CN107723511B - 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法 - Google Patents

一种激光增材制造准晶-纳米晶改性梯度复合材料的方法 Download PDF

Info

Publication number
CN107723511B
CN107723511B CN201710754302.1A CN201710754302A CN107723511B CN 107723511 B CN107723511 B CN 107723511B CN 201710754302 A CN201710754302 A CN 201710754302A CN 107723511 B CN107723511 B CN 107723511B
Authority
CN
China
Prior art keywords
powder
stellite
laser
mixed
quasi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710754302.1A
Other languages
English (en)
Other versions
CN107723511A (zh
Inventor
李嘉宁
安相琛
刘鹏
王哲
张博伦
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201710754302.1A priority Critical patent/CN107723511B/zh
Publication of CN107723511A publication Critical patent/CN107723511A/zh
Application granted granted Critical
Publication of CN107723511B publication Critical patent/CN107723511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/06Quasicrystalline
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种用激光3D打印技术制备准晶‑纳米晶改性梯度复合材料的方法。用同轴送法将Stellite 12‑B4C‑Y2O3混合粉末激光合金化于TA15合金表面形成组织较为组大的下层;后将Stellite 12‑B4C‑Cu‑Y2O3混合粉末激光沉积于下层表面形成组织较为致密的上层,上层与下层之间呈良好的冶金结合,且都具有较好的耐磨性。实验结果表明,随着Cu的加入产生了许多超细纳米晶及准晶相,改变了激光增材制造梯度复合层的结构并提高了其力学性能。本发明能够获得组织结构致密且具有极高耐磨性的梯度复合材料。

Description

一种激光增材制造准晶-纳米晶改性梯度复合材料的方法
技术领域
本发明涉及一种激光增材制造准晶-纳米晶改性梯度复合材料的方法,属于增材制造技术领域。特别涉及一种在钛合金表面用Stellite 12-B4C-Cu-Y2O3混合粉末通过激光加工技术来制备准晶-纳米晶改性复合材料的方法。
背景技术
增材制造(3D打印)正强劲地驱动新兴产业技术群快速崛起,顺应了新技术革命大趋势,即由传统大规模、批量生产模式向个性化、订制化、小批量生产模式转型。激光合金化技术是增材制造的一个重要分枝,可实现工件微结构纳米化,具有效率高、速度快及绿色环保等特点。梯度复合材料既能较好地克服单一材料性能上的局限,又能充分发挥不同材料的特殊性能,满足现代高科技领域对新型材料的要求。将不同成分金属陶瓷混合粉末分层激光熔化沉积所形成的结构会产生许多界面,这些界面可钉扎缺陷得到比单一结构材料综合力学性能更强的梯度复合材料。利用纳米准晶化技术改变金属材料的组织结构进而提高性能、拓展其使用范围是新材料研究与开发的热点。准晶体的结构与晶体及非晶体有本质区别,准晶具有许多理想特性,如硬度高、摩擦系数低及抗高温氧化性好等,准晶材料在耐磨涂层研究领域有较大的应用潜力。而纳米材料基于其高韧性、高强度、高硬度等特性在增材制造领域具有非常巨大的应用潜力。
基于上述科学原理,并依据激光辐射于金属表面所形成高温熔池的快速冷凝特性,本发明提出了一种能够降低生产成本,通过激光加工技术制备准晶-纳米晶改性梯度复合材料的方法。激光所形成熔池具有急冷特性,利于纳米晶与准晶相产生。采用同轴送粉法在氩气环境中将Stellite 12-B4C-Y2O3混合粉末激光合金化于TA15钛合金表面形成组织较为粗大的下层;后将Stellite 12-B4C-Cu-Y2O3 混合粉末激光沉积于下层之上形成组织结构较为致密的上层。上层与下层之间呈良好的冶金结合且都具有较好的耐磨性。试验结果表明,Cu的加入可催生出许多AlCu2Ti超细纳米晶。该类超细纳米晶的生成有利于涂层组织结构细化并提高其力学性能。所制备准晶-纳米晶改性梯度复合材料的组织结构见图1。
所制备梯度复合材料中Stellite 12-B4C-Cu-Y2O3上层中的准晶相形貌见图2,由于激光熔池的急冷作用,许多晶体还未得到充分时间长大就已凝固,所以在准晶中呈纳米结构。
用HV-1000型显微硬度计测试所制备梯度复合材料的硬度,加载时间5 s;用WMM-W1盘式磨损试验机测定梯度复合材料的耐磨性,选用烧结硬度为1800 HV 的Al2O3作为磨轮材料,载荷98 N,转速465 rpm。磨损体积测定:磨损试验中每隔15分钟测量一次磨痕宽度或磨损失重;磨痕宽度采用体积显微镜测定,经过多点测定后取平均值作为测量结果。利用如下公式近似计算磨损体积。
V=l{r 2arcsin-
}
式中:V磨损体积,单位mm3
l磨痕长度(即试样宽度),单位mm;
b磨痕宽度,单位mm;
r磨轮半径,单位mm。
图3显示了梯度复合材料的显微硬度分布。Stellite 12-B4C-Cu-Y2O3上层显微硬度分布范围1500~1600 HV0.2;由于基材对下层的稀释作用及欠缺Cu作用的原因,下层显微硬度较上层偏低,分布范围700~1200 HV0.2
所制备梯度复合材料具有较高的硬度与较好的耐磨性及组织结构,磨损体积随测试时间的延长呈明显上升趋势,这表明上层的耐磨性明显高于下层(见图4)。
发明内容
本发明采用激光增材制造技术,针对钛合金表面耐磨性较差的缺陷,先采用激光合金化技术制备Stellite 12-B4C-Y2O3下层;后在其表面激光熔化沉积Stellite 12-B4C-Cu-Y2O3混合粉末制备准晶-纳米化复合材料,形成梯度复合材料。该项技术可应用于飞机零件制造中以及航空领域部件修复等诸多方面。具体步骤如下:
1)将一定质量比例Stellite 12、B4C、Y2O3的混合粉末以同轴送粉方式激光合金化于钛合金表面形成下层;再将一定质量比例的Stellite 12、B4C、Cu及Y2O3的混合粉末以同样方式激光熔化沉积于下层表面形成上层。所述Stellite 12 粉末尺寸50~150 μm,B4C粉末尺寸75~250 μm,Cu粉末尺寸1~30 μm,Y2O3粉末尺寸10~200 nm;
2)在上、下层的成形过程中,激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率0.6~2.8 kW,激光束扫描速度 2~12 mm/s,送粉速率15~35 g/min,光斑直径4 mm,氩气流速10~40 L/min,焊道搭接率30%。上层与下层的工艺方法与参数完全相同。
步骤1)所述钛合金为TA15牌号;混合粉末各成分及质量分数: B4C 7~29%,Y2O3 1~3%,余量 Stellite 12下层;B4C 7~29%, Cu 3~7%,Y2O3 1~3%,余量 Stellite 12上层。Stellite 12中各化学元素质量分数: C1.40%,Cr 29.50%, Si1.45%,W8.25%,Fe3.00%,Mo1.00%,Ni3.00%,Mn1.00%,余量Co。
本发明是在氩气环境中钛合金试样表面发生激光合金化。在激光处理过程中,激光束扫描速度保持不变。试样表面被完全激光合金化后将激光关闭,两秒钟后关闭保护气体,原因是使保护气对试样表面进行充分保护。本发明能够获得具有立体形态且较强耐磨性的梯度复合材料,具有工艺简单方便、适用性强、便于推广应用等优点。
附图说明
图1是梯度复合材料SEM形貌。
图1中(a) 是下层, 图中(b) 是上层,图中(c)上层中纳米晶聚集态,图中(d)是纳米晶。
图2 梯度复合材料上层中准晶及其中的纳米晶。
图3 TA15合金梯度复合材料显微硬度分布。
图4 TA15合金梯度复合材料磨损体积随时间延长变化图。
具体实施方式
实例1:
将TA15钛合金切成长度30 mm、宽度10 mm、厚度10 mm的长方体。进行激光加工之前清理钛合金表面,并拭净、吹干。将质量分数为89%Stellite 12、10%B4C、1%Y2O3的混合粉末激光合金化于钛合金的30 mm×10 mm面表面形成下层;后将质量分数为84%Stellite12、10%B4C、5%Cu及1%Y2O3的混合粉末激光熔化沉积于下层之上,形成上层。具体工艺步骤如下:
(1) 在激光合金化之前,用240号砂纸打磨已切好的TA15钛合金待激光处理表面,使其表面粗糙度达Ra 2.5 μm;而后,先用清水冲洗,再用酒精将待熔表面擦拭干净后吹干;
(2) 用天平分别称取Stellite 12粉末89 g、B4C粉末10 g、Y2O3粉末1 g,放入1号烧杯;用天平再称取Stellite 12粉末84g、B4C粉末10 g、Cu粉末5 g、Y2O3 粉末1g,放入2号烧杯。其中Stellite 12粉末尺寸100 μm,、B4C粉末尺寸100 μm、Cu粉末尺寸15 μm、Y2O3 粉末尺寸20 nm;将两个烧杯中的混合粉末通过机械混粉器充分混合并分别用烘干机烘干;
(3) 用同轴送粉器直接将1号烧杯中的混合粉末吹向试样待处理表面进行激光熔化沉积处理,形成下层。工艺参数:激光功率1.10 kW,激光束扫描速度 2.5 mm/s,送粉速率25 g/min,光斑直径4 mm,焊道搭接率30%,氩气流速20 L/min
(4) 再用同轴送粉器将烧杯2中的混合粉末吹向下层表面进行激光熔化沉积处理,形成上层。本次工艺参数与之前制备上层相同,也采用氩气作为保护气体。

Claims (1)

1.一种激光增材制造准晶-纳米晶改性梯度复合材料的方法,其特征是:
(1)将一定质量比例Stellite 12、B4C、Y2O3混合粉末通过机械混粉器充分混合并用烘干机烘干,用同轴送粉器将Stellite 12、B4C、Y2O3混合粉末吹向TA15钛合金待处理表面进行激光合金化处理形成下层,过程采用激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率0.6~2.8 kW,扫描速度 2~12 mm/s,送粉速率15~35 g/min,光斑直径4 mm,氩气流速10~40 L/min,焊道搭接率30%;混合粉末成分及质量分数:B4C 7~29%,Y2O3 1~3%,余量 Stellite 12;Stellite 12中各化学元素质量分数:C1.40%,Cr 29.50%,Si1.45%,W8.25%,Fe3.00%,Mo1.00%,Ni3.00%,Mn1.00%,余量Co;
(2)将一定质量比例Stellite 12、B4C、Cu、Y2O3混合粉末通过机械混粉器充分混合并用烘干机烘干,用同轴送粉器将Stellite 12、B4C、Cu、Y2O3混合粉末吹向下层表面进行激光熔化沉积处理形成上层,激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率0.6~2.8 kW,扫描速度 2~12 mm/s,送粉速率15~35 g/min,光斑直径4 mm,氩气流10~40 L/min,焊道搭接率30%,混合粉末各成分及质量分数:B4C 7~29%, Cu 3~7%,Y2O3 1~3%,余量 Stellite 12。
CN201710754302.1A 2017-08-29 2017-08-29 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法 Active CN107723511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710754302.1A CN107723511B (zh) 2017-08-29 2017-08-29 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710754302.1A CN107723511B (zh) 2017-08-29 2017-08-29 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法

Publications (2)

Publication Number Publication Date
CN107723511A CN107723511A (zh) 2018-02-23
CN107723511B true CN107723511B (zh) 2019-05-17

Family

ID=61204759

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710754302.1A Active CN107723511B (zh) 2017-08-29 2017-08-29 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法

Country Status (1)

Country Link
CN (1) CN107723511B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111644614B (zh) * 2019-06-05 2021-04-06 南京工业大学 基于钛合金与碳化硼颗粒错配度调控的增材制造合金粉末
CN110702711B (zh) * 2019-11-21 2022-02-25 山东建筑大学 非晶态合金结晶动力学特征的原位exafs表征方法
CN112251642B (zh) * 2020-09-29 2022-06-03 中国科学院金属研究所 纳米晶组织Ti-Cu合金及其激光选区熔化增材制造制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388931A (zh) * 2014-12-12 2015-03-04 山东建筑大学 一种通过激光加工使钛合金表面非晶-纳米化的方法
CN104831276A (zh) * 2015-05-28 2015-08-12 山东建筑大学 一种通过激光重熔制备非晶化梯度复合材料的方法
CN104862696A (zh) * 2015-05-28 2015-08-26 山东建筑大学 一种通过碳纳米管添加制备激光轻质梯度复合材料的方法
CN106544672A (zh) * 2017-01-13 2017-03-29 山东建筑大学 一种通过激光加工制备准晶化复合材料的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104388931A (zh) * 2014-12-12 2015-03-04 山东建筑大学 一种通过激光加工使钛合金表面非晶-纳米化的方法
CN104831276A (zh) * 2015-05-28 2015-08-12 山东建筑大学 一种通过激光重熔制备非晶化梯度复合材料的方法
CN104862696A (zh) * 2015-05-28 2015-08-26 山东建筑大学 一种通过碳纳米管添加制备激光轻质梯度复合材料的方法
CN106544672A (zh) * 2017-01-13 2017-03-29 山东建筑大学 一种通过激光加工制备准晶化复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Cu对TA15-2钛合金表面Stellite 12基激光合金化涂层组织结构及耐磨性的影响;李嘉宁,等;《金属学报》;20140511;第50卷(第5期);全文
激光熔覆制备梯度功能涂层的研究现状;杨森,等;《激光技术》;20070425;第31卷(第2期);全文

Also Published As

Publication number Publication date
CN107723511A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
Karimi et al. Influence of laser exposure time and point distance on 75-μm-thick layer of selective laser melted Alloy 718
Rong et al. Effects of tailored gradient interface on wear properties of WC/Inconel 718 composites using selective laser melting
CN107723511B (zh) 一种激光增材制造准晶-纳米晶改性梯度复合材料的方法
Lima et al. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects
Yang et al. Influence of composite powders’ microstructure on the microstructure and properties of Al2O3–TiO2 coatings fabricated by plasma spraying
Bi et al. Micro-structure and mechanical properties of nano-TiC reinforced Inconel 625 deposited using LAAM
Gupta et al. Improving the lifetime of suspension plasma sprayed thermal barrier coatings
CN104862696B (zh) 一种通过激光加工制备碳纳米管增强梯度复合材料的方法
CN110202148A (zh) 一种激光增材高熵合金基多相增强梯度复合材料的方法
CN110938816B (zh) 一种激光熔覆SiC纳米颗粒增强Ti(C,N)陶瓷涂层及其应用
Algenaid et al. Influence of microstructure on the erosion behaviour of suspension plasma sprayed thermal barrier coatings
CN109434096A (zh) 一种增强型纳米WC/AlSi10Mg复合材料粉末及增材制造工艺
Ghodsi et al. Development of Yttria-stabilized zirconia reinforced Inconel 625 metal matrix composite by laser powder bed fusion
Lv et al. Erosion behavior and mechanism of the HVOF-sprayed (AlCoCrFeNi) x/(WC-10Co) 1-x composite coatings at different slurry sand concentrations
CN104480463B (zh) 一种激光增材制造非晶‑纳米晶增强叠层复合材料的方法
Bhatnagar et al. A study on the influence of reinforcement particle size in laser cladding of TiC/Inconel 625 metal matrix composite
Malek et al. Technological properties of ceramic slurries based on silicon carbide with poly (vinyl alcohol) addition for shell moluds fabrication in precision casting process
Wang et al. Ceramic fibers reinforced functionally graded thermal barrier coatings
CN104388931A (zh) 一种通过激光加工使钛合金表面非晶-纳米化的方法
Zhang et al. Effect of Al-deposition on erosion resistance of plasma sprayed thermal barrier coating
Wang et al. Laser direct deposition of CoCrAlSiY/YSZ composites: densification, microstructure and mechanical properties
CN110438493A (zh) 一种制备CNTs增强高熵合金激光沉积复合材料的方法
Kaifang et al. Microstructure evolution and properties of a laser cladded Ni-Based WC reinforced composite coating
WO2019123989A1 (ja) 粉末材料、付加製造用粉末材料、および粉末材料の製造方法
CN110184601A (zh) 一种激光制备不锈钢表面石墨烯增强防护层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant