CN110206595A - 一种汽轮机组运行热耗率在线实时测试方法及装置 - Google Patents

一种汽轮机组运行热耗率在线实时测试方法及装置 Download PDF

Info

Publication number
CN110206595A
CN110206595A CN201910230684.7A CN201910230684A CN110206595A CN 110206595 A CN110206595 A CN 110206595A CN 201910230684 A CN201910230684 A CN 201910230684A CN 110206595 A CN110206595 A CN 110206595A
Authority
CN
China
Prior art keywords
steam flow
operating condition
test
steam
reheated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910230684.7A
Other languages
English (en)
Inventor
王路华
孙建军
罗联锋
张堃
宋嘉
李燕勇
李云飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Huadian Zhenxiong Power Generation Co Ltd
Original Assignee
Yunnan Huadian Zhenxiong Power Generation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Huadian Zhenxiong Power Generation Co Ltd filed Critical Yunnan Huadian Zhenxiong Power Generation Co Ltd
Priority to CN201910230684.7A priority Critical patent/CN110206595A/zh
Publication of CN110206595A publication Critical patent/CN110206595A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

本发明公开了一种汽轮机组运行热耗率在线实时测试方法及装置。所述在线实时测试方法包括:获取主蒸汽流量参数以及再热蒸汽流量参数;利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量;利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量;根据所述主蒸汽流量以及再热蒸汽流量确定汽轮机净输入热量;获取汽轮机的发电机功率;根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率。采用本发明所提供的在线实时测试方法及装置能够实时在线获得高精度的热耗率。

Description

一种汽轮机组运行热耗率在线实时测试方法及装置
技术领域
本发明涉及火力发电领域,特别是涉及一种汽轮机组运行热耗率在线实时测试方法及装置。
背景技术
汽轮机是火力发电厂的主设备之一,热耗率是反映汽轮机机组运行经济性最重要的一个指标。这一指标的获得通常有两种方法:其一为试验法,即在特定的运行条件下,通过机组性能试验手段,对数十个参数的测量,利用汽轮机侧回热系统平衡计算,最终获得机组试验热耗率;其二为在线法,主要运用在厂级监控信息系统的安全仪表系统(SafetyInstrumented System,SIS)及一些专业单位开发的汽轮机运行优化系统上。SIS系统或优化系统通过与机组分布式控制系统(Distributed Control System,DCS)通讯获取需要的众多数据后使用与试验法相同的计算方法计算实时热耗率,所得结果称为运行热耗率。
由于试验热耗率的计算对机组的运行工况有诸多边界条件限制,试验运行工况与机组实际运行工况有较大差异,使得试验热耗率结果更多是对机组检修前后状态变化评价有意义而对机组实际运行优化没有太大指导意义;对机组运行方式进行优化,首先得有个评判标准,这个标准就是机组运行热耗率。热耗率高,说明机组运行状态差,需要优化;热耗率低,说明机组运行状态优。因此获得准确的热耗率值是进行机组运行状态评判的基础,如果热耗率值的精度误差太大,那就无法依据热耗率对机组的运行状态进行评判,自然也就无法进行相应的调整。SIS系统中的运行热耗率,表面上是对机组实际运行状态经济性的真实评价,但因SIS系统使用试验法的计算方法,利用众多电厂精度等级远达不到试验计算精度要求的运行一次表计测试数据进行热耗率计算,结果无精确度可言,对机组运行优化也无太大实际意义。
现有技术是采用流量测量装置测量凝结水流量,然后通过高压加热器、除氧器热力计算获得给水流量,再根据给水流量得到主蒸汽流量,通过进行热力性能试验的方式获取机组热耗率,进行试验时需要更换大量高精度测量元件、布放大量电缆、采集大量机组运行数据,投入的人力、物力众多,且不能实时获得试验结果,时效性差,计算过程较为复杂,计算需要的运行参数较多,运行参数的测量误差对热耗率值的计算精度影响较大,无法实时获得高精度的机组热耗率,从而导致机组检修优化效率低的问题。
发明内容
本发明的目的是提供一种汽轮机组运行热耗率在线实时测试方法及装置,以解决无法实时获得高精度机组热耗率,机组检修优化效率低的问题。
为实现上述目的,本发明提供了如下方案:
一种汽轮机组运行热耗率在线实时测试方法,包括:
获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度;
利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量;
利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量;
根据所述主蒸汽流量以及再热蒸汽流量确定汽轮机净输入热量;
获取汽轮机的发电机功率;
根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率。
可选的,所述利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量,具体包括:
根据公式确定主蒸汽流量;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度。
可选的,所述利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量,具体包括:
根据公式确定再热蒸汽流量;其中,Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度。
可选的,所述根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率,具体包括:
根据公式确定机组热耗率;其中,hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓;Nel为发电机功率。
一种汽轮机组运行热耗率在线实时测试装置,包括:分布式控制系统、数据采集模块、热耗计算模块以及显示模块;
所述分布式控制系统为有OPC接口的分布式控制系统或没有OPC接口的分布式控制系统;
对于有OPC接口的分布式控制系统:所述数据采集模块的一端与所述有OPC接口的分布式控制系统的OPC接口相连接,所述数据采集模块的另一端与所述热耗计算模块的一端相连接,所述热耗计算模块的另一端与所述显示模块相连接;
对于没有OPC接口的分布式控制系统:所述汽轮机组运行热耗率在线实时测试装置还包括工控机以及数据转换模块;
所述没有OPC接口的分布式控制系统装有maxDNA系统,所述工控机装有相同的所述maxDNA系统,所述没有OPC接口的分布式控制系统与所述工控机的一端相连接,所述工控机的另一端与所述数据转换模块的一端相连接,所述数据转换模块的另一端与所述数据采集模块的一端相连接,所述数据采集模块的另一端与所述热耗计算模块的一端相连接,所述热耗计算模块的另一端与所述显示模块相连接。
可选的,所述数据采集模块,用于获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度;
可选的,热耗计算模块,用于根据公式确定主蒸汽流量;根据公式确定再热蒸汽流量;根据公式确定机组热耗率;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度;Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度;hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓;Nel为发电机功率。
可选的,所述装有maxDNA系统的分布式控制系统设有专用接口;所述专用接口用于与所述工控机的一端相连接;所述专用接口为MaxRouter接口。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种汽轮机组运行热耗率在线实时测试方法及装置,通过从DCS获取数量较少的几个参数即可获得机组实时高精度运行热耗率值并加以显示;并利用弗留格尔公式来进行主蒸汽流量和再热蒸汽流量计算,计算所需参数较少,运行参数误差对热耗率计算精度的影响较小,从而实时在线获得高精度的热耗率,进而提高机组检修优化效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所提供的汽轮机组运行热耗率在线实时测试方法流程图;
图2为本发明所提供的运行热耗率的确定原理图;
图3为本发明所提供的汽轮机组运行热耗率在线实时测试装置结构图;
图4为本发明所提供的另一种汽轮机组运行热耗率在线实时测试装置结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种汽轮机组运行热耗率在线实时测试方法及装置,能够实时在线获得高精度的热耗率。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明所提供的汽轮机组运行热耗率在线实时测试方法流程图,如图1所示,一种汽轮机组运行热耗率在线实时测试方法,包括:
步骤101:获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度。
步骤102:利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量。
所述步骤102具体包括:根据公式确定主蒸汽流量;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度。
步骤103:利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量。
所述步骤103具体包括:根据公式确定再热蒸汽流量;其中,Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度。
步骤104:根据所述主蒸汽流量以及再热蒸汽流量确定汽轮机净输入热量。
步骤105:获取汽轮机的发电机功率。
步骤106:根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率。
所述步骤106具体包括:根据公式确定机组热耗率;其中,hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓,Nel为发电机功率。
图2为本发明所提供的运行热耗率的确定原理图,如图2所示,实时热耗率的计算方法如下:
计算汽轮机主蒸汽流量:
主蒸汽流量Dm采用弗留格尔公式进行计算:
Dm1——基准工况主蒸汽流量 Dm——试验工况主蒸汽流量
P1——基准工况调节级压力 P——试验工况调节级压力
T1——基准工况调节级温度 T——试验工况调节级温度
基准工况数据Dm1、P1、T1从目标机组性能试验报告选取。
计算再热蒸汽流量:
Dr1——基准工况再热蒸汽流量 Dr——试验工况再热蒸汽流量
Pr1——基准工况再热蒸汽压力 Pr——试验工况再热蒸汽压力
Tr1——基准工况再热蒸汽温度 Tr——试验工况再热蒸汽温度
基准工况数据Dr1、Pr1、Tr1从目标机组性能试验报告选取。
计算冷再蒸汽流量:
由于机组调峰运行时出现的问题是再热蒸汽温度低于过热蒸汽温度,所以实际运行机组再热器减温水流量为零,即Drhs=0,则:
Dcr=Dr
计算给水流量:
(1)当过热器减温水从高加前取水时:
Dfw=Dm-Dshs
Dfw——给水流量 Dshs——过热器减温水流量
(2)当过热器减温水从高加后取水时:
Dfw=Dm
过热器减温水流量取机组DCS画面上的实测值。
汽轮机净输入热量计算:
Qnet=Dmhm+Drhhr-Dfwhfw-Dcrhcr-Dshshshs-Drhshrhs-Dgrhgr
Dm——主蒸汽流量 hm——主蒸汽焓
Dr——再热蒸汽流量 hhr——热再热蒸汽焓
Dfw——给水流量 hfw——给水焓
Dcr——冷再蒸汽流量 hcr——冷再蒸汽焓
Dshs——过热器减温水流量 hshs——过热器减温水焓
Drhs——再热器减温水流量 hrhs——再热器减温水焓
Dgr——机组对外供热量 hgr——供热蒸汽焓
Qnet=Dmhm+Drhhr-Dfwhfw-Dcrhcr-Dshshshs-Drhshrhs-Dgrhgr
其中,图2中Qm为主蒸汽热量;Qr为再热蒸汽热量;Qfw为给水热量;Qcr为冷再热蒸汽热量;Qshs为过热器减温水热量;Qrhs为再热器减温水热量;Qgr为供热蒸汽热量;
相应工质焓值由DCS上其对应压力与温度由通用焓值软件计算而得。
计算机组运行热耗率:
HR=Qnet/Nel
HR——机组热耗率 Nel——发电机功率
Qnet——汽轮机净输入热量
在机组上安装本发明所提供的汽轮机组运行热耗率在线实时测试装置,从而实时获得机组运行中的高精度热耗值,再对机组运行中的主蒸汽压力进行调整,同时记录各主蒸汽压力对应的热耗值,将机组主蒸汽压力设定在热耗值最低的主蒸汽压力值下运行,进而提高机组运行效率,降低机组运行热耗,节约机组发电成本。
图3为本发明所提供的汽轮机组运行热耗率在线实时测试装置结构图,如图3所示,一种汽轮机组运行热耗率在线实时测试装置,包括:分布式控制系统1、数据采集模块2、热耗计算模块3以及显示模块4。
所述分布式控制系统1为有OPC接口的分布式控制系统或没有OPC接口的分布式控制系统。
对于有OPC接口的分布式控制系统:所述数据采集模块2的一端与所述有OPC接口的分布式控制系统的OPC接口相连接,所述数据采集模块2的另一端与所述热耗计算模块3的一端相连接,所述热耗计算模块3的另一端与所述显示模块4相连接。
其中,OPC接口为Object Linking and Embedding(OLE)forProcess Control接口,为基于Windows的应用程序和现场过程控制应用建立了桥梁。OPC标准以微软公司的OLE技术为基础,通过提供一套标准的OLE/COM接口完成的,在OPC技术中使用的是OLE 2技术,OLE标准允许多台微机之间交换文档、图形等对象。
通过OPC接口从机组DCS系统获取实时数据,用以计算进入汽轮机组的净热量和确定机组电功率,最终获得实时运行热耗率的高精度计算值
图4为本发明所提供的另一种汽轮机组运行热耗率在线实时测试装置结构图,如图4所示,对于没有OPC接口的分布式控制系统:所述汽轮机组运行热耗率在线实时测试装置还包括工控机5以及数据转换模块6;
所述没有OPC接口的分布式控制系统装有maxDNA系统,所述工控机装有相同的所述maxDNA系统,所述没有OPC接口的分布式控制系统与所述工控机的一端相连接,所述工控机的另一端与所述数据转换模块的一端相连接,所述数据转换模块的另一端与所述数据采集模块2的一端相连接,所述数据采集模块2的另一端与所述热耗计算模块3的一端相连接,所述热耗计算模块3的另一端与所述显示模块4相连接。
利用同样装有maxDNA系统的工控机,通过网线将所需数据通讯到工控机后再由工控机上的专用软件将数据转换出来,用以计算进入汽轮机组的净热量和确定机组电功率,最终获得实时运行热耗率的高精度计算值。
在实际应用中,所述数据采集模块2用于获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度。
在实际应用中,热耗计算模块3用于根据公式确定主蒸汽流量;根据公式确定再热蒸汽流量;根据公式确定机组热耗率;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度;Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度;hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓;Nel为发电机功率。
在实际应用中,所述装有maxDNA系统的分布式控制系统设有专用接口;所述专用接口用于与所述工控机的一端相连接;所述专用接口为MaxRouter接口。
本发明与厂级监控信息系统的SIS系统需要数十个系统参数才能计算得到试验热耗率的试验法不同,本发明通过从DCS系统获取机组几个关键参数,利用热力学开口系统的分析方法直接高精度地计算出目标机组的实时运行热耗率并在指定的显示器上加以显示。采用本发明所提供的汽轮机组运行热耗率在线实时测试方法及装置能够实时在线获得高精度的热耗率。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

1.一种汽轮机组运行热耗率在线实时测试方法,其特征在于,包括:
获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度;
利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量;
利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量;
根据所述主蒸汽流量以及再热蒸汽流量确定汽轮机净输入热量;
获取汽轮机的发电机功率;
根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率。
2.根据权利要求1所述的汽轮机组运行热耗率在线实时测试方法,其特征在于,所述利用弗留格尔公式,根据所述主蒸汽流量参数确定主蒸汽流量,具体包括:
根据公式确定主蒸汽流量;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度。
3.根据权利要求2所述的汽轮机组运行热耗率在线实时测试方法,其特征在于,所述利用弗留格尔公式,根据所述再热蒸汽流量参数确定再热蒸汽流量,具体包括:
根据公式确定再热蒸汽流量;其中,Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度。
4.根据权利要求3所述的汽轮机组运行热耗率在线实时测试方法,其特征在于,所述根据所述汽轮机净输入热量以及所述发电机功率确定机组热耗率,具体包括:
根据公式确定机组热耗率;其中,hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓;Nel为发电机功率。
5.一种汽轮机组运行热耗率在线实时测试装置,其特征在于,包括:分布式控制系统、数据采集模块、热耗计算模块以及显示模块;
所述分布式控制系统为有OPC接口的分布式控制系统或没有OPC接口的分布式控制系统;
对于有OPC接口的分布式控制系统:所述数据采集模块的一端与所述有OPC接口的分布式控制系统的OPC接口相连接,所述数据采集模块的另一端与所述热耗计算模块的一端相连接,所述热耗计算模块的另一端与所述显示模块相连接;
对于没有OPC接口的分布式控制系统:所述汽轮机组运行热耗率在线实时测试装置还包括工控机以及数据转换模块;
所述没有OPC接口的分布式控制系统装有maxDNA系统,所述工控机装有相同的所述maxDNA系统,所述没有OPC接口的分布式控制系统与所述工控机的一端相连接,所述工控机的另一端与所述数据转换模块的一端相连接,所述数据转换模块的另一端与所述数据采集模块的一端相连接,所述数据采集模块的另一端与所述热耗计算模块的一端相连接,所述热耗计算模块的另一端与所述显示模块相连接。
6.根据权利要求5所述的汽轮机组运行热耗率在线实时测试装置,其特征在于,所述数据采集模块,用于获取主蒸汽流量参数以及再热蒸汽流量参数;所述主蒸汽流量参数以及所述再热蒸汽流量参数通过分布式控制系统的OPC接口采集,或者所述主蒸汽流量参数以及所述再热蒸汽流量参数通过装有maxDNA系统的分布式控制系统,利用装有所述maxDNA系统的工控机将所述装有maxDNA系统的分布式控制系统内数据转换得到;所述主蒸汽流量参数包括基准工况主蒸汽流量、试验工况主蒸汽流量、基准工况调节级压力、试验工况调节级压力、基准工况调节级温度以及试验工况调节级温度;所述再热蒸汽流量参数包括基准工况再热蒸汽流量、试验工况再热蒸汽流量、基准工况再热蒸汽压力、试验工况再热蒸汽压力、基准工况再热蒸汽温度以及试验工况再热蒸汽温度。
7.根据权利要求5所述的汽轮机组运行热耗率在线实时测试装置,其特征在于,所述热耗计算模块,用于根据公式确定主蒸汽流量;根据公式确定再热蒸汽流量;根据公式确定机组热耗率;其中,Dm为试验工况主蒸汽流量;Dm1为基准工况主蒸汽流量;P1为基准工况调节级压力;P为试验工况调节级压力;T1为基准工况调节级温度;T为试验工况调节级温度;Dr1为基准工况再热蒸汽流量;Dr为试验工况再热蒸汽流量;Pr1为基准工况再热蒸汽压力;Pr为试验工况再热蒸汽压力;Tr1为基准工况再热蒸汽温度;Tr为试验工况再热蒸汽温度;hm为主蒸汽焓;hhr为热再热蒸汽焓;Dfw为给水流量;hfw为给水焓;Dcr为冷再热蒸汽流量;hcr为冷再热蒸汽焓;Dshs为过热器减温水流量;hshs为过热器减温水焓;Drhs为再热器减温水流量;hrsh为再热器减温水焓;Dgr为机组对外供热量;hgr为供热蒸汽焓;Nel为发电机功率。
8.根据权利要求5所述的汽轮机组运行热耗率在线实时测试装置,其特征在于,所述装有maxDNA系统的分布式控制系统设有专用接口;所述专用接口用于与所述工控机的一端相连接;所述专用接口为MaxRouter接口。
CN201910230684.7A 2019-03-26 2019-03-26 一种汽轮机组运行热耗率在线实时测试方法及装置 Pending CN110206595A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910230684.7A CN110206595A (zh) 2019-03-26 2019-03-26 一种汽轮机组运行热耗率在线实时测试方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910230684.7A CN110206595A (zh) 2019-03-26 2019-03-26 一种汽轮机组运行热耗率在线实时测试方法及装置

Publications (1)

Publication Number Publication Date
CN110206595A true CN110206595A (zh) 2019-09-06

Family

ID=67785102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910230684.7A Pending CN110206595A (zh) 2019-03-26 2019-03-26 一种汽轮机组运行热耗率在线实时测试方法及装置

Country Status (1)

Country Link
CN (1) CN110206595A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664504A (zh) * 2020-06-11 2020-09-15 上海明华电力科技有限公司 汽轮机热力系统微增变量对汽轮机热耗影响的预测方法
CN112127957A (zh) * 2020-08-05 2020-12-25 中冶南方都市环保工程技术股份有限公司 一种火电厂汽轮机主蒸汽流量的测量方法
CN112446003A (zh) * 2020-11-23 2021-03-05 西安西热节能技术有限公司 基于特征通流面积准确评估汽轮机组蒸汽泄漏量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157755A (zh) * 2015-09-22 2015-12-16 山西平朔煤矸石发电有限责任公司 火力发电机组能源流向和损耗数据在线监测实时显示系统
CN105159250A (zh) * 2015-08-14 2015-12-16 中国神华能源股份有限公司 一种电厂dcs系统的风量和汽包水位计算方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105159250A (zh) * 2015-08-14 2015-12-16 中国神华能源股份有限公司 一种电厂dcs系统的风量和汽包水位计算方法及装置
CN105157755A (zh) * 2015-09-22 2015-12-16 山西平朔煤矸石发电有限责任公司 火力发电机组能源流向和损耗数据在线监测实时显示系统

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
全新建等: "基于OPC规范的火电厂监控信息系统研究", 《热能动力工程》 *
吴科等: "maxDNA大型分散控制系统在1000MW超超临界机组DCS与DEH中的应用", 《2014年中国发电厂热工自动化技术论坛论文集(上册)》 *
王路华: "火电厂运行热耗高精度在线计算方法", 《云南水力发电》 *
盛德仁等: "汽轮发电机组DCS系统在线性能计算程序的剖析及改进", 《浙江大学学报(工学版)》 *
翟伟翔等: "火电厂分散控制系统数据通信接口", 《自动化仪表》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111664504A (zh) * 2020-06-11 2020-09-15 上海明华电力科技有限公司 汽轮机热力系统微增变量对汽轮机热耗影响的预测方法
CN111664504B (zh) * 2020-06-11 2021-09-07 上海明华电力科技有限公司 汽轮机热力系统微增变量对汽轮机热耗影响的预测方法
CN112127957A (zh) * 2020-08-05 2020-12-25 中冶南方都市环保工程技术股份有限公司 一种火电厂汽轮机主蒸汽流量的测量方法
CN112127957B (zh) * 2020-08-05 2023-02-03 中冶南方都市环保工程技术股份有限公司 一种火电厂汽轮机主蒸汽流量的测量方法
CN112446003A (zh) * 2020-11-23 2021-03-05 西安西热节能技术有限公司 基于特征通流面积准确评估汽轮机组蒸汽泄漏量的方法

Similar Documents

Publication Publication Date Title
CN110206595A (zh) 一种汽轮机组运行热耗率在线实时测试方法及装置
CN106053105B (zh) 一种核电站回热加热器能效监测与诊断的方法和系统
CN107201921B (zh) 一种汽轮机热耗率在线监测系统及测量方法
CN101825502B (zh) 汽机带疏水冷却器的加热器出水及疏水温度测算方法
CN105184395B (zh) 含余热利用系统的火电机组的初参数确定方法
CN106682376A (zh) 参数随工况变化实际特性的全过程汽轮机建模及辨识方法
CN105527113B (zh) 一种核电站热能效率监测与诊断系统和方法
CN104517238B (zh) 热电联产机组智能能耗分析系统
CN106227180A (zh) 一种火电机组性能显示方法及分散控制系统
Kavaklioglu et al. Monitoring feedwater flow rate and component thermal performance of pressurized water reactors by means of artificial neural networks
JP3614640B2 (ja) 火力発電プラントの熱効率診断方法および装置
CN104794297A (zh) 一种消除汽轮机调速系统模型中失真的方法
CN107701245A (zh) 一种火电机组汽轮机的滑压曲线优化方法
CN109613429A (zh) 一种压水堆蒸汽发生器模型时间常数测试系统与方法
CN103759769A (zh) 燃煤电站再热蒸汽流量软测量方法和装置
CN108446465A (zh) 通过工质分解在线测算火电机组厂用蒸汽量的方法
CN109709911B (zh) 一种火电机组循环工质外漏在线测量方法及测量系统
CN106761967A (zh) 机侧蒸汽参数测量偏差对机组耗煤成本的评估方法及系统
CN104090526B (zh) 一种基于黄金分割及累积回归的机床热误差建模方法和测试系统
CN112127958A (zh) 一种确定核电汽轮机抽汽参数的装置及方法
CN103217292A (zh) 发电机组热经济指标的实时监测方法和监测系统
CN109973159A (zh) 确定汽轮机低压缸流量的方法和装置及机器可读存储介质
CN108930565A (zh) 一种汽轮机组调峰优化方法及系统
CN114781831A (zh) 一种基于煤电机组的供热经济性评估方法及装置
CN101832545B (zh) 汽机带蒸汽冷却器的加热器出水及疏水温度测算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906