CN110202147A - 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法 - Google Patents

一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法 Download PDF

Info

Publication number
CN110202147A
CN110202147A CN201910587298.3A CN201910587298A CN110202147A CN 110202147 A CN110202147 A CN 110202147A CN 201910587298 A CN201910587298 A CN 201910587298A CN 110202147 A CN110202147 A CN 110202147A
Authority
CN
China
Prior art keywords
powder
deloro50
mixed
laser melting
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910587298.3A
Other languages
English (en)
Inventor
李嘉宁
苏沫林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201910587298.3A priority Critical patent/CN110202147A/zh
Publication of CN110202147A publication Critical patent/CN110202147A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法。采用同轴送粉法在氩气环境中将Deloro50‑Si3N4‑Sb‑La2O3混合粉末熔化沉积于TC17钛合金表面,形成具有优异韧性及耐磨性的下层;后将Deloro50‑Si3N4混合粉末激光熔化沉积于所形成下层之上形成上层;上层与下层之间呈良好冶金结合且均具有优异耐磨性。结果表明,Sb及La2O3可在该非晶缓冲梯度复合材料中催生出许多非晶相,非晶相具有良好韧性,可在一定程度上缓解摩擦副对所制备非晶缓冲梯度复合材料的冲击,改善耐磨性。本发明可获得组织致密且具极强耐磨性的非晶缓冲梯度复合材料。关键词:激光熔化沉积;非晶缓冲层;钛合金。

Description

一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法
技术领域
本发明涉及一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法,属于增材制造技术领域。特别涉及一种在钛合金表面用Deloro50-Si3N4-Sb-La2O3混合粉末通过激光熔化沉积技术制备非晶缓冲梯度复合材料的方法。
背景技术
激光熔化沉积(LMD)是一种典型的激光增材制造技术,即利用激光高能量束使粉末与工件表层发生熔化,在基材上形成熔池,熔化粉末在熔池上方叠层累加沉积,冷却凝固后在工件表层形成激光熔覆层的方法;LMD可满足各种复杂工作条件技术要求,在工件表面层制备具有较高耐磨、耐蚀等性能的材料。梯度涂层利于涂层与基体之间形成冶金结合,使复合界面由突变转变为微观结构的渐变,还可在一定程度上降低多层缓冲作用下的残余应力,增强材料的表面性能。激光熔池的急冷特性有利于非晶相形成;非晶材料由于其良好的韧性、耐蚀性、摩擦系数低等特点在激光增材制造领域有较大的应用潜力。Deloro50是一种润湿性优良且熔点较低的合金粉末,其激光熔覆层具有优异的耐蚀及耐磨等特点;Si3N4陶瓷具有高硬度及抗高温氧化等特性,可有效提高钛合金高温表面性能,在航空航天零部件增材制造领域具有巨大的应用潜力;适量La2O3添加可提升液态金属流动性,减弱枝晶生长方向性,减少熔池杂质,使激光熔覆层组织均匀细化。
发明内容
基于上述科学原理,本发明依据高密度激光束照射金属表面可形成具有急冷特性的高温熔池,提出一种能够降低生产成本、减少生产周期,通过LMD制备非晶缓冲梯度复合材料的方法;所制备复合材料显微形貌如图1a所示。采用同轴送粉法在氩气环境中将Deloro50-Si3N4-Sb-La2O3混合粉末激光熔化沉积于TC17钛合金表面形成下层;后将Deloro50-Si3N4混合粉末激光熔化沉积于下层之上,形成组织较为致密的上层(见图1b);上层与下层之间呈良好冶金结合且都具有较好耐磨性。试验结果表明,Sb与La2O3加入可催生出许多非晶相,所制备非晶相具有优异的韧性,可一定程度上缓解摩擦磨损过程中摩擦副对激光熔覆层的冲击,从而显著提高涂层表面性能。
所制备梯度复合材料中Deloro50-Si3N4-Sb-La2O3下层(非晶层)形貌见图2;能谱面扫分析结果表明Si,Sb,Ni,Ti,Cr元素均匀分布在非晶层中;由于激光熔池的急冷特性及Sb与La2O3作用,利于非晶层形成。
采用MM200磨损试验机测定TC17钛合金表面非晶缓冲梯度复合材料的耐磨性;选用尺寸Φ40×12 mm的YG6硬质合金磨轮,转速400 r/min,载荷10 kg。摩擦磨损结果如表1所示。
表1. 非晶缓冲梯度复合材料磨损试验数据
如图3所示,所制备非晶缓冲梯度复合材料其磨损体积随测试时间延长呈明显下降趋势,表明下层的耐磨性明显高于上层,该复合材料的磨损体积约为TC17基体1/20;由于下层的非晶化特性,可有效减缓摩擦副对激光熔覆层的冲击,从而显著改善所制备非晶缓冲梯度复合材料的耐磨性。
所制备梯度复合材料的摩擦系数(COF)随接触载荷变化如图4所示,上层COF对接触载荷变化较为敏感,随着接触载荷从65 N增加到95 N,上层COF从0.43降低到0.42;下层COF随载荷变化幅度不大,稳定在约0.38,表明下层的耐磨性显著优于上层。
综合分析,本发明针对钛合金表面耐磨性较差的缺点,通过LMD技术在TC17钛合金表面制备Deloro50-Si3N4-Sb-La2O3下层;后在下层表面激光熔化沉积Deloro50-Si3N4混合粉末制备上层,形成非晶缓冲梯度复合材料,达到钛合金表面增强的目的。
具体步骤:
(1)在LMD之前,用120号砂纸打磨TC17钛合金试样待激光处理表面,使其表面粗糙度达Ra 2.5 μm;后用硫酸水溶液对该表面进行清洗,酸洗时间5~10 min;酸洗后用清水冲洗、再用酒精将待熔工件表面擦拭干净、吹干;
(2)将一定质量比例Deloro50,Si3N4,Sb及La2O3的混合粉末以同轴送粉方式LMD于钛合金表面形成下层;再将一定质量比例Deloro50及Si3N4的混合粉末激光熔化沉积于下层表面形成上层;所述Deloro50 粉末尺寸50~150 μm,B4C粉末尺寸20~120 μm,Sb粉末尺寸10~150μm,La2O3粉末尺寸1~50 μm;
(3)在上、下层的成形过程中,激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.1 kW,激光束扫描速度 2~8 mm/s,送粉速率25 g/min,光斑直径4 mm,氩气流速20 L/min,搭接率30%;制备上层与下层的工艺方法与参数完全相同。
步骤(1)所述钛合金为TC17牌号;TC17钛合金成分(wt.%):5.15Al,2.16Sn,2.09Zr,4.02Mo,4.01Cr,0.096Fe,0.009C,0.008N,0.006H,0.12O,余量Ti;
步骤(2)所述混合粉末各元素成分(wt%):4Si3N4,3Sb,1La2O3,余量 Deloro50(下层);10 Si3N4,余量 Deloro50(上层)。其中,Deloro50中各元素成分(wt%):0.45C,11.25Cr,4Si,2.8Fe,0.1Mo,0.1Mn,余量Ni。
本发明是氩气环境中在钛合金试样表面进行LMD。在激光处理过程中,激光束扫描速度保持不变。LMD处理完两秒钟后关闭保护气体,可使保护气对试样表面进行充分保护。本发明能够获得具有极强耐磨性的非晶缓冲梯度复合材料,具有工艺简单、适用性强、便于推广应用等优点。
具体实施方式
实施例1:
将TC17钛合金基材切成长度10 mm、宽度10 mm、厚度25 mm的长方体。在进行LMD前清理钛合金表面,并拭净、吹干;将成分(wt.%):92Deloro50-4Si3N4-3Sb-1La2O3的混合粉末LMD于基材的10 mm×25 mm面形成下层,后将成分(wt.%):90Deloro 50-10Si3N4混合粉末LMD于下层之上,形成上层。
具体工艺步骤:
(1) 在LMD之前,用120号砂纸打磨TC17钛合金试样待激光处理表面,使其表面粗糙度达Ra 2.5 μm;后用体积百分比25%硫酸水溶液对该表面进行清洗,酸洗时间5~10 min;酸洗后用清水冲洗、用酒精将表面擦拭干净、吹干;
(2) 用电子天平分别称取Deloro50粉末92 g,Si3N4粉末4 g,Sb粉末3 g,La2O3粉末1g,放入1号烧杯;再称取Deloro50粉末90 g,Si3N4粉末10 g,放入2号烧杯;Deloro50粉末尺寸50~150 μm,B4C粉末尺寸20~120 μm,Sb粉末尺寸10~150 μm,La2O3粉末尺寸1~50 μm;
(3) 用同轴送粉器直接将1号烧杯中混合粉末吹向试样清理表面进行LMD处理,形成下层;工艺参数:激光功率1.1 kW,激光束扫描速度 2~8 mm/s,送粉速率25 g/min,光斑直径4 mm,焊道搭接率30%,氩气流速20 L/min;
(4) 再用同轴送粉器将烧杯2中混合粉末吹向下层表面进行LMD处理,形成上层;本次工艺参数与之前制备上层相同,也采用氩气作为保护气体。
附图说明
图1 、(a) LMD非晶缓冲梯度复合材料显微组织, (b) LMD上层显微组织;
图2 、LMD下层能谱面扫区域及测试结果;
图3 、非晶缓冲梯度复合材料COF随载荷变化分布图;
图4 、非晶缓冲梯度复合材料磨损体积随时间变化图。

Claims (1)

1.一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法,其特征是:
(1)将Deloro50-Si3N4-Sb-La2O3混合粉末充分混合,后用同轴送粉器将Deloro50-Si3N4-Sb-La2O3混合粉末吹向TC17钛合金表面进行激光熔化沉积处理形成下层,采用激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.1 kW,扫描速度 2~8mm/s,送粉速率25 g/min,光斑直径4 mm,氩气流速20 L/min,搭接率30%;混合粉末成分(wt.%):4Si3N4,3Sb,1La2O3,余量 Deloro50;
(2)将Deloro50-Si3N4混合粉末充分混合,后用同轴送粉器将Deloro50-Si3N4混合粉末吹向已形成的下层表面进行激光熔化沉积处理形成上层;激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.1 kW,扫描速度 2~8 mm/s,送粉速率25 g/min,光斑直径4 mm,氩气流速20 L/min,搭接率30%;混合粉末成分(wt.%):10Si3N4,余量Deloro50;Deloro50化学元素成分(wt.%):0.45C,11.25Cr,4Si,2.8Fe,0.1Mo,0.1Mn,余量Ni。
CN201910587298.3A 2019-07-02 2019-07-02 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法 Pending CN110202147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910587298.3A CN110202147A (zh) 2019-07-02 2019-07-02 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910587298.3A CN110202147A (zh) 2019-07-02 2019-07-02 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法

Publications (1)

Publication Number Publication Date
CN110202147A true CN110202147A (zh) 2019-09-06

Family

ID=67795753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910587298.3A Pending CN110202147A (zh) 2019-07-02 2019-07-02 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法

Country Status (1)

Country Link
CN (1) CN110202147A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724953A (zh) * 2019-12-09 2020-01-24 山东建筑大学 一种激光制备ta2钛合金非晶增强防护层的方法
CN115341207A (zh) * 2021-05-13 2022-11-15 山东建筑大学 一种钛合金激光制备多物相增强镍基耐磨层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441672A (zh) * 2011-11-09 2012-05-09 铜陵学院 一种激光熔覆纳米陶瓷颗粒增强的金属基梯度涂层制备方法
CN104532232A (zh) * 2015-01-17 2015-04-22 山东建筑大学 一种冰环境下使钛合金表面激光熔覆涂层非晶化的方法
CN104988493A (zh) * 2015-05-28 2015-10-21 山东建筑大学 一种通过纳米化因子使钛合金激光沉积层纳米化的方法
CN106435566A (zh) * 2016-09-12 2017-02-22 广西大学 一种铌合金表面激光多道熔覆复合陶瓷梯度涂层的方法
US20170341148A1 (en) * 2016-05-26 2017-11-30 Kennametal Inc. Cladded articles and applications thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102441672A (zh) * 2011-11-09 2012-05-09 铜陵学院 一种激光熔覆纳米陶瓷颗粒增强的金属基梯度涂层制备方法
CN104532232A (zh) * 2015-01-17 2015-04-22 山东建筑大学 一种冰环境下使钛合金表面激光熔覆涂层非晶化的方法
CN104988493A (zh) * 2015-05-28 2015-10-21 山东建筑大学 一种通过纳米化因子使钛合金激光沉积层纳米化的方法
US20170341148A1 (en) * 2016-05-26 2017-11-30 Kennametal Inc. Cladded articles and applications thereof
CN106435566A (zh) * 2016-09-12 2017-02-22 广西大学 一种铌合金表面激光多道熔覆复合陶瓷梯度涂层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戎磊: "激光熔覆碳化钨颗粒增强镍基合金梯度涂层的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724953A (zh) * 2019-12-09 2020-01-24 山东建筑大学 一种激光制备ta2钛合金非晶增强防护层的方法
CN115341207A (zh) * 2021-05-13 2022-11-15 山东建筑大学 一种钛合金激光制备多物相增强镍基耐磨层的方法

Similar Documents

Publication Publication Date Title
CN110202148A (zh) 一种激光增材高熵合金基多相增强梯度复合材料的方法
CN111872388B (zh) 一种基于激光选区熔化技术制备高熵合金的方法
CN108611636A (zh) 一种耐磨耐腐蚀复合涂层的制备方法
JP6180427B2 (ja) Hvof溶射用の金属粉末及びそれにより表面をコーティングする方法
Zhang et al. Characterization on laser clad nickel based alloy coating on pure copper
CN103409749B (zh) 一种激光熔覆金属/陶瓷复合涂层及其制备工艺
CN104831276B (zh) 一种通过激光重熔制备非晶化梯度复合材料的方法
CN105112908A (zh) 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
Hofmann et al. Developing processing parameters and characterizing microstructure and properties of an additively manufactured FeCrMoBC metallic glass forming alloy
CN106702377A (zh) 一种激光熔覆法制备金属/六方氮化硼复合涂层的方法
CN110202147A (zh) 一种通过激光熔化沉积制备非晶缓冲梯度复合材料的方法
CN106756996B (zh) 一种稀土改性激光熔覆层及其制备工艺
Lestan et al. Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel
CN107267979A (zh) 一种盾构机刀头的强化方法以及高强度盾构机刀头
CN112281157A (zh) 一种激光熔覆原位合成陶瓷相增强铜基熔覆层的制备方法
CN114892043B (zh) 激光增材制造专用高韧性高温镍基合金粉末及其制备方法
Niu et al. TiC ceramic coating reinforced 304 stainless steel components fabricated by WAAM-LC integrated hybrid manufacturing
CN107723511B (zh) 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法
CN110438493A (zh) 一种制备CNTs增强高熵合金激光沉积复合材料的方法
CN106216672B (zh) 一种金属增韧陶瓷基复合材料零件增材制备方法
CN110184601A (zh) 一种激光制备不锈钢表面石墨烯增强防护层的方法
Erinosho et al. Effect of scanning speed on the surface roughness of laser metal deposited copper on titanium alloy
Khorram et al. Surface modification of IN713 LC superalloy with Metco 204NS by laser surface alloying
Zhang et al. Preparation of thin NiCrBSi laser cladding layers with no microcracking and low dilution
Cao et al. Laser rapid forming processing of TiC reinforced nickel-based superalloy composites: Influence of additive TiC particle content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190906