CN110197892A - 一种金属网能量存储电极的制备方法 - Google Patents

一种金属网能量存储电极的制备方法 Download PDF

Info

Publication number
CN110197892A
CN110197892A CN201811613172.0A CN201811613172A CN110197892A CN 110197892 A CN110197892 A CN 110197892A CN 201811613172 A CN201811613172 A CN 201811613172A CN 110197892 A CN110197892 A CN 110197892A
Authority
CN
China
Prior art keywords
electrode
metal mesh
method described
film
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811613172.0A
Other languages
English (en)
Inventor
陈图强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN110197892A publication Critical patent/CN110197892A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种金属网能量存储电极的制备方法。它通过将预压成型的粉末材料电极薄膜热压进金属网集电器的孔结构中,来形成金属网电极。其应用主要包括锂离子电池以及超级电容器电极的制备。与传统制备金属箔集电器电极的方法相比,它无需溶剂、不制备浆料、不需要将浆料涂敷在金属薄膜集电器上,因而制备成本更低、更清洁环保。

Description

一种金属网能量存储电极的制备方法
关于美国联邦政府资助的研发的声明
无。
技术领域
本发明涉及能量存储电极及其制备方法,主要包括锂离子电池及超级电容器电极及其制备方法。更具体地,本发明涉及一种金属网能量存储电极及其制备方法。
背景技术
传统电池或超级电容器通常是二维(2-D)结构,其中阳极和阴极薄膜用隔膜/电解质层隔离,通过缠绕或折叠形成器件。传统锂离子电池及超级电容器在电极形式、制备工艺及设备上基本相同,都以粉末活性电极材料与导电添加剂、聚合物粘合剂、以及有机溶剂混合形成浆料,涂覆在导电金属箔上。干燥后的膜电极被裁剪、组装成所谓的二维电池或电容器。这种制备工艺需要使用有机溶剂,如二甲基甲酰胺(DMF)。而且这些溶剂在随后的干燥过程中被蒸发释放到空气中。这中工艺成本高,不清洁环保,制备周期可能更长。然而,当用金属箔基材制备电极时,似乎必须使用溶剂形成浆料涂敷在金属箔上,以确保电极膜与金属箔的充分粘合。
近年来,为改进锂离子电池和超级电容器的工作性能,金属网被用作电极的集电器,替代金属箔。CHEN在美国专利(US 9,905,370B2)中公开了一种3-D锂离子电池和超级电容器,其中超细金属网(UMM)被用作集电器。电极材料和固态电解质的薄膜依次沉积在超细金属网线的表面上,形成所谓的UMM电极。这些UMM阳极和阴极交替堆叠和层压,形成超细金属网基3-D能量存储装置,进而获得更优良的电化学性能和结构性能。SHI等人在一篇论文中(NANO ENERGY,2014,6,82-91)报道了一种柔性超级电容器。它通过在不锈钢(SS)金属网上涂敷碳材料来制备网状电极,然后用有机电解质润湿的隔膜隔离一对网状电极,形成所谓的柔性超级电容器。
