CN110201679A - 钒酸铋{110}面上NiOOH助剂选择性修饰的方法 - Google Patents

钒酸铋{110}面上NiOOH助剂选择性修饰的方法 Download PDF

Info

Publication number
CN110201679A
CN110201679A CN201910551239.0A CN201910551239A CN110201679A CN 110201679 A CN110201679 A CN 110201679A CN 201910551239 A CN201910551239 A CN 201910551239A CN 110201679 A CN110201679 A CN 110201679A
Authority
CN
China
Prior art keywords
niooh
auxiliary agent
bivo
pucherite
selective modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910551239.0A
Other languages
English (en)
Inventor
王雪飞
李帅
余火根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910551239.0A priority Critical patent/CN110201679A/zh
Publication of CN110201679A publication Critical patent/CN110201679A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/898Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及钒酸铋{110}面上NiOOH助剂选择性修饰的制备,其特征在于包括以下步骤:1)配制电解质溶液;2)将步骤1)中配制的电解质溶液的pH调到2‑12;3)将步骤2)所得的溶液与Pt/BiVO4粉末混合,形成均匀悬浮液;4)在步骤3)所得的悬浮液加入可溶于水的镍盐;5)将步骤4)中的悬浮液室温搅拌均匀,光照一定时间;6)将步骤5)中的沉淀过滤洗涤干燥,即为NiOOH助剂选择性修饰的钒酸铋光催化剂。本发明的有益效果:合成方法操作十分简单、绿色环保、节能、无需加入各种有机表面活性剂,并且羟基氧化镍具有原料来源广泛、价格低廉、无毒、无污染,化学性质稳定等优点。

Description

钒酸铋{110}面上NiOOH助剂选择性修饰的方法
技术领域
本发明涉及钒酸铋{110}面上NiOOH助剂选择性修饰的制备技术,特别是涉及到光催化剂Pt/NiOOH/BiVO4的形貌结构控制,NiOOH的沉积位置控制。
背景技术
太阳能是清洁的可再生能源,利用太阳能解决环境污染问题和能源问题是最有潜力的策略之一;其中光催化技术能够实现高效的太阳能捕获和转化而备受关注。光催化技术的核心是光催化剂,但是纯相TiO2、CdS、C3N4、BiVO4等光催化剂的光催化活性都很低,需要对其进行改性,其中助剂的沉积是提高活性的有效手段之一。因此,寻找高活性助剂修饰光催化剂的制备方法是该技术中开发的热点和重点。
最近的研究表明:双晶面{010}和{110}暴露的BiVO4十面体单晶光催化剂能形成内建电场,导致光生电子和空穴定向传输,从而减少复合并提高BiVO4的光催化性能。更重要的是,通过载流子的定向传输,电子助剂Pt能选择性沉积在BiVO4{010}晶面(电子富集面)上。形成的Pt/BiVO4光催化剂展现了优异的光催化性能。此外,与浸渍法合成的Pt/BiVO4光催化剂相比,这种选择性修饰的Pt/BiVO4光催化剂的光催化活性提升了两倍以上。然而,从工业应用的角度,Pt/BiVO4的光催化活性还需进一步地提高。众所周知,半导体光催化速率由三个重要部分决定:1)光生电子和空穴的传输速率、2)界面还原反应速率、3)界面氧化反应速率。以上表明Pt/BiVO4光催化剂还能通过氧化助剂的选择性修饰进一步提高。在众多氧化助剂中,NiOOH是一种非常有应用潜力的助剂,它具有成本低、原料来源广泛、稳定性好等优点。因此将NiOOH氧化助剂选择性沉积在BiVO4{110}晶面上对提高其光催化材料光催化性能具有重要的意义。然而目前仍未见报道钒酸铋{110}面上NiOOH助剂选择性修饰的相关制备技术。
发明内容
本发明所要解决的技术问题就是针对上述问题,提出一种钒酸铋{110}面上NiOOH助剂选择性修饰的简单有效方法。即通过光沉积法将NiOOH助剂选择性地修饰在钒酸铋光催化剂的{110}面上。
本发明解决上述技术问题所采用的技术方案是:钒酸铋{110}面上NiOOH助剂选择性修饰的方法,其特征在于包括以下步骤:
1)配制电解质溶液;
2)将步骤1)中配制的电解质溶液的pH调到2-12;
3)将步骤2)所得的溶液与Pt/BiVO4粉末混合,形成均匀悬浮液;
4)在步骤3)所得的悬浮液加入可溶于水的镍盐;
5)将步骤4)中的悬浮液室温搅拌均匀,光照一定时间;
6)将步骤5)中的沉淀过滤洗涤干燥,即为NiOOH助剂选择性修饰的钒酸铋光催化剂。
按上述方案,步骤1)所述的电解质溶液为硫酸钠、氯化钠、硝酸钠、硫酸钾、氯化钾或磷酸钾。
按上述方案,步骤3)所述的镍盐为硫酸镍、硝酸镍、氯化镍或醋酸镍。
按上述方案,步骤4)所述的光照时间为1-5小时。
本发明提出以Pt/BiVO4为前驱体(其制备方法参见文献R.G.Li.,et al.,Nat.Commun.,2013,4,1432.)。其中BiVO4是{010}和{110}晶面同时暴露的十面体结构,Pt则选择性沉积在{010}面。然后通过光沉积法使二价镍离子在BiVO4{110}晶面氧化生成NiOOH助剂。其光催化活性增强的基本原理是:NiOOH的沉积促进了BiVO4内部光生载流子的分离效率、加速了界面氧化反应速率,从而提高了Pt/BiVO4的光催化活性。
本发明的有益效果:提出以Pt/BiVO4为前驱体,通过光沉积法使二价镍离子在BiVO4{110}晶面氧化生成NiOOH,从而形成钒酸铋{110}面上NiOOH助剂选择性修饰的光催化剂。该合成方法操作十分简单、绿色环保、节能、无需加入各种有机表面活性剂,并且羟基氧化镍具有原料来源广泛、价格低廉、无毒、无污染,化学性质稳定等优点。同时整个反应过程无需昂贵的各种加工合成设备和高温高压等反应装置,具有易于大批量合成等优点。制备的光催化材料具有高的可见光光催化活性,有望产生良好的社会和经济效益。
附图说明
图1为实施例1中样品(A)BiVO4、(B)Pt/BiVO4、(C)Pt/NiOOH/BiVO4的FESEM图。其中,(B)和(C)中嵌入的图分别是Pt/BiVO4、Pt/NiOOH/BiVO4的EDS谱图;
图2为实施例1中不同样品的XRD图:(a)BiVO4、(b)Pt/BiVO4、(c)Pt/NiOOH/BiVO4
图3(A)为实施例1中不同样品的XPS全谱图以及不同元素(B)Pt4f、(C)Ni2P、(D)O1s的高分辨XPS图:(a)BiVO4、(b)Pt/BiVO4、(c)Pt/NiOOH/BiVO4
图4为实施例1中不同样品的固体紫外漫反射光谱:(a)BiVO4、(b)Pt/BiVO4、(c)Pt/NiOOH/BiVO4
图5为实施例1中不同样品降解甲基橙(MO)的速率图:(a)BiVO4、(b)Pt/BiVO4、(c)Pt/NiOOH/BiVO4
具体实施方式
下面结合实施例对本发明做进一步详细的说明,但是以下说明不会构成对本发明的限制。
实施例1:
NiOOH助剂选择性修饰在钒酸铋{110}面的制备过程去如下:首先配制80ml的Na2SO4(0.1mol/L)溶液于三口烧瓶中。然后用NaOH(0.1mol/L)将上述溶液的pH调至8。随后将0.15g的Pt/BiVO4粉末与上述溶液在磁力搅拌下混合,形成均匀悬浮液。其中Pt/BiVO4的制备方法见文献(R.G.Li.,et al.,Nat.Commun.,2013,4,1432.)。接着在上述悬浮液中用移液枪加入219μL的NiSO4(0.13mol/L)。室温下搅拌15min后,接着在氙灯光照5h(氙灯需要加420nm滤光片)。将反应产物用水洗三遍,在40℃烘箱中干燥12h获得产品。
NiOOH助剂选择性修饰钒酸铋光催化剂的表征方法如下:样品的形貌结构通过JSM-7500场发射扫描电子显微镜(FESEM,JEOL,Japan)观察测得,同时利用能量色散X射线光谱仪(EDX)研究样品的化学组成。样品的晶相结构及相组成采用日本Rigaku公司生产的UltimaIII X射线衍射仪(Cu Kα为射线源)进行表征。样品的表面元素通过英国生产的KRATOAXSAM800XPS系统(靶源为Al Kα)进行分析,各样品元素的结合能都以标准碳元素峰C1s284.8eV为参照。使用日本岛津公司生产的UV-2450固体紫外-可见分光光度计测定样品的紫外-可见吸收光谱,BaSO4被用作紫外-可见漫反射实验中的标准基样。
图1中(A)为BiVO4十面体的SEM图,从图中可以看出BiVO4的尺寸范围为1-2μm,厚度约为1μm。图1B为Pt/BiVO4的SEM图,由图可以看出Pt纳米颗粒选择性沉积在BiVO4的(010)面,且Pt纳米颗粒的尺寸约为50nm。从图1B的内嵌EDS图也证明了Pt元素的存在。图1C为Pt/NiOOH/BiVO4的SEM图,从图可看出NiOOH选择性沉积在钒酸铋的(110)面,并且NiOOH沉积的形貌为片状结构,内嵌的EDS图也证明了镍元素的存在。
图2为不同样品的XRD图。由图可知,本实验制备出的a样品都为单斜晶系白钨矿型钒酸铋(JCPDS卡片编号:14-0688)。样品b和c的XRD谱图和样品a相似,说明Pt和NiOOH的修饰对BiVO4样品晶相结构未造成影响。
图3为不同样品的XPS图。从图3A可看出,这些样品均含有Bi、V、O以及C,其中Bi、V、O元素主要来自于BiVO4,而C元素可能来源于XPS测试仪器中外来C源。NiOOH修饰样品的XPS全谱图中出现较强的Ni元素的特征峰,说明了含Ni元素的物质已成功修饰在BiVO4表面(如图3A-c)。为获得样品更加详细的元素信息,对其进行进一步的高分辨XPS谱图分析。图3B、C和D分别是Pt4f、Ni2P和O1s的XPS高分辨谱图。从图3B可以看出,存在Pt和少量PtO的特征峰。从图3C可看出,在873.4eV和855.6eV的主峰分别对应于Ni2P1/2和Ni2P3/2XPS特征峰,并且在861.6eV和879.8eV处可以观察到两个卫星峰,它们都很好的表明了三价镍的存在。图3D展现了O1s的530eV和531.4eV两个峰组成,它们分别对应于氧镍键(O-Ni)中的氧和质子化了的氧(O-H),其Ni2P和O1s峰对应的结合能可参考文献(Q.Zhang.,et al.,ACSSustainable Chemistry&Engineering,5,(2017),3808-3818.)。所以以上的结果证明我们成功合成了Pt/NiOOH/BiVO4光催化剂。
图4为不同样品的固体紫外漫反射光谱图。由图可看出,a、b和c三种样品的吸收边约为540nm,但它们的UV-vis光谱图则表现出不同的光吸收能力。当Pt修饰在BiVO4表面后,由插图中样品的光学图可知,样品的颜色由亮黄色转变为暗绿色,在400~800nm范围内均显示出高于纯BiVO4的光吸收强度。进一步将NiOOH修饰在Pt/BiVO4表面后,由插图中样品光学图可以看出,样品的颜色进一步加深,由暗绿色变为灰黑色,在400~800nm范围内的吸光强度高于Pt/BiVO4,说明光催化材料的吸光强度进一步加强。以上结果也进一步说明,NiOOH已成功修饰在了Pt/BiVO4表面。
NiOOH助剂选择性修饰钒酸铋光催化剂的光催化性能评价如下:称量50mg样品分散到装有10mL的MO溶液(20mg/L)的直径为5cm的表面皿中。经可见光光照之前,将混合均匀的悬浮液于暗室中静置1h,使光催化剂和MO溶液达到吸附-脱附平衡。光催化的光源为一个4W发光二极管照明系统(VisEC-4II,提供可见光λ=420nm)作为可见光光源,照射在反应溶液表面的平均光密度为50mW/cm2(可见光辐射计,北京师范大学光电仪器厂,FZ-A)。通过日产紫外-可见分光光度计(UV-2550,Shimadzu)测定MO的浓度。每光照5min取适量悬浮溶液进行离心,吸取上清液测定MO的吸光度。由于MO溶液的浓度比较低,其光催化降解反应为准一级反应,其动力学公式可以被表示为ln(c/c0)=-kt,其中k为表观速率常数,c0和c分别是MO在初始状态和光照t(min)后的浓度。因此,可用MO降解的速率常数k来评价光催化材料的光催化降解性能。
图5为不同样品降解甲基橙的速率图。从图中可看出,Pt/NiOOH/BiVO4光催化剂的降解速率是0.08881min-1,它的活性明显高于Pt/BiVO4和BiVO4光催化剂。
实验例2:
为了检验不同电解质溶液(硫酸钠、氯化钠、硝酸钠、硫酸钾、氯化钾、硝酸钾)对钒酸铋{110}面NiOOH助剂选择性修饰的光催化剂的影响,除电解质溶液不同以外,其它条件如溶液pH(pH=8)和溶于水的镍盐(硫酸镍溶液)等均与实施例1相同。实验结果表明分别使用硫酸钠、氯化钠、硝酸钠、硫酸钾、氯化钾、硝酸钾做电解质溶液时,都能使NiOOH较好的选择性沉积在BiVO4{110}面。
实验例3:
为了检验溶液的pH对NiOOH助剂选择性修饰的影响,除溶液pH不同以外,其它反应条件如光照时间(5h)和溶液的电解质溶液(硫酸钠溶液)等均与实施例1相同。实验结果表明当溶液pH小于2时,钒酸铋{110}面没有NiOOH生成。因为强碱性环境会使NiOOH溶解,不利于NiOOH的生成。当溶液pH大于12,NiOOH会沉积在随机沉积在钒酸铋的不同面上。当溶液pH在2~12范围时,钒酸铋{110}面都能选择性沉积NiOOH。因此,NiOOH助剂选择性修饰的制备过程中,溶液最佳pH为2-12。
实验例4:
为了检验溶于水的镍盐对NiOOH助剂选择性修饰的影响,除溶于水的镍盐不同以外,其它反应条件如光照时间(5h)和溶液的pH(pH=8)等均与实施例1相同。当分别使用硫酸镍、硝酸镍、氯化镍、醋酸镍等作为镍源时,NiOOH都可以很好的选择性沉积在BiVO4{110}面。
实验例5:
为了检验光照时间对NiOOH助剂选择性修饰的影响,除了光照时间以外,其它反应条件如溶液pH(pH=8)和溶于水的镍盐(硫酸镍溶液)等均与实施例1相同。当光照时间为1h,钒酸铋{110}面有少量NiOOH生成,并呈丝状结构,说明溶液中只有少量的镍离子参与了反应。当光照时间为5h,钒酸铋{110}面有NiOOH生成,并且呈片状结构。当继续增加光照时间,NiOOH沉积在钒酸铋{110}面的沉积情况和光照5h开始相比没有明显改变。因此,从节能角度考虑,在NiOOH助剂选择性修饰的制备过程中,最佳光照时间为1-5h。

Claims (4)

1.钒酸铋{110}面上NiOOH助剂选择性修饰的方法,其特征在于包括以下步骤:
1)配制电解质溶液;
2)将步骤1)中配制的电解质溶液的pH调到2-12;
3)将步骤2)所得的溶液与Pt/BiVO4粉末混合,形成均匀悬浮液;
4)在步骤3)所得的悬浮液加入可溶于水的镍盐;
5)将步骤4)中的悬浮液室温搅拌均匀,光照一定时间;
6)将步骤5)中的沉淀过滤洗涤干燥,即为NiOOH助剂选择性修饰的钒酸铋光催化剂。
2.根据权利要求1所述的钒酸铋{110}面上NiOOH助剂选择性修饰的方法,其特征在于步骤1)所述的电解质溶液为硫酸钠、氯化钠、硝酸钠、硫酸钾、氯化钾或磷酸钾。
3.根据权利要求1所述的钒酸铋{110}面上NiOOH助剂选择性修饰的方法,其特征在于步骤3)所述的镍盐为硫酸镍、硝酸镍、氯化镍或醋酸镍。
4.根据权利要求1所述的钒酸铋{110}面上NiOOH助剂选择性修饰的方法,其特征在于步骤4)所述的光照时间为1-5小时。
CN201910551239.0A 2019-06-24 2019-06-24 钒酸铋{110}面上NiOOH助剂选择性修饰的方法 Pending CN110201679A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910551239.0A CN110201679A (zh) 2019-06-24 2019-06-24 钒酸铋{110}面上NiOOH助剂选择性修饰的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910551239.0A CN110201679A (zh) 2019-06-24 2019-06-24 钒酸铋{110}面上NiOOH助剂选择性修饰的方法

Publications (1)

Publication Number Publication Date
CN110201679A true CN110201679A (zh) 2019-09-06

Family

ID=67794322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910551239.0A Pending CN110201679A (zh) 2019-06-24 2019-06-24 钒酸铋{110}面上NiOOH助剂选择性修饰的方法

Country Status (1)

Country Link
CN (1) CN110201679A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790394A (zh) * 2020-07-31 2020-10-20 武汉理工大学 羟基氧化铁助催化剂选择性修饰钒酸铋光催化材料的合成方法
CN115318309A (zh) * 2022-08-15 2022-11-11 武汉理工大学 一种硫化镍选择性修饰钒酸铋光催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016899A1 (en) * 1998-09-21 2000-03-30 The University Of Queensland Catalysts and process for reforming of hydrocarbons
CN105536770A (zh) * 2016-01-27 2016-05-04 厦门大学 一种钒酸铋基光催化剂及其制备方法与应用
CN106257729A (zh) * 2015-06-17 2016-12-28 中国科学院大连化学物理研究所 自呼吸式光助生物质燃料电池及其应用
CN108855077A (zh) * 2018-05-30 2018-11-23 陕西科技大学 Ag-BiVO4晶面/MnOx晶面BiVO4光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016899A1 (en) * 1998-09-21 2000-03-30 The University Of Queensland Catalysts and process for reforming of hydrocarbons
CN106257729A (zh) * 2015-06-17 2016-12-28 中国科学院大连化学物理研究所 自呼吸式光助生物质燃料电池及其应用
CN105536770A (zh) * 2016-01-27 2016-05-04 厦门大学 一种钒酸铋基光催化剂及其制备方法与应用
CN108855077A (zh) * 2018-05-30 2018-11-23 陕西科技大学 Ag-BiVO4晶面/MnOx晶面BiVO4光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEABOLD JASON A ET AL: "Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *
SHAN-LUNG CHEN, LU-YIN LIN,YU-SHIANG CHEN: ""Improving the photoelectrochemical catalytic ability of bismuth vanadate electrodes by depositing efficient Co-catalysts"", 《ELECTROCHIMICA ACTA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790394A (zh) * 2020-07-31 2020-10-20 武汉理工大学 羟基氧化铁助催化剂选择性修饰钒酸铋光催化材料的合成方法
CN115318309A (zh) * 2022-08-15 2022-11-11 武汉理工大学 一种硫化镍选择性修饰钒酸铋光催化剂及其制备方法和应用
CN115318309B (zh) * 2022-08-15 2023-10-31 武汉理工大学 一种硫化镍选择性修饰钒酸铋光催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis and characterization of successive Z-scheme CdS/Bi2MoO6/BiOBr heterojunction photocatalyst with efficient performance for antibiotic degradation
Yang et al. SrTiO 3 nanocubes decorated with Ag/AgCl nanoparticles as photocatalysts with enhanced visible-light photocatalytic activity towards the degradation of dyes, phenol and bisphenol A
Du et al. Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin
CN105502503B (zh) 一种六方晶钨青铜纳米短棒粒子及其制备方法
CN108479759B (zh) 一种可见光响应型镧掺杂钨酸铋催化剂及其制备方法
CN102671683B (zh) 一种纳米片自组装C掺杂(BiO)2CO3微球可见光催化剂的制备方法
CN106944074B (zh) 一种可见光响应型复合光催化剂及其制备方法和应用
CN108435194B (zh) 铁酸铋/钨酸铋异质结光催化材料及其制备方法
Zhou et al. Ag@ AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants
CN103055903B (zh) 能带可调型BiOI-AgI球形固溶体可见光光催化材料的制备方法
CN107159273A (zh) 一种BiOCl纳米光催化剂的制备方法及制得的光催化剂和应用
CN108355669B (zh) 一种磁性纳米洋葱碳负载Bi2WO6的光催化剂及其制备方法和应用
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN111790394A (zh) 羟基氧化铁助催化剂选择性修饰钒酸铋光催化材料的合成方法
CN110201679A (zh) 钒酸铋{110}面上NiOOH助剂选择性修饰的方法
CN105148956A (zh) 一种高效光催化分解水产氢催化剂及其制备方法
Zhu et al. In-situ synthesis of Bi2WO6/AgBr/Ag4V2O7 with double Z-scheme heterojunction for oxytetracycline degradation and weakening toxicity
CN104226340A (zh) 可见光纳米复合光催化剂AgCl-SnO2的制备方法
Dai et al. Photocatalytic degradation of tetracycline by Z-Scheme Bi2WO6/ZIF-8
CN115703077B (zh) 一种PB@MoS2催化剂在非均相类芬顿反应中的应用
Li et al. Alkali metal-modified crystalline carbon nitride for photocatalytic nitrogen fixation
CN102451762B (zh) 环化聚丙烯腈复合多金属氧化物的制备方法
CN108212187B (zh) Fe掺杂Bi2O2CO3光催化剂的制备方法及Fe掺杂Bi2O2CO3光催化剂
CN112588324B (zh) 一锅法制备复合光催化剂CdS/ZIF-8的方法及其应用
CN108940325A (zh) 一种二元复合半导体光催化剂材料Ag2CrO4/BiOI及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906

RJ01 Rejection of invention patent application after publication