CN110204318B - 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法 - Google Patents

一种基于粉末床熔融的氧化铝多孔材料的强度增强方法 Download PDF

Info

Publication number
CN110204318B
CN110204318B CN201910414337.XA CN201910414337A CN110204318B CN 110204318 B CN110204318 B CN 110204318B CN 201910414337 A CN201910414337 A CN 201910414337A CN 110204318 B CN110204318 B CN 110204318B
Authority
CN
China
Prior art keywords
powder
blank
strength
hours
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910414337.XA
Other languages
English (en)
Other versions
CN110204318A (zh
Inventor
田小永
霍存宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Feibo Sikai Technology Development Co.,Ltd.
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201910414337.XA priority Critical patent/CN110204318B/zh
Publication of CN110204318A publication Critical patent/CN110204318A/zh
Application granted granted Critical
Publication of CN110204318B publication Critical patent/CN110204318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • C04B35/119Composites with zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dental Preparations (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,先将强度增强材料粉末倒入初始原料中混合;然后将混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;再将初坯放入硅溶胶、镁溶胶、钇溶胶或锆溶胶中浸渍,放入抽真空机中抽真空,使初坯充分浸渍;然后将浸渍后的初坯取出,放在烘箱中干燥;最后按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;本发明能够制备出强度满足要求的氧化铝多孔材料。

Description

一种基于粉末床熔融的氧化铝多孔材料的强度增强方法
技术领域
本发明属于快速成型中多孔材料的制备技术领域,具体涉及一种基于粉末床熔融的氧化铝多孔材料的强度增强方法。
背景技术
多孔材料是一种表面或材料内部具有大量孔隙的材料,由于其多孔性,具有比表面积大、吸附量高、质量轻、比强度高、渗透性好等优点,可广范应用在离子交换、吸附、过滤与分离、催化剂、传感器、轻质化设计等领域。
目前已经报道了许多具有微观/宏观结构的不同材料,对于大多数这些多孔材料,它们的性能与它们独特的结构密切相关。然而,国内外多孔材料的制备手段相对传统,主要有挤压成形、注浆成形、发泡工艺、添加造孔剂、溶胶-凝胶法(用于纳米级孔径)等,毫无疑问,这些方法的高成本和复杂性阻碍了这些材料的潜在工业应用。制备专门的3D功能结构需要更简单和更灵活的方法,3D打印技术允许精确地制造具有所需构造和优化性能的3D器件,简单化、个性化制造、生产成本低是此方法的其显着优点。
在粉末床熔融制备氧化铝多孔材料领域中,现有技术都直接使用氧化铝作为基体材料,不关注于多孔材料的强度要求,在中国专利《一种基于粉末床熔融的复杂结构多孔陶瓷的制备方法中》(专利号201610687672.3)中,该专利使用氧化铝或堇青石等陶瓷材料直接进行3D打印。在中国专利《一种激光烧结3D打印快速成型氧化铝粉末的制备》(专利号201510284342.5)中,主要聚焦在氧化铝粉末的制备。但是在3D打印多孔材料的过程中,许多多孔材料与打印出来的试件强度不够。
发明内容
为了克服现有技术的缺点,本发明的目的在于提供了一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,能够制备出强度满足要求的氧化铝多孔材料。
为了达到上述目的,本发明采取的技术方案为:
一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,包括以下步骤:
1)将占总粉体质量分数为3~30wt%的强度增强材料粉末倒入初始原料中混合;初始原料包括占总粉质量分数为45~87wt%的基体材料与占总粉质量分数为10~25wt%的粘结剂材料;
强度增强材料为硅粉和含硅的化合物,含镁的材料,含钇的化合物,含锆的化合物中的一种或多种的组合;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
3)将初坯放入浓度为5%~40%的硅溶胶、镁溶胶、钇溶胶或锆溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000±2000Pa范围内,对应真空表读数为0.082±0.02MPa,保持30min~60min,使初坯充分浸渍;重复进行浸渍,次数为1~3次;
4)将浸渍后的初坯取出,放在烘箱中,恒温40~80℃,干燥3~12小时;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构。
所述的步骤1)中强度增强材料粉末的粒径在30nm~40μm范围内。
所述的步骤1)中含硅的化合物为氧化硅或碳酸硅,含镁的材料为氧化镁或碳酸镁,含钇的化合物为氧化钇,含锆的化合物为氧化锆。
所述的步骤1)中基体材料为氢氧化铝粉末、氧化铝粉末中的一种或多种;粘结剂材料为环氧树脂类粉末、尼龙粉末等一种或多种,环氧树脂类粉末为E12或E06。
所述的步骤1)中初始原料粒径为15-100μm。
所述的步骤1)中的原料混合方法为机械混合或干法球磨混合方法,混粉时间3~12小时。
所述的步骤2)中粉末床熔融3D打印机的熔融成形工艺参数为:光斑直径为40μm~300μm,激光功率为5~100W,扫描速度500mm~5000mm/s,扫描间距为0.05~0.3mm,预热温度为50~150摄氏度,分层层厚为0.1~0.2mm。
所述的步骤5)中脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在1~2小时的时间内升至300~350℃,保温0.5~3小时,再在3~4小时的时间内升至550~800℃,保温1~4小时;高温焙烧处理为:脱脂工艺结束后,从550~800℃升至1200~1700℃,保温2~5小时,随炉冷却至室温。
本发明与现有技术相比,具有以下优点及有益效果:
1.粉末床熔融3D打印制备氧化铝多孔材料有别于传统多孔材料的制备方法,这种工艺本身造成的孔隙将转为制造多孔结构优势,较其他3D打印工艺更有优势。整个制造过程无需支撑,可以实现复杂氧化铝多孔材料的大批量、快速制造,大大缩短了产品开发的周期,有利于实现自由设计到制造的一体化。
2.解决了3D打印氧化铝多孔材料强度过低的问题,尤其是3D打印氢氧化铝制备氧化铝多孔材料强度过低的问题,在配方中引入含硅材料、含镁材料、含钇材料,在后续的高温焙烧工艺中,这些材料与氧化铝反应将会生成强化相:莫来石、镁铝尖晶石、钇铝石榴石,利于提高氧化铝多孔材料的强度。在配方中引入含锆材料,在后续的高温焙烧工艺中,会与氧化铝形成氧化锆增韧氧化铝陶瓷,有利于提高多孔氧化铝陶瓷的韧性与强度,其韧化效果主要来源于以下机理:①使氧化铝晶粒基体细化;②氧化锆发生相变韧化;③显微裂纹韧化;④裂纹转向与分叉。
3.本发明将预浸渍工艺引入,将初坯充分浸渍后进行再烧结,充分利用粉末床熔融3D打印这种工艺本身造成的孔隙,使硅溶胶、镁溶胶、钇溶胶中的氧化硅、氧化镁、氧化钇等纳米颗粒充分浸渍到初坯的孔隙中,这些材料与氧化铝反应将会生成强化相:莫来石、镁铝尖晶石、钇铝石榴石,利于提高氧化铝多孔材料的强度。使用锆溶胶中的氧化锆纳米颗粒充分浸渍到初坯的孔隙中,在后续的高温焙烧工艺中,会与氧化铝形成氧化锆增韧氧化铝陶瓷,有利于提高多孔氧化铝陶瓷的韧性与强度。采用预浸渍工艺是因为:一、初坯脱脂后没有强度无法浸渍;二、不在高温焙烧后浸渍,防止高温焙烧后再浸渍再高温焙烧过度影响多孔材料的孔隙结构。
具体实施方式
下面结合实施例对本发明方法作详细描述。
实施例1,一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,包括以下步骤:
1)将400g中位径为5μm的二氧化硅粉末放入1300g中位径为25μm氢氧化铝粉末与300g中位径为15μm环氧树脂粉末中,采用机械混合的方式混合3小时;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
采用工艺参数为:预热55℃,层厚0.15mm,激光光斑40μm,激光功率25W,扫描速度2000mm/s,扫描间距20μm;
3)将初坯放入浓度为40%的硅溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000Pa,对应真空表读数为0.082MPa,保持30min,使初坯充分浸渍;
4)将浸渍后的初坯取出,放在烘箱中,恒温80℃,干燥3小时;如不进行干燥,则在后续脱脂工艺和高温焙烧工艺中容易引起初坯开裂;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;
脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在2小时升至300℃,保温1小时,再用3小时的时间内升至800℃,保温2小时;高温焙烧处理为:脱脂工艺结束后,从800℃升至1600℃,保温3小时,随炉冷却至室温。
本实施例所得多孔结构在室温23℃下,以1mm/min的速度均匀加载,使用多功能力学实验机进行测试,测得压缩强度为19.824MPa,压碎强度为516.50886N/cm。
实施例2,一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,包括以下步骤:
1)将100g中位径为5μm的氧化锆粉末和100g中位径为5μm的氧化钇粉末放入1600g中位径为25μm氢氧化铝粉末与200g中位径为15μm环氧树脂粉末中,采用干法球磨混合的方式混合5小时;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
采用工艺参数为:预热60℃,层厚0.15mm,激光光斑40μm,激光功率20W,扫描速度3000mm/s,扫描间距20μm;
3)将初坯放入浓度为5%的硅溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000Pa,对应真空表读数为0.082MPa,保持40min,使初坯充分浸渍;
4)将浸渍后的初坯取出,放在烘箱中,恒温40℃,干燥12小时;如不进行干燥,则在后续脱脂工艺和高温焙烧工艺中容易引起初坯开裂;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;
脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在1小时升至300℃,保温1小时,再用3小时的时间内升至800℃,保温1小时;高温焙烧处理为:脱脂工艺结束后,从800℃升至1400℃,保温2小时,随炉冷却至室温。
本实施例所得多孔结构在室温23℃下,以1mm/min的速度均匀加载,使用多功能力学实验机进行测试,测得压缩强度为25.766MPa,压碎强度为774.76329N/cm。
实施例3,一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,包括以下步骤:
1)将60g中位径为5μm的氧化镁粉末放入1340g中位径为70μm氧化铝粉末与600g中位径为15μm环氧树脂粉末中,采用干法球磨混合的方式混合12小时;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
采用工艺参数为:预热50℃,层厚0.15mm,激光光斑40μm,激光功率20W,扫描速度3000mm/s,扫描间距20μm;
3)将初坯放入浓度为10%的硅溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000Pa,对应真空表读数为0.082MPa,保持30min,使初坯充分浸渍;
4)将浸渍后的初坯取出,放在烘箱中,恒温50℃,干燥5小时;如不进行干燥,则在后续脱脂工艺和高温焙烧工艺中容易引起初坯开裂;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;
脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在1.5小时升至300℃,保温1小时,再用3小时的时间内升至800℃,保温1小时;高温焙烧处理为:脱脂工艺结束后,从800℃升至1700℃,保温3小时,随炉冷却至室温。
本实施例所得多孔结构在室温23℃下,以1mm/min的速度均匀加载,使用多功能力学实验机进行测试,测得压缩强度为12.523MPa,压碎强度为326.283N/cm。
实施例4,一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,包括以下步骤:
1)将200g中位径为40μm的氧化硅粉末放入750g中位径为25μm氢氧化铝粉末和750g中位径为70μm氢化铝粉末和300g中位径为50μm尼龙粉末中,采用干法球磨混合的方式混合12小时;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
采用工艺参数为:预热150℃,层厚0.12mm,激光光斑40μm,激光功率60W,扫描速度3000mm/s,扫描间距20μm;
3)将初坯放入浓度为5%的锆溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000Pa,对应真空表读数为0.082MPa,保持30min,使初坯充分浸渍;再将初坯放入浓度为5%的钇溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000Pa,对应真空表读数为0.082MPa,保持30min,使初坯充分浸渍;
4)将浸渍后的初坯取出,放在烘箱中,恒温60℃,干燥4小时;如不进行干燥,则在后续脱脂工艺和高温焙烧工艺中容易引起初坯开裂;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;
脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在1.5小时升至350℃,保温1小时,再用3小时的时间内升至750℃,保温1.5小时。高温焙烧处理为:脱脂工艺结束后,从800℃升至1200℃,保温5小时,随炉冷却至室温。
本实施例所得多孔结构在室温23℃下,以1mm/min的速度均匀加载,使用多功能力学实验机进行测试,测得压缩强度为2.776MPa,压碎强度为54.28994N/cm。
以上所述,仅为本发明较佳的实施例,但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,其特征在于,包括以下步骤:
1)将占总粉体质量分数为3~30wt%的强度增强材料粉末倒入初始原料中混合;初始原料包括占总粉质量分数为45~87wt%的基体材料与占总粉质量分数为10~25wt%的粘结剂材料;
强度增强材料为硅粉或含硅的化合物,含镁的材料,含钇的化合物,含锆的化合物中的一种或多种的组合;
2)将步骤1)混好的原料放入粉末床熔融3D打印机中,按照设计的多孔结构三维模型打印出初坯;
3)将初坯放入浓度为5%~40%的硅溶胶、镁溶胶、钇溶胶或锆溶胶中浸渍,放入抽真空机中抽真空,控制抽真空机压强在18000±2000Pa范围内,对应真空表读数为0.082±0.02MPa,保持30min~60min,使初坯充分浸渍;重复进行浸渍,次数为1~3次;
4)将浸渍后的初坯取出,放在烘箱中,恒温40~80℃,干燥3~12小时;
5)按照设定的阶梯升温曲线,先对经过预浸渍且干燥的氧化铝多孔材料的初坯进行脱脂处理,再对初坯进行高温焙烧处理,获得强度满足要求的多孔结构;
所述的步骤1)中基体材料为氢氧化铝粉末;粘结剂材料为环氧树脂类粉末、尼龙粉末的一种或多种,环氧树脂类粉末为E12或E06;
所述的步骤1)中初始原料粒径为15-100μm;
所述的步骤2)中粉末床熔融3D打印机的熔融成形工艺参数为:光斑直径为40μm~300μm,激光功率为5~100W,扫描速度500mm~5000mm/s,扫描间距为0.05~0.3mm,预热温度为50~150摄氏度,分层层厚为0.1~0.2mm;
所述的步骤1)中含硅的化合物为氧化硅或碳酸硅,含镁的材料为氧化镁或碳酸镁,含钇的化合物为氧化钇,含锆的化合物为氧化锆。
2.根据权利要求1所述的一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,其特征在于:所述的步骤1)中强度增强材料粉末的粒径在30nm~40μm范围内。
3.根据权利要求1所述的一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,其特征在于:所述的步骤1)中的原料混合方法为机械混合或干法球磨混合方法,混粉时间3~12小时。
4.根据权利要求1所述的一种基于粉末床熔融的氧化铝多孔材料的强度增强方法,其特征在于:所述的步骤5)中脱脂工艺为将经过预浸渍且干燥的氧化铝多孔材料的初坯在1~2小时的时间内升至300~350℃,保温0.5~3小时,再在3~4小时的时间内升至550~800℃,保温1~4小时;高温焙烧处理为:脱脂工艺结束后,从550~800℃升至1200~1700℃,保温2~5小时,随炉冷却至室温。
CN201910414337.XA 2019-05-17 2019-05-17 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法 Active CN110204318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910414337.XA CN110204318B (zh) 2019-05-17 2019-05-17 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910414337.XA CN110204318B (zh) 2019-05-17 2019-05-17 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法

Publications (2)

Publication Number Publication Date
CN110204318A CN110204318A (zh) 2019-09-06
CN110204318B true CN110204318B (zh) 2021-03-16

Family

ID=67787706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910414337.XA Active CN110204318B (zh) 2019-05-17 2019-05-17 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法

Country Status (1)

Country Link
CN (1) CN110204318B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112827481B (zh) * 2019-11-22 2023-08-22 中国石油天然气股份有限公司 一种具有梯度结构的催化剂氧化铝载体材料及其制备方法
CN112341224A (zh) * 2020-11-25 2021-02-09 辽宁科技大学 一种氧化锆-莫来石复相多孔高强耐火块体的制备方法
CN112409010A (zh) * 2020-11-25 2021-02-26 辽宁科技大学 一种氧化镁-氧化锆复相多孔高热震耐火块体的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342576A (zh) * 2013-06-25 2013-10-09 西安交通大学 一种纳米复相Al2O3 陶瓷滤芯的制备方法
ES2640930B1 (es) * 2016-05-05 2018-06-15 Universidad De Castilla La Mancha Procedimiento para la obtención de una barbotina cerámica para la fabricación de hilos para impresión 3d-fdm, barbotina que se obtiene e hilos cerámicos
CN106830962A (zh) * 2016-12-26 2017-06-13 东莞市佳乾新材料科技有限公司 一种二氧化硅改性的多孔氧化锆陶瓷及其制备方法
CN106673627A (zh) * 2017-01-20 2017-05-17 广东工业大学 一种基于光固化成型的3d打印制备氧化铝增韧陶瓷的方法
CN106966709B (zh) * 2017-04-01 2020-08-11 广东工业大学 一种基于光固化成型的3d打印制备透明氧化铝陶瓷的方法
CN108101519A (zh) * 2017-12-19 2018-06-01 西安交通大学 一种用于复杂结构零件定向凝固成形的陶瓷铸型制备方法
CN108484131B (zh) * 2018-02-02 2020-10-16 航天特种材料及工艺技术研究所 适用于3d打印的氧化铝陶瓷料浆、制备方法及应用
CN108726997A (zh) * 2018-06-07 2018-11-02 山东大学 一种氧化铝高固相含量光敏陶瓷3d打印膏料及其制备方法
CN109251022A (zh) * 2018-09-19 2019-01-22 清华大学 熔模铸造用氧化铝基多孔陶瓷型壳的选区激光烧结技术
CN109734425B (zh) * 2019-02-20 2020-10-02 华中科技大学 一种复相陶瓷铸型的激光选区快速成型方法及其产品

Also Published As

Publication number Publication date
CN110204318A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN110204318B (zh) 一种基于粉末床熔融的氧化铝多孔材料的强度增强方法
CN105254320B (zh) 连续氧化物纤维增强氧化物陶瓷基复合材料的制备方法
CN108455978B (zh) 表面韧化的氧化铝纤维刚性隔热瓦多层复合材料、涂层组合物、制备方法及其应用
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
WO2017114064A1 (zh) 一种环保精铸模壳的制备方法
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
CN106699209A (zh) 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
WO2017114065A1 (zh) 一种环保铸造材料的制备方法
CN103288468A (zh) 一种纤维增强碳-碳化硅-碳化锆基复合材料的制备方法
CN108101574A (zh) 一种3d打印制备陶瓷多孔件的方法及陶瓷多孔件
Mansfield et al. A review on additive manufacturing of ceramics
KR20190109611A (ko) 3d 프린팅 기반 세라믹 중자의 제조 방법
CN102989994A (zh) 一种钛合金铸造用复合型芯制备方法
CN107986777A (zh) 一种氧化锆陶瓷基复合材料及其制备方法
CN103936390A (zh) 磷酸盐复合材料天线罩罩体的制备方法
CN109320272A (zh) 一种新型环保铬刚玉砖及其生产工艺
CN108997001B (zh) 一种透气砖用微孔陶瓷棒的制备方法
Zheng et al. Improved mechanical properties of SiB6 reinforced silica-based ceramic cores fabricated by 3D stereolithography printing
CN107619273B (zh) 一种非水基凝胶注模成型制备铽铝石榴石基磁光透明陶瓷的方法
CN112479687A (zh) 一种陶瓷3d打印产品及其脱脂焙烧一体化工艺方法
CN105294121B (zh) 一种抗热震的轻质耐火骨料
CN110452009A (zh) 一种原位生成镁铝尖晶石晶须骨架多孔陶瓷的制备方法
CN114907133A (zh) 一种硅基陶瓷型芯材料、制备方法以及硅基陶瓷型芯
Kong et al. Alumina-based ceramic cores prepared by vat photopolymerization and buried combustion method
CN109721381B (zh) 氮化硅壳体强化氮化硅泡沫陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230920

Address after: 710086 Room 004, F2005, 20th Floor, Building 4-A, Xixian Financial Port, Fengdong New Energy Jinmao District, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Shaanxi Feibo Sikai Technology Development Co.,Ltd.

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University