与传统金属箔电极相比,这些金属网电极,由于更高的网孔隙率,可以承载更多的活性电极材料,从而改善电池或超级电容器的性能。这些性能包括能量密度和功率密度,以及由于电极的柔性结构,使电池或超级电容器外形设计上更具灵活性。另外,金属网孔结构具有更高表面积,使电极材料和金属网基体的结合力更强。不仅如此,网状结构还允许电极材料从网的一侧到另一侧形成固有连续的结构,使金属网镶嵌在电极材料结构中,从而使金属网与电极材料膜的结合更强。而对于金属箔来讲,这种结构是不可能的,金属箔不允许两边电极膜结合在一块。这种金属网电极的新颖结构,使新的、更有效的制备方法成为可能。然而,CHEN和SHI在各自的文献中所描述的还是传统常规的制备方法,涉及使用溶液和浆料。
发明内容
本发明的目的是解决现有能量存储电极制备方法中存在的问题。本发明包括:1)应用金属网作为电极基体集电器,2)通过压制电极粉末混合物制备电极材料膜,以及3)通过热压电极材料膜使其镶嵌在金属网孔结构中,形成一整体的电极部件,用于制备锂离子电池和超级电容器。
因此,本发明的一个目的就是发明一种制备金属网能量存储电极的方法,不使用溶剂制备浆料、成本低、且清洁环保。本发明的另一个目的是公开一种能量存储电极,它将电极材料嵌入柔性金属网状集电器中,以提高锂离子电池和超级电容器的能量密度和功率密度,以及提供制备柔性电池及超级电容器的可能性。
根据本发明,制备金属网能量存储电极的方法包括以下步骤:1)在不存在溶剂的情况下混合粉末电极材料;2)通过热压粉末电极材料制备独立的电极膜或者在不沾朔料薄膜上制备电极膜,以及3)将金属网放在两个电极膜之间,通过热压形成金属网能量存储电极。
附图说明
本发明的原理可参考具体实施列,并结合附图来理解。其中:
图1显示网状电极的横截面图。
图2是压模非工作状态下的横截面图,其中压模装载了用于制备电极膜的电极材料粉末混合物。
图3是压模工作状态下的横截面图,其中电极膜已被压制成型。
图4是一对热压板的横截面侧视图,其中一对夹着金属网的电极膜将被热压,以制备金属网电极。
图5是由一对热压辊组成的装置的横截面侧视图,其中一对夹着金属网的电极膜被输入热压辊装置中以连续制备金属网电极。
图6是用于连续制备电极膜装置的横截面侧视图。
图7是用于连续制备电极膜装置的进料部分的正面剖视图。
具体实施方式
在图1中,金属网能量存储电极16包括金属网14和一对电极材料膜12,通过热压相互粘合在一起并锁定在金属网孔结构中。金属网电极16实际上是金属网/线增强的陶瓷/聚合物复合材料电极,可改进电极的机械强度及增加电极材料负载量。网丝直径和网孔开口尺寸可以在10至100微米的范围内,而最终电极的厚度可在10至300微米的范围内。在本发明最佳实施列中,网丝直径和网孔尺寸可为25微米,最终电极厚度可为75微米。
在照图2和图3中,通过将由粉末状活性材料、导电添加剂和聚合物粘合剂组成的充分混合的样品10装入模具20A中,然后在加热或不加热的情况下使用模具20B进行压制来制备电极膜12。12的厚度可以在10到200微米的范围内。电极活性材料可包括:a)用于超级电容器的高表面积碳材料,b)用于Li-S电池的硫(S),3)锂离子阴极材料,如LiCoO2,LiNiO2,LiMn2O4,LiFePO4和LiNixCoyMnz,以及4)锂离子阳极材料,如石墨和硅。导电添加剂可包括碳或非碳导电添加剂,聚合物粘合剂可包括聚偏二氟乙烯(PVDF),乙烯-丙烯二烯(EPDM),羧甲基纤维素(CMC),聚四氟乙烯(PTFE)和羧甲基纤维素钠(SBR)。热压的温度范围可以是室温至400℃,压力范围为0至65psig。
在图4中,能量存储电极16可通过一对热板板22热压一对用金属网14隔离的电极膜12,直到这对膜在金属网格内紧密结合,并获得所需厚度。热压的温度范围可以是室温至400℃,压力范围为0至65psig。
在图5中,一对被金属网14隔离的电极膜12被连续地送入由一对辊子24组成的热压设备中,以连续制备金属网电极16。金属网电极16可以通过卷绕收集储存。该辊压装置可以用由一个系列的辊子对组成,以更好地制备金属网电极,其中辊子对之间的间隙逐渐减小。轧制过程的温度可以在室温至400℃的范围内。
在图6和图7中,粉末混合物10被连续地分散到由底板26A支撑并由侧护板26B引导的不沾朔料支持膜28上。支持膜28与粉末混合物10被一同送入辊压装置24,压制成膜12,并将其卷绕成卷收集。该辊压装置可以用由一个系列的辊子对组成,以更好地制备电极膜,其中辊子对之间的间隙逐渐减小。轧制过程的温度可以在室温至400℃的范围内。
本发明公开了一种不使用有机溶剂,在金属网集电器上直接热压粉末电极材料或预制膜电极材料来制备储能电极的方法;而传统金属箔电极的制备,由于其平面结构,需要溶剂来制备浆料,涂敷到金属箔上,以保证膜与金属箔的附着力。这些金属网电极主要用于锂离子电池和超级电容器的制备。根据本发明的实施例,金属网被用作集电器,其尺寸,包括网线直径和孔径,可以是数微米到数百微米。金属网被夹在一对预制成型的电极材料膜之间,热压成型,形成金属网电极。
超级电容器,也称为电化学双电层电容器,作为能量存储装置,使用高表面积碳作为电极材料,包括活性炭,碳纳米管,以及石墨烯等。赝电容金属氧化物,诸如RuO2,NiO和IrO2等,也可用作电极材料。这种粉末形式的材料可以与聚合物粘合剂混合,而不使用溶剂,在加热或不加热的情况下压制,形成超级电容器电极膜。在压力和热的作用下,将一对电极膜压入金属网孔中,形成金属网超级电容器电极。“活性材料”的比例可以为50wt%至95wt%。
锂离子电池,作为能量存储装置,通常使用金属氧化物作为阴极,碳材料为阳极。任何合适的锂离子电池阴极材料都可应用于本发明,包括LiCoO2,LiNiO2,LiMn2O4,LiFePO4或LiNixCoyMnz。这种粉末形式的材料可以与导电添加剂和聚合物粘合剂混合,不使用溶剂,在加热或不加热的情况下压制,形成锂离子阴极电极膜。在压力和热的作用下,将一对电极膜压入金属网孔中,形成金属网锂离子阴极电极。活性材料的比例为50wt%至90wt%,导电添加为0wt%至15wt%,其余为聚合物粘合剂。
在本发明中可以使用任何合适的锂离子阳极材料,如石墨或Si。这种粉末形式的材料可以与导电添加剂和聚合物粘合剂混合,不使用溶剂,在加热或不加热的情况下压制,形成锂离子阳极电极膜。在压力和热的作用下,将一对电极膜压入金属网孔中,形成金属网锂离子阳极电极。活性材料的比例为50wt%至90wt%,导电添加为0wt%至15wt%,其余为聚合物粘合剂。
本发明的一个实施方案涉及制备用于Li-S电池的金属网硫(S)电极,其中粉末硫与导电添加剂和聚合物粘合剂混合,而不使用溶剂,在加热或不加热的情况下压制,形成硫电极膜。在压力和热的作用下,将一对硫电极膜压入金属网孔中,形成金属网硫电极。活性材料硫的比例为40wt%至90wt%,导电添加为10wt%至50wt%,其余为聚合物粘合剂。
应该注意,有许多因素影响该无溶剂金属网电极的制备,包括材料颗粒度,热压温度,压力和时间,以及材料进入辊压轴的速率等等。就通常意义来讲,现在很难确定这些因素的最佳值,但以下几点值得注意。
第一,这些陶瓷材料,包括金属氧化物,石墨和导电碳的颗粒尺寸必须显着小于金属网的孔径,允许这些颗粒随聚合物粘合剂一起被挤压进金属网孔中,形成金属网增强的复合材料储能电极。热压温度应足够高以保证聚合物粘合剂渗透到混合物的空隙中或在热压时在颗粒上形成涂层。因此,热压温度必须高于聚合物玻璃化温度(Tg),最好高于聚合物的熔点(Tm)。该热压的温度及压力,对于颗粒之间的粘合,网与两个膜的粘合,以及膜与膜之间粘合至关重要。
另外,可将单个膜热压进金属网中来制备金属网电极;虽然用一对膜夹住金属网来热压制备金属网电极更好,因为这样能确保在金属网中形成均匀、平衡的电极。
最后,当压制温度高于聚合物粘合剂的熔点时,图3至7所述的工艺过程实际上就是塑料热成型。另外,电极材料混合物可以和金属网基材直接被送入热压设备中,形成金属网电极,而省去制备电极膜的步骤。
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
将充分混合的PVDF(20wt%)和活性炭(80wt%)粉末均匀地加载到模具20A中(图2)。将模具20B在185℃和5psig压入模具20A中一小时(图3)。该过程在200℃、0psig下继续5小时。将模具冷却至室温并拆开,从模具中收集电极膜(60μx5cm x 10cm)。
用上面制备的一对电极膜(60μx5cm x 10cm),夹住金属铝网(6.5cm x11cm,网线直径为50μ,孔径为50μ),放置在一对热压板中(图4)。膜的长边与金属网的一个长边排列对齐。将膜/网组件在215℃和5psig下压制5小时,然后冷却至室温。提升顶部压板,将所得金属网超级电容器电极取出,然后用刀片清除矩形金属网边缘多余的材料。
实施例2:锂离子阴极的制备
将充分混合的PVDF(15wt%),LiFePO4(80wt%)和炭黑(5wt%)粉末均匀地加载到模具20A中(图2)。将模具20B在185℃和5psig压入模具20A中一小时(图3)。该过程在200℃、0psig下继续5小时。将模具冷却至室温并拆开,从模具中收集电极膜(60μx 5cm x 10cm)。
用上面制备的一对电极膜(60μx 5cm x 10cm),夹住铝金属网(6.5cm x11cm,网线直径为50μ,孔径为50μ),放置在一对热压板中(图4)。膜的长边与金属网的一个长边排列对齐。将膜/网组件在215℃和5psig下压制5小时,然后冷却至室温。提升顶部压板,将所得锂离子电池阴极电极取出,然后用刀片清除矩金属网边缘多余的材料。
实施例3:锂离子阳极的制备
将充分混合的PVDF(15wt%)和石墨(85wt%)粉末均匀地加载到模具20A中(图2)。将模具20B在185℃和5psig压入模具20A中一小时(图3)。该过程在200℃、0psig下继续5小时。将模具冷却至室温并拆开,从模具中收集电极膜(60μx 5cm x 10cm)。
用上面制备的一对电极膜(60μx 5cm x 10cm),夹住铜金属网(6.5cm x 11cm,网线直径为50μ,孔径为50μ),放置在一对热压板中(图4)。膜的长边与金属网的一个长边排列对齐。将膜/网组件在215℃和5psig下压制5小时,然后冷却至室温。提升顶部压板,将所得金属网锂离子电池阳极电极取出,然后用刀片清除矩形金属网边缘多余的材料。
实施例4:S电极的制备
将充分混合的PVDF(20wt%),炭黑(35wt%)和硫(50wt%)粉末均匀地加载到模具20A中(图2)。将模具20B在185℃和5psig压入模具20A中一小时(图3)。该过程在200℃、0psig下继续5小时。将模具冷却至室温并拆开,从模具中收集硫电极膜(60μx 5cm x10cm)。
用上面制备的一对电极膜(60μx 5cm x 10cm),夹住铝金属网(6.5cm x 11cm,网线直径为50μ,孔径为50μ),放置在一对热压板中(图4)。膜的长边与金属网的一个长边排列对齐。将膜/网组件在215℃和5psig下压制5小时,然后冷却至室温。提升顶部压板,将所得金属网硫电极取出,然后用刀片清除矩形网状基板的边缘多余的材料。

Claims (10)

1.一种金属网电极制备方法,其步骤包括:
a)将包括电极活性材料,导电添加剂和聚合物粘合剂组成的混合粉末材料,直接热压进金属网的网格中,形成金属网电极;或者
b)首先将包括电极活性材料,导电添加剂和聚合物粘合剂组成的混合粉末材料,热压成薄膜;然后将一金属网夹在一对薄膜中,热压成型,形成金属网电极。
2.根据权利要求1所述的方法,其中所述混合粉末材料薄膜的厚度范围为10微米至200微米。
3.根据权利要求1所述的方法,其中所述金属网由以下材料组成:Al、Cu、Ni、Sb、Cr、Fe或Si。
4.根据权利要求1所述的方法,其中所述金属网网丝的直径为10微米至100微米,网孔为10微米至100微米。
5.根据权利要求1所述的方法,其中所述金属网电极厚度范围为20微米至200微米。
6.根据权利要求1所述的方法,其中所述金属网电极是锂离子阴极,并且其中所述活性材料能够由以下材料组成:S,LiCoO2,LiNiO2,LiMn2O4,LiFePO4和LiNixCoyMnz,所述导电材料添加剂能够由以下材料组成:石墨和炭黑,以及所述聚合物粘合剂能够由以下材料组成:PVDF,EPDM,CMC,PTFE和SBR。
7.根据权利要求1所述的方法,其中所述能量存储电极是锂离子阳极,并且其中所述活性材料能够由以下材料组成:石墨和硅,所述导电材料添加剂能够由以下材料组成:石墨和炭黑,以及所述聚合物粘合剂能够由以下材料组成:PVDF,EPDM,CMC,PTFE和SBR。
8.根据权利要求1所述的方法,其中所述能量存储电极是超级电容器电极,并且其中所述活性材料能够由以下材料组成:活性炭,碳纳米管,石墨烯,RuO2,NiO和IrO2,所述导电材料添加剂能够由以下材料组成:石墨和炭黑,以及所述聚合物粘合剂能够由以下材料组成:PVDF,EPDM,CMC,PTFE和SBR。
9.根据权利要求1所述的方法,其中所述热压温度范围为25℃至400℃。
10.根据权利要求1所述的方法,其中所述热压压力范围为0至65psig。
CN201811613172.0A 2018-08-13 2018-12-27 一种金属网能量存储电极的制备方法 Pending CN110197892A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/102,378 2018-08-13
US16/102,378 US20200052279A1 (en) 2018-08-13 2018-08-13 Method of preparing energy storage electrodes

Publications (1)

Publication Number Publication Date
CN110197892A true CN110197892A (zh) 2019-09-03

Family

ID=67751158

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811613172.0A Pending CN110197892A (zh) 2018-08-13 2018-12-27 一种金属网能量存储电极的制备方法

Country Status (2)

Country Link
US (1) US20200052279A1 (zh)
CN (1) CN110197892A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993957A (zh) * 2019-12-25 2020-04-10 天津普兰能源科技有限公司 一种正极极片、负极极片以及高能量密度锂离子电池
CN111682172A (zh) * 2020-05-28 2020-09-18 西安理工大学 一种硫碳复合正极材料的制备方法
CN112038575A (zh) * 2020-08-31 2020-12-04 蜂巢能源科技有限公司 一种锂带及其制备方法和用途
CN112038574A (zh) * 2020-08-31 2020-12-04 蜂巢能源科技有限公司 一种极片膜及其制备方法和用途

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210109305A (ko) * 2020-02-27 2021-09-06 주식회사 엘지에너지솔루션 전극, 이의 제조방법, 및 이를 포함하는 이차전지
JP7431947B2 (ja) * 2020-05-27 2024-02-15 エルジー エナジー ソリューション リミテッド フリースタンディングフィルム型リチウム二次電池用正極材、この製造方法及びこれを含むリチウム二次電池
KR102607784B1 (ko) * 2020-12-17 2023-11-30 경상국립대학교산학협력단 플렉서블 전극 소재 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521265A (zh) * 2008-10-10 2009-09-02 比亚迪股份有限公司 一种电动汽车用动力电池包及其电池系统
CN102460782A (zh) * 2009-05-07 2012-05-16 安普雷斯股份有限公司 用于可充电电池的含纳米结构的电极
US8815443B2 (en) * 2003-07-09 2014-08-26 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
US20160164105A1 (en) * 2013-07-19 2016-06-09 Gachon University Of Industry-Academic Cooperation Foundation Cathode substrate, high-capacity all-solid-state battery and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815443B2 (en) * 2003-07-09 2014-08-26 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
CN101521265A (zh) * 2008-10-10 2009-09-02 比亚迪股份有限公司 一种电动汽车用动力电池包及其电池系统
CN102460782A (zh) * 2009-05-07 2012-05-16 安普雷斯股份有限公司 用于可充电电池的含纳米结构的电极
US20160164105A1 (en) * 2013-07-19 2016-06-09 Gachon University Of Industry-Academic Cooperation Foundation Cathode substrate, high-capacity all-solid-state battery and method of manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993957A (zh) * 2019-12-25 2020-04-10 天津普兰能源科技有限公司 一种正极极片、负极极片以及高能量密度锂离子电池
CN111682172A (zh) * 2020-05-28 2020-09-18 西安理工大学 一种硫碳复合正极材料的制备方法
CN111682172B (zh) * 2020-05-28 2021-08-06 西安理工大学 一种硫碳复合正极材料的制备方法
CN112038575A (zh) * 2020-08-31 2020-12-04 蜂巢能源科技有限公司 一种锂带及其制备方法和用途
CN112038574A (zh) * 2020-08-31 2020-12-04 蜂巢能源科技有限公司 一种极片膜及其制备方法和用途
CN112038575B (zh) * 2020-08-31 2021-10-22 蜂巢能源科技有限公司 一种锂带及其制备方法和用途

Also Published As

Publication number Publication date
US20200052279A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
CN110197892A (zh) 一种金属网能量存储电极的制备方法
KR101293276B1 (ko) 다공성 폴리머 웹 집전체 및 그의 제조방법
KR101806547B1 (ko) 금속 섬유를 포함하는 전극 구조체를 갖는 전지 및 상기 전극 구조의 제조 방법
US8821593B2 (en) Method for manufacturing electrode for electrochemical element
CN105378978B (zh) 电极、电化学电池及形成电极和电化学电池的方法
KR101622355B1 (ko) 고체전해질 복합체, 이의 제조방법, 및 이를 포함하는 전고체전지
CN107221676A (zh) 一种复合集流体及应用该集流体的锂离子二次电池
CN110957462B (zh) 一种双极性电极片及其制备方法,以及双极性电池
CN102610830A (zh) 锂离子电池
TW201036234A (en) Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
CN102683740B (zh) 锂离子电池
KR101209847B1 (ko) 다공성 cnf 집전체 및 이를 이용한 전극과 그의 제조방법
JP2017157362A (ja) 固体電解質膜および全固体型リチウムイオン電池
JP2018063850A (ja) 積層体グリーンシート、全固体二次電池及びその製造方法
CN108695556A (zh) 层叠电池
KR100992394B1 (ko) 카본-금속산화물 복합체의 음극 활물질을 구비한이차전지용 음극 및 이를 이용한 이차전지와, 이차전지용음극 활물질의 제조방법
CN108832133A (zh) 一种柔性集流体电池及其制造方法
KR20220009399A (ko) 탄소 펠트계 전극 조립체 및 그의 제조 방법
CN105932290A (zh) 单体大容量聚合物锂离子电池正极片及其制造方法
JP2010199022A (ja) 二次電池用電極の製造方法、二次電池用電極および二次電池
CN108878947A (zh) 降低电池组中发生短路和/或锂析出的方法
AU2012279986B2 (en) Lithium accumulator
EP1261046B1 (de) Verfahren zur Herstellung eines Separator/ Elektrodenverbundes für galvanische Elemente
KR20090125646A (ko) 티탄산칼슘구리계 음극 활물질을 구비한 이차전지용 음극및 이를 이용한 이차전지와, 이차전지용 음극 활물질의제조 방법
JP2023511234A (ja) リチウム二次電池用電極の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190903