics. The effect of capacitance results in reduced frequency accuracy and poor linearity.
另一种实现方法是采用Δ∑调制器实现高分辨率,但是Δ∑调制器会引入额外的相位噪声,而且由于Δ∑调制器工作在高频时钟下,会增加额外的功耗负担。Another implementation is to use a ΔΣ modulator to achieve high resolution, but the ΔΣ modulator will introduce additional phase noise, and because the ΔΣ modulator operates under a high-frequency clock, it will increase the additional power consumption burden.
上述问题是在提高数控振荡器的频率分辨率的过程中应当予以考虑并解决的问题。The above problems are problems that should be considered and solved in the process of improving the frequency resolution of the numerically controlled oscillator.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种基于多阶桥接电容阵列的数控振荡器解决现有技术中采用MOS电容存在着MOS管电容的容值减小有限,当容值降低到fF级别时,非常容易受寄生电容的影响导致频率准确度降低,线性度变差,或采用Δ∑调制器存在着会引入额外的相位噪声,而且由于Δ∑调制器工作在高频时钟下,会增加额外的功耗负担的问题。The purpose of the present invention is to provide a numerically controlled oscillator based on a multi-stage bridge capacitor array to solve the problem that the capacitance value of the MOS tube capacitor in the prior art is limited, and when the capacitance value is reduced to the fF level, it is very easy to suffer The effect of parasitic capacitance leads to reduced frequency accuracy, poor linearity, or the use of ΔΣ modulators will introduce additional phase noise, and because the ΔΣ modulators work under high frequency clocks, it will increase additional power consumption burden The problem.
本发明的技术解决方案是:The technical solution of the present invention is:
一种基于多阶桥接电容阵列的数控振荡器,包括负阻模块、电感L和多阶桥接电容阵列,负阻模块包括PMOS晶体管Mp和NMOS晶体管Mn,负阻模块的正端口连接电感L的上端,负阻模块的负端口接电感L的下端;负阻模块的正端口分别接PMOS晶体管Mp的栅极与NMOS晶体管Mn的漏极,负阻模块的负端口分别接PMOS晶体管Mp的漏极与NMOS晶体管Mn的栅极;PMOS晶体管Mp的源极接电源,NMOS晶体管Mn的源极接地;电感L与多阶桥接电容阵列并联。A numerically controlled oscillator based on a multi-stage bridging capacitor array, comprising a negative resistance module, an inductor L and a multi-stage bridging capacitor array, the negative resistance module includes a PMOS transistor Mp and an NMOS transistor Mn, and the positive port of the negative resistance module is connected to the upper end of the inductance L , the negative port of the negative resistance module is connected to the lower end of the inductor L; the positive port of the negative resistance module is respectively connected to the gate of the PMOS transistor Mp and the drain of the NMOS transistor Mn, and the negative port of the negative resistance module is respectively connected to the drain of the PMOS transistor Mp and the drain The gate of the NMOS transistor Mn; the source of the PMOS transistor Mp is connected to the power supply, and the source of the NMOS transistor Mn is grounded; the inductor L is connected in parallel with the multi-stage bridge capacitor array.
进一步地,多阶桥接电容阵列包括桥接电容阵列单元、上桥接电容单元、下桥接电容单元、第一衰减电容Ca1和第二衰减电容Ca2,桥接电容阵列单元包括第0阶、第1阶、第2阶、…、第i阶、…、第n-1阶、第n阶桥接电容阵列,其中i、n为整数且0<i<n;上桥接电容单元包括第一上桥接电容Cb上1、第二上桥接电容Cb上2、…1、第i上桥接电容Cb上i、…、第n上桥接电容Cb上n,其中i、n为整数且0<i<n;下桥接电容单元包括第一下桥接电容Cb下1、第一下桥接电容Cb下2、…、第i下桥接电容Cb下i、…、第n下桥接电容Cb下n,其中i、n为整数且0<i<n;Further, the multi-stage bridging capacitor array includes a bridging capacitor array unit, an upper bridging capacitor unit, a lower bridging capacitor unit, a first attenuation capacitor C a1 and a second attenuation capacitor C a2 , and the bridging capacitor array unit includes the 0th order and the first order. , 2nd order, ..., ith order, ..., n-1th order, nth order bridge capacitor array, where i, n are integers and 0<i<n; the upper bridge capacitor unit includes the first upper bridge capacitor C 1 on b, 2 on the second bridging capacitor C b , ... 1 , i on the ith upper bridging capacitor C b , ..., on the n th bridging capacitor C b on n , where i and n are integers and 0<i<n; the lower bridge capacitor unit includes the first lower bridge capacitor C b lower 1 , the first lower bridge capacitor C b lower 2 , ..., the ith lower bridge capacitor C b lower i , ..., the nth lower bridge capacitor C b lower n , where i and n are integers and 0<i<n;
第0阶桥接电容阵列的1端口分别连接负阻模块的正端口、电感L的上端口、第一上桥接电容Cb上1的上极板,第0阶桥接电容阵列的2端口分别连接负阻模块的负端口、电感L的下端口、第一下桥接电容Cb下1的上极板;
第i阶桥接电容阵列的1端口接第i上桥接电容Cb上i的下极板、第二上桥接电容Cb上i+1的上极板,第i阶桥接电容阵列的2端口接第i下桥接电容Cb下i的下极板、第i+1下桥接电容Cb下i+1的上极板;The 1st port of the i-th order bridge capacitor array is connected to the lower plate of i on the i-th upper bridge capacitor C b, the upper plate of i+1 on the second upper bridge capacitor C b, and the 2th port of the i-th order bridge capacitor array is connected to The i-th lower bridging capacitor C b is connected to the lower plate of i , and the i+1-th lower bridging capacitor C b is connected to the upper plate of i+1 ;
第n阶桥接电容阵列的1端口接第n上桥接电容Cb上n的下极板、第一衰减电容Ca1的上极板,第n阶桥接电容阵列的2端口接第n下桥接电容Cb下n的下极板、第二衰减电容Ca2的下极板;第一衰减电容Ca1的下极板接第二衰减电容Ca2的上极板。
进一步地,第0阶、第1阶、第2阶…、第i阶、…第n阶桥接电容阵列的结构均相同。Further, the structures of the 0th-order, 1st-order, 2nd-order..., i-th order,...n-th order bridge capacitor arrays are all the same.
进一步地,第0阶桥接电容阵列包括第一调谐电容模块Cu1和第二调谐电容模块Cu2,第0阶桥接电容阵列的1端口连接第一调谐电容模块Cu1的上极板,第0阶桥接电容阵列的2端口连接第二调谐电容模块Cu2下极板;第一调谐电容模块Cu1的下极板接第二调谐电容模块Cu2的上极板。Further, the 0th order bridging capacitor array includes a first tuning capacitor module C u1 and a second tuning capacitor module C u2 , the 1 port of the 0th order bridging capacitor array is connected to the upper plate of the first tuning capacitor module C u1 , and the 0th The 2 ports of the step bridge capacitor array are connected to the lower plate of the second tuning capacitor module C u2 ; the lower plate of the first tuning capacitor module C u1 is connected to the upper plate of the second tuning capacitor module C u2 .
进一步地,多阶桥接电容阵列中,电容值需满足以下关系:第一上桥接电容Cb上1、第二上桥接电容Cb上2、…、第i上桥接电容Cb上i、…、第n-1上桥接电容Cb上n-1、第一下桥接电容Cb下1、第二下桥接电容Cb下2、…、第i下桥接电容Cb下i、…、第n-1下桥接电容Cb下n-1的容值都为Cb,第n上桥接电容Cb上n、第n下桥接电容Cb下n的容值为Cs,第一调谐电容Cu1、第二调谐电容Cu2的电容值均为Cu,第一衰减电容Ca1、第二衰减电容Ca2容值都为Ca,当电容值满足:Further, in the multi-stage bridge capacitor array, the capacitance values need to satisfy the following relationship: 1 on the first upper bridge capacitor C b , 2 on the second upper bridge capacitor C b , ..., i on the i-th upper bridge capacitor C b , ... , the n-1th upper bridge capacitor Cb is n-1 , the first lower bridge capacitor Cb is 1 , the second lower bridge capacitor Cb is 2 , ..., the ith lower bridge capacitor Cb is i , ..., the first The capacitance value of n-1 under the bridge capacitor Cb under n-1 is all Cb , the capacitance value of n on the nth upper bridge capacitor Cb, and the capacitance value of n under the nth lower bridge capacitor Cb is Cs , the first tuning capacitor The capacitance values of C u1 and the second tuning capacitor C u2 are both C u , and the capacitance values of the first attenuation capacitor C a1 and the second attenuation capacitor C a2 are both C a , when the capacitance values satisfy:
Ca=Cu-CS C a =C u -C S
(1)(1)
该基于多阶桥接电容阵列的数控振荡器的最小可变电容为:The minimum variable capacitance of the numerically controlled oscillator based on the multi-order bridge capacitor array is:
式中,ΔCu为任意一阶桥接电容阵列的单位可变电容值,n为桥接电容阵列单元中桥接电容阵列的数量。In the formula, ΔC u is the unit variable capacitance value of any first-order bridge capacitor array, and n is the number of bridge capacitor arrays in the bridge capacitor array unit.
本发明的有益效果是:该种基于多阶桥接电容阵列的数控振荡器,通过改变振荡器开关电容调谐模块的结构,在原来频率分辨率的基础上,使得频率分辨率提高为原来的几百倍,从而获得更高精度的频率分辨率,同时具有较高的线性度、频率稳定度。该种基于多阶桥接电容阵列的数控振荡器,采用LC数控振荡器,在振荡器的开关电容阵列间加入桥接电容,使得电容的调制精度比原来提高几百倍,从而可以大大提高数控振荡器的频率分辨率,并具有较高的线性度、频率稳定度,也不会增加其整个振荡电路的功耗,并能够实现相位噪声性能的优化。The beneficial effects of the present invention are: for the numerically controlled oscillator based on a multi-order bridge capacitor array, by changing the structure of the oscillator switched capacitor tuning module, on the basis of the original frequency resolution, the frequency resolution is improved to hundreds of the original. times, so as to obtain higher precision frequency resolution, and at the same time have higher linearity and frequency stability. This kind of numerical control oscillator based on multi-order bridge capacitor array adopts LC numerical control oscillator and adds bridge capacitor between the switched capacitor arrays of the oscillator, so that the modulation accuracy of the capacitor is improved hundreds of times compared with the original, so that the numerical control oscillator can be greatly improved. It has high frequency resolution, high linearity and frequency stability, and will not increase the power consumption of its entire oscillation circuit, and can optimize the phase noise performance.
附图说明Description of drawings
图1是本发明实施例基于多阶桥接电容阵列的数控振荡器的结构示意图;1 is a schematic structural diagram of a numerically controlled oscillator based on a multi-order bridge capacitor array according to an embodiment of the present invention;
图2是实施例基于多阶桥接电容阵列的数控振荡器的SP仿真示意图;Fig. 2 is the SP simulation schematic diagram of the numerically controlled oscillator based on the multi-order bridge capacitor array of the embodiment;
图3是实施例基于多阶桥接电容阵列的数控振荡器与不含桥接电容阵列的数控振荡器的相位噪声仿真对比示意图。FIG. 3 is a schematic diagram of a phase noise simulation comparison between a numerically controlled oscillator based on a multi-order bridge capacitor array and a numerically controlled oscillator without a bridge capacitor array according to an embodiment.
具体实施方式Detailed ways
下面结合附图详细说明本发明的优选实施例。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
实施例Example
一种基于多阶桥接电容阵列的数控振荡器,如图1,包括负阻模块、电感L和多阶桥接电容阵列,负阻模块包括PMOS晶体管Mp和NMOS晶体管Mn,负阻模块的正端口连接电感L的上端,负阻模块的负端口接电感L的下端;负阻模块的正端口分别接PMOS晶体管Mp的栅极与NMOS晶体管Mn的漏极,负阻模块的负端口分别接PMOS晶体管Mp的漏极与NMOS晶体管Mn的栅极;PMOS晶体管Mp的源极接电源,NMOS晶体管Mn的源极接地;电感L与多阶桥接电容阵列并联。A numerically controlled oscillator based on a multi-order bridge capacitor array, as shown in Figure 1, includes a negative resistance module, an inductor L and a multi-order bridge capacitor array. The negative resistance module includes a PMOS transistor Mp and an NMOS transistor Mn, and the positive port of the negative resistance module is connected. The upper end of the inductor L, the negative port of the negative resistance module is connected to the lower end of the inductor L; the positive port of the negative resistance module is respectively connected to the gate of the PMOS transistor Mp and the drain of the NMOS transistor Mn, and the negative port of the negative resistance module is respectively connected to the PMOS transistor Mp The drain of the NMOS transistor Mn is connected to the gate of the NMOS transistor Mn; the source of the PMOS transistor Mp is connected to the power supply, and the source of the NMOS transistor Mn is grounded; the inductor L is connected in parallel with the multi-stage bridge capacitor array.
多阶桥接电容阵列包括桥接电容阵列单元、上桥接电容单元、下桥接电容单元、第一衰减电容Ca1和第二衰减电容Ca2,桥接电容阵列单元包括第0阶、第1阶、第2阶、…、第i阶、…、第n-1阶、第n阶桥接电容阵列,其中i、n为整数且0<i<n;上桥接电容单元包括第一上桥接电容Cb上1、第二上桥接电容Cb上2、…1、第i上桥接电容Cb上i、…、第n上桥接电容Cb上n,其中i、n为整数且0<i<n;下桥接电容单元包括第一下桥接电容Cb下1、第一下桥接电容Cb下2、…、第i下桥接电容Cb下i、…、第n下桥接电容Cb下n,其中i、n为整数且0<i<n;The multi-stage bridge capacitor array includes a bridge capacitor array unit, an upper bridge capacitor unit, a lower bridge capacitor unit, a first attenuation capacitor C a1 and a second attenuation capacitor C a2 , and the bridge capacitor array unit includes the 0th order, the first order, the second order order, . , 2 on the second upper bridging capacitor C b , ... 1 , i on the i-th upper bridging capacitor C b , ... , on the n th upper bridging capacitor C b on n , where i and n are integers and 0<i<n; The bridge capacitor unit includes a first lower bridge capacitor C b lower 1 , a first lower bridge capacitor C b lower 2 , . . . , n is an integer and 0<i<n;
第0阶桥接电容阵列的1端口分别连接负阻模块的正端口、电感L的上端口、第一上桥接电容Cb上1的上极板,第0阶桥接电容阵列的2端口分别连接负阻模块的负端口、电感L的下端口、第一下桥接电容Cb下1的上极板;
第i阶桥接电容阵列的1端口接第i上桥接电容Cb上i的下极板、第二上桥接电容Cb上i+1的上极板,第i阶桥接电容阵列的2端口接第i下桥接电容Cb下i的下极板、第i+1下桥接电容Cb下i+1的上极板;The 1st port of the i-th order bridge capacitor array is connected to the lower plate of i on the i-th upper bridge capacitor C b, the upper plate of i+1 on the second upper bridge capacitor C b, and the 2th port of the i-th order bridge capacitor array is connected to The i-th lower bridging capacitor C b is connected to the lower plate of i , and the i+1-th lower bridging capacitor C b is connected to the upper plate of i+1 ;
第n阶桥接电容阵列的1端口接第n上桥接电容Cb上n的下极板、第一衰减电容Ca1的上极板,第n阶桥接电容阵列的2端口接第n下桥接电容Cb下n的下极板、第二衰减电容Ca2的下极板;第一衰减电容Ca1的下极板接第二衰减电容Ca2的上极板。
该种基于多阶桥接电容阵列的数控振荡器,通过改变振荡器开关电容调谐模块的结构,在原来频率分辨率的基础上,使得频率分辨率提高为原来的几百倍,从而获得更高精度的频率分辨率,同时具有较高的线性度、频率稳定度。该种基于多阶桥接电容阵列的数控振荡器,采用LC数控振荡器,在振荡器的开关电容阵列间加入桥接电容,使得电容的调制精度比原来提高几百倍,从而可以大大提高数控振荡器的频率分辨率,并具有较高的线性度、频率稳定度,也不会增加其整个振荡电路的功耗,并能够实现相位噪声性能的优化。This kind of numerically controlled oscillator based on multi-order bridge capacitor array, by changing the structure of the oscillator switched capacitor tuning module, on the basis of the original frequency resolution, the frequency resolution is increased to several hundred times the original, so as to obtain higher precision high frequency resolution, high linearity and frequency stability. This kind of numerical control oscillator based on multi-order bridge capacitor array adopts LC numerical control oscillator and adds bridge capacitor between the switched capacitor arrays of the oscillator, so that the modulation accuracy of the capacitor is improved hundreds of times compared with the original, so that the numerical control oscillator can be greatly improved. It has high frequency resolution, high linearity and frequency stability, and will not increase the power consumption of its entire oscillation circuit, and can optimize the phase noise performance.
该种基于多阶桥接电容阵列的数控振荡器中,第0阶、第1阶、第2阶…、第i阶、…第n阶桥接电容阵列的结构均相同。第0阶桥接电容阵列包括第一调谐电容模块Cu1和第二调谐电容模块Cu2,第0阶桥接电容阵列的1端口连接第一调谐电容模块Cu1的上极板,第0阶桥接电容阵列的2端口连接第二调谐电容模块Cu2下极板;第一调谐电容模块Cu1的下极板接第二调谐电容模块Cu2的上极板。In the numerically controlled oscillator based on the multi-order bridge capacitor array, the structures of the 0th order, the first order, the second order..., the ith order, and the nth order bridge capacitance array are all the same. The 0th-order bridge capacitor array includes a first tuning capacitor module C u1 and a second tuning capacitor module C u2 , the 1st port of the 0th-order bridge capacitor array is connected to the upper plate of the first tuning capacitor module C u1 , and the 0th-order bridge capacitor is connected to the upper plate of the first tuning capacitor module C u1 . Port 2 of the array is connected to the lower plate of the second tuning capacitor module C u2 ; the lower plate of the first tuning capacitor module C u1 is connected to the upper plate of the second tuning capacitor module C u2 .
多阶桥接电容阵列中,电容值需满足以下关系:第一上桥接电容Cb上1、第二上桥接电容Cb上2、…、第i上桥接电容Cb上i、…、第n-1上桥接电容Cb上n-1、第一下桥接电容Cb下1、第二下桥接电容Cb下2、…、第i下桥接电容Cb下i、…、第n-1下桥接电容Cb下n-1的容值都为Cb,第n上桥接电容Cb上n、第n下桥接电容Cb下n的容值为Cs,第一调谐电容Cu1、第二调谐电容Cu2的电容值均为Cu,第一衰减电容Ca1、第二衰减电容Ca2容值都为Ca,当电容值满足:In the multi-stage bridge capacitor array, the capacitance values must satisfy the following relationship: 1 on the first upper bridge capacitor C b , 2 on the second upper bridge capacitor C b , ..., i on the ith upper bridge capacitor C b , ... , n th -1 upper bridge capacitor C b on n-1 , first lower bridge capacitor C b lower 1 , second lower bridge capacitor C b lower 2 , ..., i th lower bridge capacitor C b lower i , ..., n-1 th The capacitance value of n-1 under the lower bridge capacitor Cb is all Cb , the capacitance value of n on the nth upper bridge capacitor Cb, and the capacitance value of n under the nth lower bridge capacitor Cb is Cs , the first tuning capacitor C u1 , The capacitance values of the second tuning capacitor C u2 are both C u , the capacitance values of the first attenuation capacitor C a1 and the second attenuation capacitor C a2 are both C a , when the capacitance values satisfy:
Ca=Cu-CS C a =C u -C S
该基于多阶桥接电容阵列的数控振荡器的最小可变电容为:The minimum variable capacitance of the numerically controlled oscillator based on the multi-order bridge capacitor array is:
式中,ΔCu为任意一阶桥接电容阵列的单位可变电容值,n为桥接电容阵列单元中桥接电容阵列的数量。In the formula, ΔC u is the unit variable capacitance value of any first-order bridge capacitor array, and n is the number of bridge capacitor arrays in the bridge capacitor array unit.
从式(3)可以看出,该种基于多阶桥接电容阵列的数控振荡器能够达到的最小可变电容ΔCfine为任一阵列可达到的最小可变电容ΔCu乘以一个衰减系数,此衰减系数取决于Cs与Cu的比值,以及阶数n。因此该种基于多阶桥接电容阵列的数控振荡器的最小可变电容ΔCfine远小于ΔCu,从而相对于现有技术,能够实现频率分辨率的数值更小,频率分辨率的精度更高。It can be seen from equation (3) that the minimum variable capacitance ΔC fine that can be achieved by the numerically controlled oscillator based on the multi-order bridge capacitor array is the minimum variable capacitance ΔC u that can be achieved by any array multiplied by an attenuation coefficient. The attenuation coefficient depends on the ratio of Cs to Cu, and the order n. Therefore, the minimum variable capacitance ΔC fine of the numerically controlled oscillator based on the multi-order bridge capacitor array is much smaller than ΔC u , so that compared with the prior art, the numerical value of the frequency resolution can be smaller and the precision of the frequency resolution is higher.
如图2,是实施例的基于多阶桥接电容阵列的数控振荡器的SP仿真图,在仿真中,ΔCu=4fF、Cs=0.51pF、Cu=1.2pF。经过理论计算得ΔCfine=8aF,与图2所示仿真结果一致。通过仿真实验和理论计算,能够明显看出频率分辨率是现有的数控振荡器的1/500倍,从而有效实现更高精度的频率分辨率。FIG. 2 is the SP simulation diagram of the numerically controlled oscillator based on the multi-order bridge capacitor array according to the embodiment. In the simulation, ΔC u =4fF, C s =0.51pF, and C u =1.2pF. After theoretical calculation, ΔC fine = 8aF, which is consistent with the simulation results shown in Figure 2. Through simulation experiments and theoretical calculations, it can be clearly seen that the frequency resolution is 1/500 times that of the existing numerically controlled oscillator, thereby effectively achieving a higher frequency resolution.
将实施例的该种基于多阶桥接电容阵列的数控振荡器与不含桥接电容的数控振荡器,进行相位噪声仿真对比,如图3所示,在1MHz频偏处,不含桥接电容的数控振荡器的相位噪声为-106.4dBc/Hz,而采用实施例的该种基于多阶桥接电容阵列的数控振荡器后,输出信号的相位噪声下降至-116.8dBc/Hz,也就是说实施例的该种基于多阶桥接电容阵列的数控振荡器能够将数控振荡器的相位噪声性能优化10dBc/Hz。The numerical control oscillator based on the multi-order bridge capacitor array of the embodiment and the numerical control oscillator without bridge capacitors are compared for phase noise simulation. As shown in Figure 3, at a frequency offset of 1MHz, the numerical control oscillator without bridge capacitors The phase noise of the oscillator is -106.4dBc/Hz, and after using the numerically controlled oscillator based on the multi-order bridge capacitor array of the embodiment, the phase noise of the output signal drops to -116.8dBc/Hz, that is to say, the The numerically controlled oscillator based on a multi-order bridge capacitor array can optimize the phase noise performance of the numerically controlled oscillator by 10dBc/Hz.
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。The embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned embodiments, and can also be made within the scope of knowledge possessed by those of ordinary skill in the art without departing from the purpose of the present invention. Various changes.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910653701.8A CN110212914B (en) | 2019-07-18 | 2019-07-18 | Numerical control oscillator based on multi-order bridge capacitor array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910653701.8A CN110212914B (en) | 2019-07-18 | 2019-07-18 | Numerical control oscillator based on multi-order bridge capacitor array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110212914A CN110212914A (en) | 2019-09-06 |
CN110212914B true CN110212914B (en) | 2022-10-18 |
Family
ID=67797790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910653701.8A Active CN110212914B (en) | 2019-07-18 | 2019-07-18 | Numerical control oscillator based on multi-order bridge capacitor array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110212914B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111786672B (en) * | 2020-06-03 | 2022-11-08 | 东南大学 | A Transformer-Coupled Switched Capacitor Ladder Circuit |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483434A (en) * | 2008-01-11 | 2009-07-15 | 上海锐协微电子科技有限公司 | Voltage control oscillator with low tuning gain variance |
CN101662281A (en) * | 2009-09-10 | 2010-03-03 | 上海交通大学 | Inductance-capacitance numerical control oscillator |
CN108259037A (en) * | 2018-02-01 | 2018-07-06 | 中国电子科技集团公司第五十四研究所 | Multi-resonant chamber couples Low Phase Noise Voltage-controlled Oscillator |
-
2019
- 2019-07-18 CN CN201910653701.8A patent/CN110212914B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101483434A (en) * | 2008-01-11 | 2009-07-15 | 上海锐协微电子科技有限公司 | Voltage control oscillator with low tuning gain variance |
CN101662281A (en) * | 2009-09-10 | 2010-03-03 | 上海交通大学 | Inductance-capacitance numerical control oscillator |
CN108259037A (en) * | 2018-02-01 | 2018-07-06 | 中国电子科技集团公司第五十四研究所 | Multi-resonant chamber couples Low Phase Noise Voltage-controlled Oscillator |
Also Published As
Publication number | Publication date |
---|---|
CN110212914A (en) | 2019-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8559579B2 (en) | All-digital frequency synthesis with DCO gain calculation | |
CN104660216A (en) | High-precision frequency calibration circuit for Gm-C filter | |
CN110212914B (en) | Numerical control oscillator based on multi-order bridge capacitor array | |
CN114710154B (en) | Open-loop fractional frequency divider and clock system based on time division multiplexing gain calibration | |
CN112994695A (en) | High-speed low-power consumption Sigma-Delta analog-to-digital converter and digital processing unit | |
CN111030599B (en) | Quadrature signal generation | |
CN106383548B (en) | Low-spurious DDS source and spurious reduction method thereof | |
US11275344B2 (en) | Time to digital converter | |
CN210490799U (en) | SoC built-in oscillating circuit | |
CN202663367U (en) | Self-adaptive tuning system for continuous time filter | |
CN112953396B (en) | Variable-capacitance voltage-controlled oscillator and integrated circuit | |
CN105811969A (en) | High precision numerical control annular oscillator adopting laminated current tubes | |
US11218113B1 (en) | Dual-core dual-resonance compact inductor-capacitor voltage controlled oscillator | |
US20230091086A1 (en) | Transmission-line-based resonant quadrature clock distribution with harmonic filtering | |
CN109283832B (en) | Low-power-consumption time-to-digital converter and PHV compensation method thereof | |
CN102710233B (en) | Self-adaptive tuning system of continuous time filter | |
KR102500860B1 (en) | Asynchronous sampling devices and chips | |
CN110311674B (en) | Control method and circuit for suppressing spurious output clock of phase-locked loop | |
CN109818612B (en) | Frequency source applied to millimeter wave communication system | |
TWI244267B (en) | Circuit and method for phase delay | |
CN101488735B (en) | High resolution digitally controlled tuning element, tuning circuit and tuning method | |
EP1351397A2 (en) | All-digital frequency synthesis with capacitive re-introduction of dithered tuning information | |
CN104539287B (en) | It is a kind of to become capacitance structure and its method for the minimum of digital controlled oscillator | |
CN110932722A (en) | Capacitance multiplication circuit applied to phase-locked loop filter | |
Yuan et al. | Time-mode all-digital delta-Sigma time-to-digital converter with process uncertainty calibration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |