CN110201552B - 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法 - Google Patents

具有微孔/介孔结构的纳米多孔纤维膜及其制备方法 Download PDF

Info

Publication number
CN110201552B
CN110201552B CN201910394650.1A CN201910394650A CN110201552B CN 110201552 B CN110201552 B CN 110201552B CN 201910394650 A CN201910394650 A CN 201910394650A CN 110201552 B CN110201552 B CN 110201552B
Authority
CN
China
Prior art keywords
fiber membrane
reaction
membrane
solvent
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910394650.1A
Other languages
English (en)
Other versions
CN110201552A (zh
Inventor
江兵兵
谭文泽
陈学琴
李草
许子强
石鹏举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201910394650.1A priority Critical patent/CN110201552B/zh
Publication of CN110201552A publication Critical patent/CN110201552A/zh
Application granted granted Critical
Publication of CN110201552B publication Critical patent/CN110201552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/42Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising cyclic compounds containing one carbon-to-carbon double bond in the side chain as major constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/28Halides of elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/12Aldehydes; Ketones
    • D06M13/123Polyaldehydes; Polyketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种通过对静电纺丝纤维膜改性,制备具有微孔/介孔结构的纳米多孔纤维膜的制备方法。本发明采用静电纺丝技术,快速高效制备纤维膜,然后对表面改性,以便在超交联反应过程中,保证纤维结构不被破坏,采用1,2‑二氯乙烷既作为溶剂,路易斯酸作为催化剂,二甲氧基甲烷作为超交联剂,傅克烷基化反应制备的多孔纤维膜,该方法制备的纤维膜具有宏观膜形态,克服了多孔材料难以成膜、比表面积小等难题,同时该方法得到的纤维膜具有超高比表面积,可达640.41 m2/g,是传统纤维膜的10~100倍。

Description

具有微孔/介孔结构的纳米多孔纤维膜及其制备方法
技术领域
本发明具体涉及一种具有微孔/介孔结构的纳米多孔纤维膜及其制备方法、应用,属于高分子膜分离技术领域。
背景技术
早期多孔材料,如沸石、活性炭、分子筛、金属有机骨架化合物等,具有孔隙率高、表面酸性大、比表面积大等优点,在吸附分离和催化等方面得到了广泛的应用。同时,它们也有一些缺点,如可控性差,单一的制备条件和难以改性。随着有机多孔材料的发展,多孔材料存在的一些结构缺陷得到了改善。有机多孔材料由轻元素C、N、O、H组成的,是一种新型的多孔材料,具有大量的孔隙结构和较大的比表面积。在有机微孔聚合物,其中超交联聚合物有着明显的优点:良好的热稳定、物理化学稳定性、温和的合成条件、来源广泛的反应单体和廉价的催化剂等,这些优势为超交联聚合物的工业化生产提供了良好的可行性基础,广泛应用于气体吸附/分离、储能、多相催化,分子器件和药物递送等领域。但是现有的技术制备的多孔材料多为纳米颗粒、中空微囊、整块材料,对于微观形貌可控的二维聚合物多孔膜报道还比较少,因此,多孔材料的应用受到了很大的限制。现有技术制备多孔膜的合成成本高、多为大孔,且比表面积小(100m2/g以下),孔结构不稳定,存在结构缺陷等缺点,不能大规模运用于工业商业用途。
发明内容
本发明所要解决的技术问题是针对上述现有技术存在的不足而提供一种具有微孔/介孔结构的纳米多孔纤维膜,将静电纺丝膜前体为模版,经过后处理超交联制备具有微孔/介孔的纳米多孔纤维膜,解决了多孔材料难以成膜以及孔结构较大、比表面积较小的技术难题。
本发明为解决上述提出的问题所采用的技术方案为:
一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,包括如下步骤:
(1)制备聚合物纺丝溶液的配制
将二嵌段共聚物溶于溶剂中,在40~60℃温度范围内,搅拌6~24小时,将聚合物完全溶解,得到质量分数15%~35%聚合物纺丝溶液;
(2)制备纤维膜
将步骤(1)所得聚合物纺丝溶液利用电纺丝装置,制备成完整的纤维膜,干燥备用;
(3)纤维膜的表面功能化
将纤维膜依次分别置于多氨溶液和多醛溶液中,分别在20~60℃温度下恒温反应2~24h;反应完毕后,清洗、干燥,得到表面带有功能基团的功能化纤维膜;
(4)纤维膜保护层的形成
将表面功能化的纤维膜置于带胺基团的水溶性聚合物溶液中,在20-60℃温度下恒温反应2~24h;反应完毕后,清洗、干燥,得到表面带保护层的功能化纤维膜;
(5)超交联反应制备多孔纤维膜
将步骤(4)所得表面带保护层的功能化纤维膜浸入反应溶剂二氯乙烷中,加入外交联剂(例如二甲氧基甲烷等)和催化剂(卤代盐等)以一定摩尔比在氮气保护下,于60~90℃温度恒温回流反应2~48h;反应完毕,洗涤、干燥后,即得到具有微孔/介孔结构的纳米多孔纤维膜。
按上述方案,所述二嵌段聚合物采用苯乙烯基-丙烯酸酯类共聚物,具体是指苯乙烯基单体与丙烯酸酯类单体通过原子转移自由基聚合所制备的两嵌段聚合物;其中酯类单体具体是指丙烯酸酯,包括丙烯酸甲酯,丙烯酸丁酯,甲基丙烯酸甲酯等中的一种或几种的混合物。
按上述方案,所述二嵌段聚合物的合成方法,主要步骤如下:
a)丙烯酸酯类单体、低价过渡金属卤化物与配体混合于溶剂中,低价过渡金属卤化物与配体形成催化剂,再加入引发剂,然后在保护气氛下于40~80℃下反应6~48h;反应结束后,提纯得到白色粉末,即为二嵌段大分子引发剂;
b)将苯乙烯基的单体、低价过渡金属卤化物与配体混合于溶剂中,低价过渡金属卤化物与配体形成催化剂,再加入二嵌段大分子引发剂,然后在保护气氛下于80~110℃下反应6~48h;反应结束后,提纯得到白色粉末,即为二嵌段聚合物。
进一步地,步骤a)中,丙烯酸酯类单体包括丙烯酸丁酯,甲基丙烯酸甲酯,甲基丙烯酸羟乙酯等中的一种或几种的混合物;步骤b)中,苯乙烯基的单体选自苯乙烯,二乙烯基苯,卤代苯乙烯等中的一种或几种的混合物。
按上述方案,步骤a)、步骤b)中,配体为N,N,N′,N″,N″-五甲基二乙烯三胺、三(2-二甲氨基乙基)胺等中的一种或几种的混合物。
按上述方案,步骤a)中,丙烯酸酯类单体与配体的质量比范围为(200~280):1;步骤b)中,苯乙烯基的单体与配体的质量比范围为(530~580):1。
按上述方案,步骤a)、步骤b)中,低价过渡金属卤化物为溴化亚铜或碘化亚铜(CuX)等中的一种或几种的混合物,低价过渡金属卤化物用量与单体质量比为1:(250~300)。
按上述方案,步骤a)中,引发剂为2-溴异丁酸乙酯或其它卤代烷RX(X=Br,Cl),苄基卤化物等中的一种或几种的混合物,引发剂用量与单体质量比1:(180~220)
按上述方案,步骤b)中,大分子引发剂的量分别为苯乙烯基的单体的质量比(1~1.5):1
按上述方案,步骤a)、步骤b)中,溶剂的加入量以配成总固含量30~70%(步骤a)或步骤b)中所有反应原料的总浓度)的溶液为宜,溶剂为N,N-二甲基甲酰胺或四氢呋喃等中的一种或几种的混合物。
按上述方案,步骤a)或者步骤b)中,反应结束后,具体提纯过程如下:旋转蒸发除溶剂,重新溶解到二氯甲烷中并过中性氧化铝的柱子除催化体系(溴化亚铜与配体形成催化体系),之后通过滴加的方式在甲醇和水的混合介质中沉淀析出聚合物,25~60℃下真空干燥至恒重,得白色粉末状固体。
按上述方案,步骤(1)中的溶剂为二甲基甲酰胺溶剂、二氯乙烷、四氢呋喃、氯仿等中的一种或几种按任意比例的混合物。
按上述方案,步骤(2)中,纺丝各个参数设置如下:纺丝正电压5~20kv,负电压-1~-3kv,挤出速率0.1~1mm/min,接收距离10~30cm,接收速率50~200r/min,平移速率50~200mm/min,平移距离50~200mm,纺丝时间1~6h;采用辊轮接收装置,纺丝于无纺布或铜网上。
按上述方案,步骤(3)中,多胺溶液的质量分数2%~20%,以水为溶剂,以乙二胺、己二胺、对苯二胺等多胺中的一种或几种为溶质;多醛溶液的质量分数2%~20%,以水为溶剂,以戊二醛、乙二醛,甲基乙二醛等多醛中的一种或几种为溶质。
按上述方案,步骤(4)中,带胺基团的水溶性聚合物的质量分数为1%~30%,以水为溶剂,溶质为聚乙烯亚胺等。
按上述方案,步骤(5)中,表面带保护层的功能化纤维膜与催化剂、外交联剂之间的的摩尔比为1:(2~3):(2~3)。
本发明所述具有超高比表面积的多孔纤维膜在水处理方面作为过滤膜或者吸附剂的应用,还在催化、净化、分离、气体储存、药物释放及传感器等诸多方面具有广阔的应用前景。
与现有技术相比,本发明的有益效果是:
首先,本发明将静电纺丝纤维膜前体为模版,经过后处理超交联制备具有微孔/介孔的多孔纤维膜。其中,采用纺丝纤维膜制备的多孔材料时,在制孔后,纤维仍能保证完整结构,从而可以得到大尺寸宏观薄膜,解决了现有多孔材料难以成膜或成膜后孔结构较大、比表面积较小等技术难题。
其次,本发明所得具有微孔/介孔结构的纳米多孔纤维膜,与现有技术中报道的多孔纤维膜相比,具有超高表面积、高孔隙率和永久的孔结构,从而赋予其渗透性好、相对密度低、吸附性能好、效率高等优异的性能,对多孔膜的发展有很大的突破性进展。其中,本发明在超交联反应制备多孔纤维膜时,利用苯环间发生的付克烷基化反应,使苯环之间形成亚甲基桥键,当达到一定的交联度,聚合物之间就会形成交联网络,这种交联网络使得内部的孔结构稳定,不易坍塌;物理化学性质稳定,耐酸碱,耐腐蚀。由于超交联反应的程度较大,所以内部形成的孔结构也较多,这也进一步提高了孔性能,比如高的比表面积(最大可达到640m2/g,是传统纤维膜的10~100倍),从而保证本发明制备的纳米多孔纤维具有永久的孔性能。
附图说明
图1中,图A为实施例1所得PS-b-PtBA的红外IR图;图B为实施例3得PS-b-PMMA的红外IR图;图C为实施例1核磁(1HNMR)图;图D为实施例1所得PS-b-PtBA的GPC图;
图2中,A-D分别为实施例1中不同步骤中所得纤维膜a、纤维膜b、纤维膜c、纤维膜d的扫描电镜(SEM)图;
图3中,A-D分别为实施例1中不同步骤中所得纤维膜a、纤维膜b、纤维膜c、纤维膜d的表面红外图(ATR);
图4中,A-D分别为实施例1中不同步骤中所得纤维膜a、纤维膜b、纤维膜c、纤维膜d的水接触角;
图5中,A、B分别为实施例1所得纤维膜d、纤维膜e的红外光谱图;
图6中,A、B分别为实施例1所得纤维膜d的不同倍率的SEM图;图C和图D为实施例1所得纤维膜e的不同倍率的SEM图;图E和图F分别为实施例3所得超交联的微孔纤维膜的不同倍率的SEM图。
图7中,图A为实施例1所得PtBA-b-PS超交联多孔纤维膜(纤维膜e)的BET孔性能曲线实例图,图B为实施例1所得PtBA-b-PS超交联多孔纤维膜(纤维膜e)的BET吸脱附曲线;图C为实施例3所得PS-b-PMMA超交联多孔纤维膜的BET孔性能曲线实例图;图D为实施例2所得PtBA-b-PS超交联多孔纤维膜的BET吸脱附曲线;
图8中,A为实施例1所得PtBA-b-PS超交联多孔纤维膜在0°下的二氧化碳循环吸附性能实例图;B为实施例3所得PS-b-PMMA超交联多孔纤维膜在25°下的二氧化碳循环吸附性能实例图;
图9中A、B分别为实施例2中超交联前后所得PtBA-b-PS纤维膜的实物图;
表1为不同纤维膜的孔性能数据。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
实施例1
具有微孔/介孔结构的纳米多孔纤维膜的制备方法,包括如下步骤:
1.二嵌段聚合物聚苯乙烯(PS)-b-聚丙烯酸叔丁酯(PtBA)纺丝聚合物原料的制备
将16.36g的丙烯酸叔丁酯、73ul的N,N,N′,N″,N″-五甲基二乙烯三胺、59.4mg的溴化亚铜加入到30ml的N,N-二甲基甲酰胺之中,充分混合,通入一段时间氮气,之后加入57ul的2-溴异丁酸乙酯,并在80℃下反应48h;反应结束后,旋转蒸发除N,N-二甲基甲酰胺,并重新溶解到二氯甲烷中,过中性氧化铝的柱子除催化体系,之后通过滴加的方式在甲醇/水(1:1,v)混合介质中沉淀析出聚合物,60℃下真空干燥至恒重,得白色粉末,即为大分子引发剂;
将37.44g的苯乙烯、28ul的N,N,N′,N″,N″-五甲基二乙烯三胺、45mg的溴化亚铜加入到30ml的N,N-二甲基甲酰胺之中,充分混合,通入一段时间氮气,之后加入12.48g的上述大分子引发剂,在80℃下反48h;反应结束后,旋转蒸发除N,N-二甲基甲酰胺,重新溶解到二氯甲烷中,并过中性氧化铝的柱子除催化体系,之后通过滴加的方式在甲醇/水(1:1,v)混合介质中沉淀析出聚合物,60℃下真空干燥至恒重,得白色粉末,即为二嵌段聚合物,此时将得到的二嵌段聚合物分子量记为3W-9W。
2.PtBA-b-PS纤维膜的制备
采用电纺丝法制备了一种PS纳米纤维膜室温,如下。将二嵌段聚合物P(tBA)-b-P(St)溶解在DMF至一定浓度(30wt%),然后在电纺丝前连续搅拌24小时。在纺丝过程中,采用5ml注射器和23G针头,纺丝各个参数设置如下:纺丝正电压10kv,负电压-3kv,挤出速率0.1mm/min,接收距离15cm,接收速率100r/min,平移速率100mm/min,平移距离100mm,纺丝时间6h,采用辊轮接受装置,纺丝于无纺布上;此步骤所得纤维膜记作纤维膜a;
3.纤维膜功能化以及纤维膜保护层的形成
分别配制5wt%乙二胺的乙醇溶液、5wt%戊二醛的水溶液、1wt%聚乙烯亚胺的水溶液,将纤维膜依次置于各溶液中反应24h,反应温度40度;反应完毕,用去离子水清洗3遍,然后置于真空烘箱40干燥24h,得到表面带有氨基的功能化纤维膜。
此步骤中,经乙二胺溶液处理后的纤维膜,记作纤维膜b;再经戊二醛处理后的纤维膜,记作纤维膜c;经聚乙烯亚胺溶液处理后的纤维膜,记作纤维膜d;
4.超交联反应制备多孔纤维膜
将所得表面带包覆聚乙烯亚胺的功能化纤维膜浸入1.2-二氯乙烷,向带有回流冷凝的反应容器中加入一定量的FeCl3和二甲氧基甲(膜与FeCl3,DMM的摩尔比为1:2:2),氮气保护,80℃反应24小时。反应结束后,用甲醇洗涤产物(可直接用镊子从无纺布上剥离),即得到超交联的微孔纤维膜,即PtBA-b-PS超交联多孔纤维膜,记作纤维膜e。
如图1A所示,通过FT-IR的可以看出,1724cm-1是羰基伸缩振动峰,1368-1和1394cm-1是叔丁基的对称伸缩振动和在3082cm-1,3023cm-1,3067cm-1对应于苯环C-H伸缩振动,1650~2000cm-1的苯环特征峰表明了成功制备出二嵌段聚合物,并结合图C的NMR图谱的7.1PPM处佐证;另外,通过图D的GPC图谱的单峰可以看出,所制备的二嵌段聚合物的单分散性良好。
如图2所示,A-D分别纺丝所得纤维膜和采用多胺、聚醛和聚乙烯亚胺进行后处理SEM图像,可见纤维的直径变化不大。与纺丝所得纤维膜相比,纤维膜经多胺、多醛处理后仍然形态保持完好;经聚乙烯亚胺处理后纤维膜表面起皱,说明纤维膜表面包裹少量聚乙烯亚胺,表面形成保护膜。
如图3所示,A-D分别纺丝所得纤维膜和采用多胺、聚醛和聚乙烯亚胺进行后处理的表面红外(ATR)光谱。纤维膜a采用多胺氨解后,纤维膜b表面发现氨基;表面醛交联后,纤维c表面出现醛基,1650cm-1出现了C=N的特征峰;经聚乙烯亚胺处理后,得到形成一层表面保护膜的纤维膜d,同时因为纤维膜表面有醛基和氨基,吸收峰强度增加。在图3中的A-D曲线中均有明显的C=O特征峰在1740cm-1,但是BCD曲线的吸收峰强度明显强于A,这是由于纤维表面功能话和表面形成保护层后,导致表面C=O减少,因此,C=O特征峰强度减小。
如图4所示,水接触角实验中可以看出,纺丝所得纤维膜表现出超疏水性,接触角达到152度。经多胺氨化后,纤维膜膜表面含有氨基,是亲水性基团。因此,氨化后纤维膜的亲水性增加,疏水性降低。当经多醛处理,醛基交联时,纤维表面被醛基覆盖,醛基也是亲水基团,纤维膜的疏水性进一步降低。接着,用聚乙烯亚胺处理后,在纤维膜表面形成上聚乙烯亚胺保护膜,纤维膜变为亲水。这个过程中进一步证实了在纤维膜表面形成保护膜的目的得以实现。
如图5所示,纤维膜d在超交联之前,苯环是单取代,吸收峰在699和759cm–1,超交联后,纤维膜e的苯环取代峰在802cm–1,变为双取代,说明超交联反应的成功进行。
如图6所示,超交联前后SEM图像相比,可以看到纤维膜的结构仍然完好,说明纤维膜功能化以及在纤维表面生成保护膜,并能确保纤维膜超交联过程中,纤维内部的二嵌段聚合物没有溶解到溶剂中。同时,还可以看到超交联后纤维膜的表面明显变粗糙,这说明在超交联过程中发生了烷基化反应,苯环之间形成了桥键;而去除溶剂后,苯环固定,形成空腔,得到多孔纤维膜,使纤维膜表面也变得粗糙。
如图7所示,纤维膜超交联前后的氮气吸附-脱附等温线和孔径分布曲线。如图7A所示,超交联纤维膜的吸附曲线为II型,这是典型的对大孔吸附剂的物理吸附过程。从孔径分布图7A可以看出,超交联纤维膜中微孔结构非常少。从超交联纤维膜的氮气吸附-解吸等温线图7B可以看出,在低压下氮气吸附能力迅速增加(P/P0<0.001),说明微孔结构较多;在高压作用下(P/P0>0.8),吸附速率加快,与I型曲线相似,属于微孔材料;同时,在相同压力下,解吸量大于滞后回线吸附能力,说明存在介孔材料,高压区吸附等温线显著增加(P/P0=0.8-1.0),说明存在较大的孔隙。从超交联纤维膜的孔径分布曲线图7B也可以看出这种孔结构。表1证实了超交联多孔纤维膜的纳米孔性能。
表1
项目 比表面积(m<sup>2</sup>/g) 孔体积(cm<sup>3</sup>/g) 孔径(nm)
实施例1中超交联前的纤维膜 35 0.119 13.068
实施例1中超交联后的纤维膜 640.41 0.749 4.74
实施例3中超交联后的纤维膜 407.09 1.219 11.898
如图8所示,超交联多孔纤维膜在0℃的CO2吸附-脱附循环实验,可以看到,纤维膜的吸附性能相当稳定,6周期循环后,有0.2%的下降,说明PSt-b-PtBA超交联多孔纤维膜具有良好的循环性能。
实施例2
实施例2与实施例1的不同之处在于:实施例2改变了实例1的步骤1中苯乙烯的投料,加入24.69g的苯乙烯,最终得到二嵌段聚合物的分子量为3w-6w,即减小了二嵌段聚合物中聚苯乙烯部分的含量,从而探究聚苯乙烯部分对最终所得超交联纤维膜性能的影响。
图9所示,为PBA-b-PS超交联多孔纤维膜超交联前后的实物图,可以看到纤维膜超交联后任然具有宏观尺寸;改变二嵌段中PS段的含量,仍然可得形貌完整的纤维膜。
实施例3
具有微孔/介孔结构的纳米多孔纤维膜的制备方法,包括如下步骤:
1.二嵌段聚合物聚苯乙烯(PS)-b-聚甲基丙烯酸甲酯(PMMA)纺丝聚合物原料的制备
将12.78g的甲基丙烯酸甲酯、73ul的N,N,N′,N″,N″-五甲基二乙烯三胺、59.4mg的溴化亚铜加入到30ml的N,N-二甲基甲酰胺之中,充分混合,通入一段时间氮气,之后加入57ul的2-溴异丁酸乙酯,并在80℃下反应48h;反应结束后,旋转蒸发除N,N-二甲基甲酰胺,并重新溶解到二氯甲烷中,过中性氧化铝的柱子除催化体系,之后通过滴加的方式在甲醇/水(1:1,v)混合介质中沉淀析出聚合物,60℃下真空干燥至恒重,得白色粉末,即为大分子引发剂;
将37.44g的苯乙烯、28ul的N,N,N′,N″,N″-五甲基二乙烯三胺、45mg的溴化亚铜加入到30ml的N,N-二甲基甲酰胺之中,充分混合,通入一段时间氮气,之后加入9.75g的上述大分子引发剂,在80℃下反48h;反应结束后,旋转蒸发除N,N-二甲基甲酰胺,重新溶解到二氯甲烷中,并过中性氧化铝的柱子除催化体系,之后通过滴加的方式在甲醇/水(1:1,v)混合介质中沉淀析出聚合物,60℃下真空干燥至恒重,得白色粉末,即为二嵌段聚合物,此时将得到的二嵌段聚合物记为3W-9W。
2.PMMA-b-PS纤维膜的制备
采用电纺丝法制备了一种PS纳米纤维膜室温,如下。将二嵌段聚合物PMMA-b-P(St)溶解在DMF至一定浓度(30wt%),然后在电纺丝前连续搅拌24小时。在纺丝过程中,采用5ml注射器和23G针头,纺丝各个参数设置如下:纺丝正电压10kv,负电压-3kv,挤出速率0.1mm/min,接收距离15cm,接收速率100r/min,平移速率100mm/min,平移距离100mm,纺丝时间6h。采用辊轮接受装置,纺丝于无纺布上。
3.纤维膜功能化以及纤维膜保护层的形成
分别配制5wt%乙二胺的乙醇溶液、5wt%戊二醛的水溶液、1wt%聚乙烯亚胺的水溶液,将纤维膜置于溶液中反应24h,反应温度40度。反应完毕,用去离子水清洗3遍,然后置于真空烘箱40干燥24h,得到表面带有氨基的功能化纤维膜。
4.超交联反应制备多孔纤维膜
将所得表面带包覆聚乙烯亚胺的功能化纤维膜浸入1.2-二氯乙烷,向带有回流冷凝的反应容器中加入一定量的FeCl3和二甲氧基甲(膜与FeCl3,DMM的摩尔比为1:2:2),氮气保护,80℃反应24小时。反应结束后,用甲醇洗涤产物,即得到超交联的微孔纤维膜。
采用实施不同于实例1所制备的二嵌段聚合物进行尝试,通过换用不同的聚酯,采用甲基丙烯酸甲酯制备嵌段聚合物,从而探讨了不同二嵌段种类对超交联纤维膜性能的影响。
如图6中E、F所示,超交联前后SEM图像相比,也可以看到纤维膜的结构仍然完好,并且还可以看到超交联后纤维膜的表面明显变粗糙,这说明在超交联反应的发生,有孔结构产生。
如图7中C、D所示,纤维膜超交联前后的氮气吸附-脱附等温线和孔径分布曲线,可以看到纤维具有较多微孔/介孔结构。
如图8所示,超交联多孔纤维膜在25℃的CO2吸附-脱附循环实验,可以看到,纤维膜的吸附性能相当稳定,6周期后的吸附能力,只有0.7%的下降,说明PSt-bPMMA超交联多孔纤维膜具有良好的循环性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (10)

1.一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于包括如下步骤:
(1)制备聚合物纺丝溶液的配制
将二嵌段共聚物溶于溶剂中,在40~60℃温度范围内,搅拌6~24小时,将聚合物完全溶解,得到质量分数15%~35%聚合物纺丝溶液;其中,所述二嵌段聚合物采用苯乙烯基-丙烯酸酯类共聚物;
(2)制备纤维膜
将步骤(1)所得聚合物纺丝溶液利用电纺丝装置,制备成完整的纤维膜,备用;
(3)纤维膜的表面功能化
将纤维膜依次分别置于多氨溶液和多醛溶液中,分别在20~60℃温度下恒温反应2-24h;反应完毕后,得到表面带有功能基团的功能化纤维膜;
(4)纤维膜保护层的形成
将表面功能化的纤维膜置于带胺基团的水溶性聚合物溶液中,在20~60℃温度下恒温反应2-24h;反应完毕后,得到表面带保护层的功能化纤维膜;
(5)超交联反应制备多孔纤维膜
将步骤(4)所得表面带保护层的功能化纤维膜浸入反应溶剂二氯乙烷中,加入外交联剂和催化剂,然后在氮气保护下,于60~90℃温度恒温回流反应2-48h;反应完毕,得到具有微孔/介孔结构的纳米多孔纤维膜。
2.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤(1)中的溶剂为二甲基甲酰胺溶剂、二氯乙烷、四氢呋喃、氯仿中的一种或几种按任意比例的混合物。
3.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于所述二嵌段聚合物的合成方法,主要步骤如下:
a)丙烯酸酯类单体、低价过渡金属卤化物与配体混合于溶剂中,低价过渡金属卤化物与配体形成催化剂,再加入引发剂,然后在保护气氛下于40~80℃下反应6~48h;反应结束后,提纯得到白色粉末,即为二嵌段大分子引发剂;
b)将苯乙烯基的单体、低价过渡金属卤化物与配体混合于溶剂中,低价过渡金属卤化物与配体形成催化剂,再加入二嵌段大分子引发剂,然后在保护气氛下于80~110℃下反应6~48h;反应结束后,提纯得到白色粉末,即为二嵌段聚合物。
4.根据权利要求3所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤a)中,丙烯酸酯类单体包括丙烯酸丁酯,甲基丙烯酸甲酯,甲基丙烯酸羟乙酯中的一种或几种的混合物,低价过渡金属卤化物为溴化亚铜或碘化亚铜中的一种或几种的混合物;引发剂为2-溴异丁酸乙酯或其它卤代烷,苄基卤化物中的一种或几种的混合物;步骤b)中,苯乙烯基的单体选自苯乙烯,二乙烯基苯,卤代苯乙烯中的一种或几种的混合物;步骤a)、b)中,溶剂均为N,N-二甲基甲酰胺或四氢呋喃中的一种或几种的混合物,配体均为N,N, N′, N″, N″-五甲基二乙烯三胺、三(2-二甲氨基乙基)胺中的一种或几种的混合物。
5.根据权利要求3所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤a)中,丙烯酸酯类单体与配体的质量比范围为(200~280):1,引发剂用量与单体质量比1:(180~220),低价过渡金属卤化物用量与单体质量比为1:(250~300);步骤b)中,苯乙烯基的单体与配体的质量比范围为(530~580):1,大分子引发剂的量分别为苯乙烯基的单体的质量比(1~1.5):1。
6.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤(2)中,纺丝各个参数设置如下:纺丝正电压5~20kv,负电压-1~-3kv,挤出速率0.1~1mm/min,接收距离10~30cm,接收速率50~200r/min,平移速率50~200mm/min,平移距离50~200mm,纺丝时间1~6h。
7.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤(3)中,多胺溶液的质量分数2%~20%,以水为溶剂,以乙二胺、己二胺、对苯二胺中的一种或几种为溶质;多醛溶液的质量分数2%~20%,以水为溶剂,以戊二醛、乙二醛、甲基乙二醛中的一种或几种为溶质。
8.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤(4)中,带胺基团的水溶性聚合物的质量分数为1%~30%,以水为溶剂,溶质为聚乙烯亚胺。
9.根据权利要求1所述的一种具有微孔/介孔结构的纳米多孔纤维膜的制备方法,其特征在于步骤(5)中,表面带保护层的功能化纤维膜与催化剂、外交联剂之间的的摩尔比为1:2~3: 2~3;外交联剂为二甲氧基甲烷,催化剂为卤代盐。
10.权利要求1所述方法制备的具有微孔/介孔结构的纳米多孔纤维膜。
CN201910394650.1A 2019-05-13 2019-05-13 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法 Active CN110201552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910394650.1A CN110201552B (zh) 2019-05-13 2019-05-13 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910394650.1A CN110201552B (zh) 2019-05-13 2019-05-13 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110201552A CN110201552A (zh) 2019-09-06
CN110201552B true CN110201552B (zh) 2021-07-13

Family

ID=67785914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910394650.1A Active CN110201552B (zh) 2019-05-13 2019-05-13 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110201552B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644137B (zh) * 2019-09-23 2021-12-21 湖北大学 一种静电纺丝制备微孔复合纳米纤维膜的方法、应用
CN110835846B (zh) * 2019-12-06 2022-03-29 郑州大学 一种维持线性聚苯乙烯材料原始形貌的交联改性方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260732A (zh) * 2010-12-21 2013-08-21 通用电气公司 由含有保护的胺基团的单体经界面聚合生成的聚酰胺膜
CN106563360A (zh) * 2016-11-02 2017-04-19 浙江理工大学 一种低电荷反渗透复合膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399353A (zh) * 2011-07-29 2012-04-04 常州大学 一种两亲性嵌段共聚物的制备方法
CN102361096A (zh) * 2011-08-04 2012-02-22 西北工业大学 一种基于两嵌段聚甲基丙烯酸甲酯-聚苯乙烯共聚物的锂离子凝胶电解质及其制备方法
WO2018204580A1 (en) * 2017-05-04 2018-11-08 Saudi Arabian Oil Company Crosslinked polymer membranes and methods of their production
CN109735915B (zh) * 2019-01-09 2021-08-27 四川大学 超交联有机纳米粒子及其制备方法、改性聚合物膜及其制备方法以及凝胶聚合物电解质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103260732A (zh) * 2010-12-21 2013-08-21 通用电气公司 由含有保护的胺基团的单体经界面聚合生成的聚酰胺膜
CN106563360A (zh) * 2016-11-02 2017-04-19 浙江理工大学 一种低电荷反渗透复合膜的制备方法

Also Published As

Publication number Publication date
CN110201552A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
US11241679B2 (en) Ordered macroporous metal-organic framework single crystals and preparation method thereof
Barrulas et al. Advanced porous materials from poly (ionic liquid) s: Challenges, applications and opportunities
Kong et al. Dye removal by eco-friendly physically cross-linked double network polymer hydrogel beads and their functionalized composites
Xin et al. Mesoporous carbons: recent advances in synthesis and typical applications
Zhang et al. High permeability composite nanofiltration membrane assisted by introducing TpPa covalent organic frameworks interlayer with nanorods for desalination and NaCl/dye separation
Teng et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules
CN110201552B (zh) 具有微孔/介孔结构的纳米多孔纤维膜及其制备方法
Wu et al. Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking
Kim et al. High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for CO 2 capture
CN104479174A (zh) 一种基于纤维素的磁性气凝胶材料及其制备方法
CN107759812B (zh) 基于废弃聚苯乙烯的交联聚合物及其制备方法与应用
Wang et al. Covalently connected core–shell NH2-UiO-66@ Br-COFs hybrid materials for CO2 capture and I2 vapor adsorption
CN114768547B (zh) 一种制备UiO-66掺杂型多功能层复合纳滤膜及方法
KR20160093958A (ko) 혼합 매트릭스 멤브레인 및 그 제조 방법
US20030027879A1 (en) Hypercrosslinked polymeric material for purification of physiological liquids of organism, and a method of producing the material
Xiao et al. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration
Zhang et al. Finely regulated polyamide membranes with rapid water transport for low-pressure precise nanofiltration
Lan et al. Conjugated porous polymers for gaseous toluene adsorption in humid atmosphere
Wang et al. Design of adjustable hypercrosslinked poly (ionic liquid) s for highly efficient oil-water separation
CN104190264B (zh) 一种具有螯合功能中空纤维超滤膜的制备方法
CN114797799A (zh) 一种基于MOFs的锂离子印迹复合纳米纤维膜的制备方法
CN110436462B (zh) 一种利用淀粉制备高选择性分离丙烯丙烷的微孔碳材料及其制备方法与应用
CN110038454B (zh) 一种高强度、高水通量石墨烯改性pvdf超微滤膜及其制备方法
Wang et al. Preparation of inverse opal adsorbent by water-soluble colloidal crystal template to obtain ultrahigh adsorption capacity for salicylic acid removal from aqueous solution
Cao et al. Fabrication of the hyper-crosslinked polymers chemically functionalized by 8-hydroxyquinoline and their efficient adsorptive removal of 2-naphthol from water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant