CN110205494B - 一种吸附分离铷和铯的方法 - Google Patents

一种吸附分离铷和铯的方法 Download PDF

Info

Publication number
CN110205494B
CN110205494B CN201910431467.4A CN201910431467A CN110205494B CN 110205494 B CN110205494 B CN 110205494B CN 201910431467 A CN201910431467 A CN 201910431467A CN 110205494 B CN110205494 B CN 110205494B
Authority
CN
China
Prior art keywords
rubidium
cesium
adsorbent
solution
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910431467.4A
Other languages
English (en)
Other versions
CN110205494A (zh
Inventor
张安运
吴徐冰
吕越政
陈浩
王政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910431467.4A priority Critical patent/CN110205494B/zh
Publication of CN110205494A publication Critical patent/CN110205494A/zh
Application granted granted Critical
Publication of CN110205494B publication Critical patent/CN110205494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种吸附分离铷和铯的方法,包括如下步骤:含有铯和铷的溶液与吸附剂接触进行吸附,根据吸附剂对铯和铷吸附率的差异,对铯和铷进行分离,所述吸附剂由如结构式(I)所示的化合物负载在载体上制成。本发明方法采用的吸附剂与铯元素在短时间接触下即有接近100%的吸附率,吸附剂对铯和铷的吸附率差异大,能实现铯和铷的分离;吸附剂对其它碱金属不吸附,因此在含有共生元素的情况下,本发明方法也能将铯和铷从溶液中分离。本发明方法条件温和,选择性好,分离速度快,操作简单,易于推广。

Description

一种吸附分离铷和铯的方法
技术领域
本发明涉及元素分离技术领域,具体涉及一种吸附分离铷和铯的方法。
背景技术
核能的广泛应用在给人类带来各种便利的同时也带来了巨大的健康威胁,在使用核能的过程中往往产生大量放射性废弃物,这些废弃物降解时间长,极易造成严重的环境污染,如何安全有效地处理这些放射性废弃物已经成为制约核能可持续发展的关键因素。
常用处理放射性废液的方法有吸附法、离子交换法和膜分离法,这些方法所涉及的设备数目众多,处理工艺步骤复杂;由于处理高放废液时,废液每经过一种设备或构筑物时都会造成放射性污染,因此处理过程中设备数目越多,工艺步骤越复杂,造成的污染越严重,因此应尽量减少设备数目,缩短处理工艺流程。
Cs是高释热核素,也是高放废液中强放射性主要来源之一,对玻璃固化体和水泥固化体稳定性有潜在不利影响,长期存在会导致固化体老化,引起放射性核素泄漏,不仅不利于高放废液储存,而且对地下水环境造成污染。若在高放废液终处置前将它们有效分离,对延长贮存年限、节省处置费用和提升处置技术都是有利的;Cs的有效分离还能显著降低高放废液放射性强度。
目前虽然已经有将铷铯混合物从放射性废弃物中分离的方法,但此类方法无法进一步将铷和铯进行分离;铷、铯物理、化学性质相近,还常与锂、钠、钾、镁、钙等元素共生,分离过程难度大,选择性不高,分离时间长,因此现有技术中面临元素铷和铯的分离问题。
发明内容
本发明提供了一种吸附分离铷和铯的方法,简洁高效,选择性好,分离速度快。
一种吸附分离铷和铯的方法,包括如下步骤:含有铯和铷的溶液与吸附剂接触进行吸附,根据吸附剂对铯和铷吸附率的差异,对铯和铷进行分离,所述吸附剂由如结构式(I)所示的化合物负载在载体上制成:
Figure BDA0002069127470000021
所述的硝酸盐溶液还包括其他金属离子,所述其他金属离子为Li(I)、Na(I)、K(I)中的至少一种。
作为优选,所述载体为被覆聚合物的大孔SiO2
所述被覆聚合物的大孔SiO2为硅基-苯乙烯-二乙烯基苯聚合物(SiO2-P),是一类新型无机/有机载体材料,美国专利US6843921中公开了SiO2-苯乙烯-二乙烯基苯聚合物,SiO2-P是一种含多孔二氧化硅载体颗粒的有机高聚合物复杂载体,其制备方法如下:
(1)将大孔的SiO2用浓硝酸洗涤、抽滤、去离子水洗至中性,重复10余次,干燥。
(2)真空并有氩气保护条件下,以1,2,3-三氯丙烷和m-二甲苯为溶剂,向大孔SiO2中加入48.7g的m/p-甲酸基苯乙烯,8.9g的m/p-二乙烯基苯,72.2g二辛基临苯二甲酸酯,54.0g甲基安息香酸钠,0.56gα,α-偶二异丁腈和0.57g1,1′-偶二环己胺-1-腈,由室温逐步加热到90℃,并保持13小时,之后,逐步冷却至室温。
(3)分别用丙酮和甲醇洗涤、抽滤上述产物,重复10余次,干燥。
本发明中,所述吸附剂的制备方法如下:
将如结构式(I)所示的化合物溶解于二氯甲烷中,在所得溶液中加入载体混合均匀,经旋蒸干燥后,得到吸附剂。
旋蒸时,使大部分二氯甲烷挥发至近干状态,在毛细作用以及物理吸附作用下,化合物分子进入载体的空隙中,然后将近干状态的物料在45~55℃下真空干燥至少24小时,得到吸附剂。
作为优选,每g如结构式(I)所示的化合物溶解于130~150mL二氯甲烷中。被覆聚合物的大孔SiO2的质量为结构式(I)所示的化合物质量的6~10倍。
为了保证分离效果,优选地,吸附过程的温度为25±5℃。
含有铯和铷的溶液与吸附剂混合接触时间为1-9min;优选为3-9min。
吸附过程中,金属离子的浓度以及氢氧化钠的浓度均会影响分离效果,优选地,溶液中每种金属离子的浓度为5.0×10-4~1.0×10-3M。
更加优选地,氢氧化钠的浓度为1-3M。使用本发明的吸附分离方法,在高浓度的碱液中分离效果更加,碱液的浓度可以通过增加固体氢氧化钠的形式调节。
作为优选,本发明的吸附分离过程可以通过色谱柱完成,也可在震荡器等设备辅助下直接进行接触吸附。
根据吸附剂对铯和铷吸附率的差异对铯和铷进行分离具体可以为:吸附剂与待分离溶液混合吸附后,溶液中的铯被吸附剂完全吸附,铷被吸附剂少量吸附;吸附剩余液含其它金属离子与铷;实现了从混合溶液中吸附高释热核素铯,从而使铷和铯进行分离。
若要将吸附剂上吸附的少量铷洗脱,则将吸附饱和的吸附剂与含铯和铷的待分离溶液进行混合;铯元素将取代吸附剂上的铷元素,将铷元素洗脱;使铷和铯进行分离。
若要进一步将洗脱液和吸附剩余液中的铯与其它离子(Li(I)、Na(I)、K(I)中)进行分离,则可采用新鲜的本发明吸附剂进行吸附,将铷与其它金属离子进行分离,本发明的吸附剂对Li(I)、Na(I)、K(I)不吸附。
铷和铯元素与吸附剂的结合在吸附过程中呈现竞争现象,若采用色谱柱形式进行分离,则将吸附剂填充入色谱柱中,将含有铷和铯的溶液循环过柱,则色谱柱中原先吸附的铷元素将被铯元素取代;铯元素在色谱柱中富集,而铷元素在溶液中富集。通过将装填有吸附剂的色谱柱串联的方式,可以增强铷和铯元素的分离效果。
本发明利用吸附剂分离元素铷和铯的方法,吸附剂选择性好,分离速度快,操作简单,易于推广。
附图说明
图1为本发明实施例4~12中,接触时间变化对Cs吸附率的影响。
具体实施方式
实施例1
将1g对结构式(I)所示化合物溶解于100.0mL二氯甲烷中,充分溶解,在所得溶液中加入10.0gSiO2-P搅拌均匀,使SiO2-P与结构式(I)所示化合物混合均匀,经减压旋转蒸发使二氯甲烷挥发大部分至物料到近干状态,在毛细作用以及物理吸附作用下使有机分子进入SiO2-P孔径中,然后再将近干状态的物料在45℃下真空干燥24h,得到吸附剂。
实施例2
将0.5g对结构式(I)所示化合物溶解于75.0mL二氯甲烷中,充分溶解,在所得溶液中加入3.0gSiO2-P搅拌均匀,使SiO2-P与结构式(I)所示化合物混合均匀,经减压旋转蒸发使二氯甲烷挥发大部分至物料到近干状态,在毛细作用以及物理吸附作用下使有机分子进入SiO2-P孔径中,然后再将近干状态的物料在50℃下真空干燥24h,得到吸附剂。
实施例3
将0.7g对结构式(I)所示化合物溶解于80.0mL二氯甲烷中,充分溶解,在所得溶液中加入5.0gSiO2-P搅拌均匀,使SiO2-P与结构式(I)所示化合物混合均匀,经减压旋转蒸发使二氯甲烷挥发大部分至物料到近干状态,在毛细作用以及物理吸附作用下使有机分子进入SiO2-P孔径中,然后再将近干状态的物料在55℃下真空干燥24h,得到吸附剂。
实施例4~12
(1)将碱金属盐LiNO3、NaNO3、KNO3、RbNO3、CsNO3溶于硝酸溶液,配制成同时含有多种金属离子的硝酸盐溶液。溶液中每种金属离子的浓度为1.0×10-3M。
(2)在步骤(1)的溶液中加入固体NaOH,使NaOH在溶液中的浓度达到1M。
(3)将步骤(2)得到的含有多种金属离子的溶液与实施例1制备的吸附剂接触混合,混合时的用量比为:每3.0mL溶液对应0.15g吸附剂。
(4)将步骤(3)所得混合液在TAITECMM-10型振荡器上进行吸附实验,振荡器振荡速率为120rpm,室温298K下操作,在不同接触时间下(实施例4-12,对应的接触时间分别为1、2、3、4、5、6、7、8、9min),利用ICP-OES测量吸附前后不同水相中各元素的含量。
实施例4-12的吸附结果如图1所示,图1中横坐标为接触时间,纵坐标为吸附率。由图1可以看出,实施例1所得的吸附剂对铷和铯均有吸附,对其它碱金属离子不吸附。吸附剂对铷和铯的吸附率有较大的差异,当接触时间为5min时,吸附剂对溶液中铷的吸附率达43%;对铯的吸附率达到95%;当接触时间为9min时,吸附剂对溶液中铷的吸附率达45%;对铯的吸附率达到99%。
实施例13
将实施例2制备得到的吸附剂填装到色谱柱中,将碱金属盐LiNO3、NaNO3、KNO3、RbNO3、CsNO3溶于硝酸溶液,配制成同时含有多种金属离子的硝酸盐溶液;溶液中每种金属离子的浓度为5.0×10-4M;在溶液中加入固体NaOH,使NaOH在溶液中的浓度达到3M。根据待吸附溶液的量装填色谱柱;使每20mL溶液对应1g吸附剂;色谱柱柱温为25℃;溶液在色谱柱中的流速为0.5mL/min。
待吸附溶液一次过柱后,铯元素吸附率达到95%;过柱后溶液循环过柱三次,溶液中铯元素含量未检出,可认为铯元素被全部富集在色谱柱中;溶液中铷元素含量在3.1×10-5-3.5×10-5M。
实施例14
将实施例3制备得到的吸附剂填装到色谱柱中,将碱金属盐LiNO3、NaNO3、KNO3、RbNO3、CsNO3溶于硝酸溶液,配制成同时含有多种金属离子的硝酸盐溶液;溶液中每种金属离子的浓度为1.0×10-3M;在溶液中加入固体NaOH,使NaOH在溶液中的浓度达到1M。根据待吸附溶液的量装填色谱柱;使每20mL溶液对应1g吸附剂;色谱柱柱温为30℃;溶液在色谱柱中的流速为1mL/min。待吸附溶液一次过柱后,铯元素吸附率达到95%;铷元素含量约为39%。

Claims (2)

1.一种吸附分离铷和铯的方法,其特征在于,包括如下步骤:含有铯和铷的溶液与吸附剂混合,根据吸附剂对铯和铷吸附率的差异,对铯和铷进行分离,所述吸附剂由如结构式(I)所示的化合物负载在载体上制成:
Figure FDA0002566914390000011
所述含有铯和铷的溶液还包括其他金属离子,所述其他金属离子为Li(I)、Na(I)、K(I)中的至少一种;所述载体为被覆聚合物的大孔SiO2;被覆聚合物的大孔SiO2的质量为结构式(I)所示的化合物质量的6~10倍;所述含有铯和铷的溶液中,每种金属离子的浓度为5.0×10-4-1.0×10-3M;所述含有铯和铷的溶液中含有NaOH,NaOH的浓度为1-3M;含有铯和铷的溶液与吸附剂混合接触时间为1-9min;吸附过程的温度为25±5℃。
2.如权利要求1所述的吸附分离铷和铯的方法,其特征在于,所述吸附剂的制备方法如下:
将如结构式(I)所示的化合物溶解于二氯甲烷中,在所得溶液中加入载体混合均匀,经旋蒸干燥后,得到吸附剂。
CN201910431467.4A 2019-05-22 2019-05-22 一种吸附分离铷和铯的方法 Active CN110205494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910431467.4A CN110205494B (zh) 2019-05-22 2019-05-22 一种吸附分离铷和铯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910431467.4A CN110205494B (zh) 2019-05-22 2019-05-22 一种吸附分离铷和铯的方法

Publications (2)

Publication Number Publication Date
CN110205494A CN110205494A (zh) 2019-09-06
CN110205494B true CN110205494B (zh) 2020-10-02

Family

ID=67788133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910431467.4A Active CN110205494B (zh) 2019-05-22 2019-05-22 一种吸附分离铷和铯的方法

Country Status (1)

Country Link
CN (1) CN110205494B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69105884T2 (de) * 1990-09-10 1995-05-04 Agency Ind Science Techn Verfahren zum Entfernen von Cesium aus wässrigen Lösungen mit hoher Salpetersäurekonzentration.
CN103055816A (zh) * 2012-12-27 2013-04-24 清华大学 一类新型杯芳烃冠醚键合型硅基吸附材料及其制备方法
CN108048652B (zh) * 2017-12-19 2019-04-02 浙江大学 一种相互分离铷和铯的方法

Also Published As

Publication number Publication date
CN110205494A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN108160048B (zh) 高稳定性除铯吸附剂的规模化制备方法及其产品与应用
CN108102092B (zh) 阳离子有机聚合物及其制备方法和应用
KR910004196B1 (ko) 음이온 흡착용 복합체 및 그 제조 방법
Gujar et al. Spectacular enhancements in actinide ion uptake using novel extraction chromatography resins containing TODGA and ionic liquid
Wu et al. Study on adsorption behavior of cesium using ammonium tungstophosphate (AWP)-calcium alginate microcapsules
Parajuli et al. Effective separation of palladium from simulated high level radioactive waste
Watanabe et al. Optimizing composition of TODGA/SiO2-P adsorbent for extraction chromatography process
CN105617982B (zh) 一种去除放射性水中110mAg的无机吸附剂及其制备方法
CN110205494B (zh) 一种吸附分离铷和铯的方法
CN105688855B (zh) 一种同时分离锶和铯的方法
CN112899480B (zh) 通过吸附对铷和铯进行高效分离的方法
JP5733703B2 (ja) 布状の放射性物質吸着材及びその製造方法
CN105854849B (zh) 一种利用固体吸附剂分离铯的方法
CN105845188B (zh) 一种吸附分离锶的方法
CN112593088B (zh) 一种吸附分离贵金属钯的方法
Ansari et al. Evaluation of an extraction chromatographic resin containing CMPO and ionic liquid for actinide ion uptake from acidic feeds: Part II. Batch actinide sorption, radiolytic degradation and column studies
JP2005061971A (ja) 高レベル放射性廃液の処理方法
CN113981253A (zh) 含镅废料的回收方法
CN115445567B (zh) 一种高效吸附铀的方法
KR101920233B1 (ko) 비스무트그래핀산화물을 함유한 요오드 흡착제 및 이를 포함한 고정층 컬럼 및 성형물
Dong et al. Radiation synthesis of binary poly (ionic liquid) functionalized silica-based materials for selective adsorption of ReO 4− as analogue of TcO 4− from simulated radioactive wastewater
Su et al. Conveniently synthesis of porous crown-based resin with efficient 90Sr capture from highly acidic wastewater
CN112899481B (zh) 一种吸附分离钾和钠的方法
Shukla et al. Reversed-phase partition chromatographic separation of minor actinides with bis (2-ethylhexyl) sulfoxide from acidic nitrate PUREX waste solutions
CN115458201A (zh) 一种高选择性吸附分离铀的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant