CN110211963A - 一种mos存储器及制备方法 - Google Patents

一种mos存储器及制备方法 Download PDF

Info

Publication number
CN110211963A
CN110211963A CN201910500369.1A CN201910500369A CN110211963A CN 110211963 A CN110211963 A CN 110211963A CN 201910500369 A CN201910500369 A CN 201910500369A CN 110211963 A CN110211963 A CN 110211963A
Authority
CN
China
Prior art keywords
oxide
metal
semiconductor memory
preparation
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910500369.1A
Other languages
English (en)
Inventor
程庆苏
吉娜
渠开放
李桂华
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201910500369.1A priority Critical patent/CN110211963A/zh
Publication of CN110211963A publication Critical patent/CN110211963A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • H01L29/42344Gate electrodes for transistors with charge trapping gate insulator with at least one additional gate, e.g. program gate, erase gate or select gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种MOS存储器,其结构从下至上分别为硅衬底、隧道氧化物层、电荷存储层、栅极氧化层和栅极,所述隧道氧化物层为超薄非对称Al2O3/HfO2的双层结构,所述电荷存储层为四层石墨烯纳米薄片;本发明还公开了基于上述MOS存储器的制备方法。本发明的MOS存储器能够增强存储器的保持能力,同时又保持电荷的保留率,在非易失性存储器设备中具有很大的潜力;其制备方法简单易行,工艺成本低。

Description

一种MOS存储器及制备方法
技术领域
本发明涉及MOS存储器领域,尤其涉及一种基于四层石墨烯纳米薄片的非易失性MOS存储器。
背景技术
由于消费电子产品市场的不断增长,对低功耗、高速、高密度非易失性存储设备的需求在过去十年中急剧增加。然而,目前的闪存设备在不久的将来将面临两大挑战:密度和电压缩放。存储器的密度与栅极长度的比例有关,而栅极长度的比例又受栅极叠加的限制,即隧道氧化物的厚度。事实上,为了保持良好的栅控制和避免短通道效应,栅长必须与栅堆叠相等。然而在传统的闪速存储器中,隧道氧化层厚度的下限为68nm,取决于NOR或NAND结构,以避免反隧穿,从而导致电荷泄漏,破坏存储器的必要保留特性(一般为10年)。第二个需要解决的问题是高程序和擦除工作电压。工作电压缩放的限制是无法减少栅叠加厚度。除了隧道氧化层厚度和保留特性之间的权衡关系,随着隧道氧化层厚度的减小,电荷的保留率呈指数级下降,隧道氧化物厚度与由此产生的程序时间之间存在另一种权衡的关系,其中较厚的隧道氧化物层导致从通道运输到电荷捕获层所需的时间延长,反之亦然。
石墨烯自2004年首次发现以来,受到了广泛的关注,由于其出色的电子性能,目前被认为是下一代信息处理设备中很有前途的材料。然而,单纯使用原始石墨烯作为电荷存储层不足以增强当前非易失性存储特性,存储器隧道氧化材料的选择对存储器的性能有重要影响。
发明内容
发明目的:本发明提出一种MOS存储器,使用超薄非对称Al2O3/HfO2双层结构作为隧道氧化物层和四层石墨烯纳米薄片作为电荷存储层,增强存储器的保持能力,同时又保持电荷的保留率。
本发明的另一目的是提出一种基于上述MOS存储器的制备方法。
技术方案:本发明所采用的技术方案是一种MOS存储器,其结构从下至上分别为硅衬底、隧道氧化物层、电荷存储层、栅极氧化层和栅极,所述隧道氧化物层为超薄非对称Al2O3/HfO2的双层结构,所述电荷存储层为四层石墨烯纳米薄片。
其中,所述硅衬底为掺锑的n型硅。
其中,所述双层结构中,底层隧道氧化物为Al2O3,顶层隧道氧化物为HfO2
其中,所述栅极氧化层为Al2O3
其中,所述栅极为Al。
本发明使用超薄非对称Al2O3/HfO2作为隧道氧化物层、四层石墨烯纳米薄片作为电荷存储层、Al2O3作为栅极氧化物和Al作为栅极,在此存储器的配置中,石墨烯纳米薄片的存储器是通过存储电子来编程的,纯电子存储成为非常快的完全编程MOS存储器。与2.85nm硅纳米粒子的存储器器件比较,石墨烯纳米薄片存储器具有更大的存储窗所揭示的电荷捕获态密度。此外,非易失性存储器可以频繁地编程/擦除,但代价是带来永久性的栅氧化层损伤,例如电子/空穴在自由捕获状态下的捕获,这些捕获电荷改变了注入场,从而改变了编程过程中电荷在电荷存储层之间的传输量,然而石墨烯纳米薄片的存储器,只有电子在隧穿,纯电子存储增强了记忆持久性,提高了编程速度,电荷存储层与栅极氧化层Al2O3之间的传导带偏移量更大,从而增强了存储器保持能力。进一步地,单纯使用原始石墨烯作为电荷存储层不足以增强当前非易失性存储特性,存储器隧道氧化材料的选择对存储器的性能有重要影响,随着隧道氧化物层厚度的减小,电荷的保留率呈指数级下降,但本发明的存储器采用超薄非对称Al2O3/HfO2双层结构的隧道氧化物,既减少了隧道氧化物层的厚度,减少了从通道运输到电荷捕获层所需的时间,又保持了电荷的保留率。
本发明所述的一种基于上述MOS存储器的制备方法,包括如下步骤:
S1:提供硅衬底;
S2:在所述硅衬底上沉积底层隧道氧化物Al2O3
S3:在所述底层隧道氧化物Al2O3上沉积顶层隧道氧化物HfO2,形成双层结构的隧道氧化物层;
S4:在所述隧道氧化物层上滴铸石墨烯纳米薄片,形成电荷存储层;
S5:在所述电荷存储层上沉积栅极氧化物Al2O3,形成栅极氧化层;
S6:在所述栅极氧化层上沉积栅极,最终形成基于石墨烯纳米薄片的非易失性MOS存储器。
其中,所述石墨烯纳米薄片的层数为四层。
其中,所述步骤S2采用原子层沉积法沉积。
其中,所述步骤S3采用等离子辅助原子层沉积法沉积。
其中,所述步骤S5采用原子层沉积法沉积。
其中,所述步骤S6采用电子束法蒸发沉积。
有益效果:本发明具有如下有益效果:
(1)采用四层石墨烯纳米薄片存储层具有更大的存储窗所揭示的电荷捕获态密度,纯电子存储增强了记忆持久性,提高了编程速度;
(2)电荷存储层与栅极氧化物Al2O3之间的传导带偏移量增大,增强了存储器保持能力;
(3)采用超薄非对称Al2O3/HfO2双层结构的隧道氧化物,既减少了隧道氧化物层的厚度,减少了从通道运输到电荷捕获层所需的时间,又保持了电荷的保留率;
(4)其制备方法简单易行,工艺成本低。
附图说明
图1是本发明的结构示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
如图1,本发明所述的一种MOS存储器,其结构从下至上分别为n型掺锑的硅衬底1、隧道氧化物层2、电荷存储层3、栅极氧化层4和栅极G,其中,隧道氧化物层2为超薄非对称Al2O3/HfO2的双层结构,其中底层隧道氧化物为Al2O3,顶层隧道氧化物为HfO2;电荷存储层3为四层石墨烯纳米薄片;栅极氧化物层4为Al2O3;栅极G为Al。
本发明的一种基于上述MOS存储器的制备方法,包括以下步骤:
步骤1:提供n型掺锑的硅衬底1;
步骤2:在其上采用原子层沉积法沉积底层隧道氧化物Al2O3
步骤3:在底层隧道氧化物Al2O3上采用等离子辅助原子层沉积法沉积顶层隧道氧化物HfO2,形成超薄非对称Al2O3/HfO2双层结构的隧道氧化物层2;
步骤4:在顶层隧道氧化物HfO2上滴铸四层石墨烯纳米薄片,形成电荷存储层3;
步骤5:接着采用原子层沉积法在电荷存储层3上沉积栅极氧化物Al2O3,形成栅极氧化层4;
步骤6:最后采用电子束法在栅极氧化层4上蒸发沉积Al栅极G,最终形成基于四层石墨烯纳米薄片的非易失性MOS存储器。
对于本发明的一种基于四层石墨烯纳米薄片的非易失性MOS存储器,量子输运分析是必要的。在具有紧束缚(TB)的NEGF框架中,Poisson和薛定谔方程的自洽解决方案需要哈密顿量来捕获这些新兴材料装置中的弹道传输现象,使用双带紧束缚(TB)哈密顿量和开源量子传输模拟框架模拟无结TM TMDC FET的电气特性,并且这项工作使用了相同的开源平台NanoTcad ViDES,这是一个模拟2D材料FET的既定平台。为揭示纳米尺度类器件的量子输运特性,本发明采用一种量子力学模型,通过自洽全量子数值求解二维非平衡格林函数(NEGF)方程和泊松(Poisson)方程,构建了适用于存储器的金属氧化物半导体场效应管的输运模型。
该模型基于金属氧化物半导体场效应管中的电势和电荷密度的自洽计算。具体过程是给定一个初始沟道电势,利用NEGF方程计算出其电荷密度,再将电荷密度代入泊松方程求解出静电势,然后又将求得的电势重新代入NEGF方程中进行计算,如此反复迭代直到得到自洽解为止。电荷密度的计算是利用非平衡格林函数方法。器件的迟滞格林函数为[DATTA S.Nanoscale device modeling:The Green’s function method[J].Superlattices Microstruct,2000,28(4):253-278.]:
G(E)=[EI-H-∑S-∑D]-1. (1)
I是单位矩阵,∑S和∑D分别为器件源和漏电极贡献的自能项,可根据表面格林函数通过迭代求出。扩展矩阵ΓsΓD和谱密度ASAD分别为[VENUGOPAL R,PAULSSON M,GOASGUEN S,et al.A simple quantum mechanical treatment of scatteringnanoscale transistors[J].J Appl Phys,2003,93(9):5613-5625.]:
用于解泊松方程的密度矩阵为:
其中A(Ek,x)是谱密度矩阵,Ek,x是导电电平的能量,η是触点的化学势,f0是费米函数。
将由NEGF方程计算得到的载流子密度放入泊松方程中,以计算更准确的自洽电位猜测值去计算更好的ntot,用于计算传输矩阵T(E)的收敛值为:
T(E)=Trace[ASΓD]=Trace[ADΓS]. (5)
由此可计算得到弹道漏电流为:
其中e是电子电荷,h是普朗克常数,fS和fD是源极和漏极触点中的费米函数。ηs和ηD分别是源和化学势。因子4起源于材料的自旋简并性和谷简并性。
通道电导可计算得:
其中gv是谷简并度,因子2是自旋简并度,f是费米函数。

Claims (10)

1.一种MOS存储器,其特征在于:其结构从下至上分别为硅衬底(1)、隧道氧化物层(2)、电荷存储层(3)、栅极氧化层(4)和栅极(G),所述隧道氧化物层(2)为超薄非对称Al2O3/HfO2的双层结构,所述电荷存储层(3)为四层石墨烯纳米薄片。
2.根据权利要求1所述的一种MOS存储器,其特征在于:所述硅衬底(1)为掺锑的n型硅。
3.根据权利要求1所述的一种MOS存储器,其特征在于:所述栅极氧化层(4)为Al2O3
4.根据权利要求1所述的一种MOS存储器,其特征在于:所述栅极(G)为Al。
5.一种如权利要求1所述的MOS存储器的制备方法,其特征在于,包括如下步骤:
S1:提供硅衬底(1);
S2:在所述硅衬底(1)上沉积底层隧道氧化物Al2O3
S3:在所述底层隧道氧化物Al2O3上沉积顶层隧道氧化物HfO2,形成超薄非对称Al2O3/HfO2双层结构的隧道氧化物层(2);
S4:在所述隧道氧化物层(2)上滴铸石墨烯纳米薄片,形成电荷存储层(3);
S5:在所述电荷存储层(3)上沉积栅极氧化物Al2O3,形成栅极氧化层(4);
S6:在所述栅极氧化层(4)上沉积栅极(G),最终形成基于石墨烯纳米薄片的非易失性MOS存储器。
6.根据权利要求5所述的一种MOS存储器的制备方法,其特征在于:所述石墨烯纳米薄片的层数为四层。
7.根据权利要求5所述的一种MOS存储器的制备方法,其特征在于:所述步骤S2采用原子层沉积法沉积。
8.根据权利要求5所述的一种MOS存储器的制备方法,其特征在于:所述步骤S3采用等离子辅助原子层沉积法沉积。
9.根据权利要求5所述的一种MOS存储器的制备方法,其特征在于:所述步骤S5采用原子层沉积法沉积。
10.根据权利要求5所述的一种MOS存储器的制备方法,其特征在于:所述步骤S6采用电子束法蒸发沉积。
CN201910500369.1A 2019-06-11 2019-06-11 一种mos存储器及制备方法 Pending CN110211963A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910500369.1A CN110211963A (zh) 2019-06-11 2019-06-11 一种mos存储器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910500369.1A CN110211963A (zh) 2019-06-11 2019-06-11 一种mos存储器及制备方法

Publications (1)

Publication Number Publication Date
CN110211963A true CN110211963A (zh) 2019-09-06

Family

ID=67791836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910500369.1A Pending CN110211963A (zh) 2019-06-11 2019-06-11 一种mos存储器及制备方法

Country Status (1)

Country Link
CN (1) CN110211963A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009216A (zh) * 2006-01-26 2007-08-01 财团法人工业技术研究院 储存电荷元件的制造方法
CN101093725A (zh) * 2006-06-22 2007-12-26 旺宏电子股份有限公司 非挥发性记忆元件的操作方法
CN101339948A (zh) * 2007-07-02 2009-01-07 海力士半导体有限公司 非易失性存储器件及其制造方法
CN101373633A (zh) * 2007-08-24 2009-02-25 株式会社瑞萨科技 非易失性半导体存储器件
CN102184848A (zh) * 2011-05-11 2011-09-14 复旦大学 一种金属纳米晶存储电容器及其制备方法
CN102709293A (zh) * 2012-06-06 2012-10-03 中国科学院物理研究所 基于分立式纳米石墨烯浮栅的新型低压高性能非易失性存储器
CN103943513A (zh) * 2014-05-07 2014-07-23 中国科学院上海微系统与信息技术研究所 一种柔性衬底上制备石墨烯器件的方法
CN104192835A (zh) * 2014-09-12 2014-12-10 中国科学院上海微系统与信息技术研究所 一种石墨烯闪存存储器的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009216A (zh) * 2006-01-26 2007-08-01 财团法人工业技术研究院 储存电荷元件的制造方法
CN101093725A (zh) * 2006-06-22 2007-12-26 旺宏电子股份有限公司 非挥发性记忆元件的操作方法
CN101339948A (zh) * 2007-07-02 2009-01-07 海力士半导体有限公司 非易失性存储器件及其制造方法
CN101373633A (zh) * 2007-08-24 2009-02-25 株式会社瑞萨科技 非易失性半导体存储器件
CN102184848A (zh) * 2011-05-11 2011-09-14 复旦大学 一种金属纳米晶存储电容器及其制备方法
CN102709293A (zh) * 2012-06-06 2012-10-03 中国科学院物理研究所 基于分立式纳米石墨烯浮栅的新型低压高性能非易失性存储器
CN102709293B (zh) * 2012-06-06 2016-03-09 中国科学院物理研究所 基于分立式纳米石墨烯浮栅的新型低压高性能非易失性存储器
CN103943513A (zh) * 2014-05-07 2014-07-23 中国科学院上海微系统与信息技术研究所 一种柔性衬底上制备石墨烯器件的方法
CN104192835A (zh) * 2014-09-12 2014-12-10 中国科学院上海微系统与信息技术研究所 一种石墨烯闪存存储器的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAZEK EL-ATAB,BERK BERKAN TURGUT,ALI K OKYAY,MUNIR NAYFEH,AMMAR: "《Enhanced non-volatile memory characteristics with quattro-layer grapheme nanoplatelets vs.2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide》", 《NANOSCALE RESEARCH LETTERS》 *
NAZEK EL-ATAB,BERK BERKAN TURGUT,ALI K OKYAY,MUNIR NAYFEH,AMMAR: "《Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs.2.85-nm Si nanoparticles with asymmetric Al2O3/HfO2 tunnel oxide》", 《NANOSCALE RESEARCH LETTERS》 *

Similar Documents

Publication Publication Date Title
Wang et al. A novel high-/spl kappa/SONOS memory using TaN/Al/sub 2/O/sub 3//Ta/sub 2/O/sub 5//HfO/sub 2//Si structure for fast speed and long retention operation
De Salvo et al. Experimental and theoretical investigation of nano-crystal and nitride-trap memory devices
Tsoukalas et al. Recent advances in nanoparticle memories
CN110137263A (zh) 基于黑磷-氮化硼-二硫化钼异质结构的浮栅场效应管
El-Atab et al. Enhanced non-volatile memory characteristics with quattro-layer graphene nanoplatelets vs. 2.85-nm Si nanoparticles with asymmetric Al 2 O 3/HfO 2 tunnel oxide
Wang et al. Nanostructure band engineering of gadolinium oxide nanocrystal memory by CF4 plasma treatment
Wang et al. Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories
CN110224022A (zh) 一种基于非对称范德华异质结构的场效应管及其制备方法
Qian et al. Plasma-assisted atomic layer deposition of high-density Ni nanoparticles for amorphous In-Ga-Zn-O thin film transistor memory
Kashyap et al. A perspective study on Au-nanoparticle adorned TiO2-nanowire for non-volatile memory devices
CN110211963A (zh) 一种mos存储器及制备方法
Cho et al. One step synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications
Zhang et al. Demonstration of α-InGaZnO TFT nonvolatile memory using TiAlO charge trapping layer
Yun et al. Sub-2 nm size-tunable high-density Pt nanoparticle embedded nonvolatile memory
Jang et al. Self-amplified dual gate charge trap flash memory for low-voltage operation
Ohara et al. Three-dimensional nanodot-type floating gate memory fabricated by bio-layer-by-layer method
Hong et al. Ge-nanodot multilayer nonvolatile memories
Kuo Nanocrystals Embedded High-k Nonvolatile Memories–Bulk Film and Nanocrystal Material Effects
US9755169B2 (en) Nonvolatile memory device
Tsoukalas Metallic nanoparticles for application in electronic non-volatile memories
Park et al. Defect generation in a data-storage layer by strong ion bombardment for multilevel non-volatile memory applications
Pan et al. Al/Al2O3/Sm2O3/SiO2/Si structure memory for nonvolatile memory application
Pei et al. Electrical Characterization of Metal–Oxide–Semiconductor Memory Devices with High-Density Self-Assembled Tungsten Nanodots
Yang et al. Submicron Memtransistors Made from Monocrystalline Molybdenum Disulfide
CN108447912A (zh) 一种三材料异质栅结构的黑磷场效应管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906