CN110194669B - 一种大型复杂零件的激光选区烧结成形装备、系统及方法 - Google Patents
一种大型复杂零件的激光选区烧结成形装备、系统及方法 Download PDFInfo
- Publication number
- CN110194669B CN110194669B CN201910447966.2A CN201910447966A CN110194669B CN 110194669 B CN110194669 B CN 110194669B CN 201910447966 A CN201910447966 A CN 201910447966A CN 110194669 B CN110194669 B CN 110194669B
- Authority
- CN
- China
- Prior art keywords
- forming
- powder
- layer
- equipment
- forming table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/218—Rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/232—Driving means for motion along the axis orthogonal to the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/227—Driving means
- B29C64/236—Driving means for motion in a direction within the plane of a layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/25—Housings, e.g. machine housings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/24—Deposition of silicon only
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Powder Metallurgy (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
本发明属于増材制造领域,并公开了成形一种大型复杂零件的激光选区烧结成形装备、系统及方法。系统由导轨整合激光选区烧结成形装备、清粉装备、后固化‑碳化装备,当成形机构在成形台上完成一个切片层的激光选区烧结成形后,竖直驱动机构上升一个切片层高度,在成形台高度不变的情况下,通过逐层上升成形机构的高度实现待成形零件的逐层加工,水平驱动机构用于驱动机构将其上方的成形机构或装备与成形台分离,整套装备采用固定成形台,在不移动成形零件基础上完成整套制造工序,解决了现有技术制造复杂零件尺寸小、成品率低的难题,实现SLS成形中成形零件的不动,避免零件移动的坍塌、弯曲和变形,进而可用于大型零件的制造。
Description
技术领域
本发明属于増材制造领域,更具体地,涉及成形一种大型复杂零件的激光选区烧结成形装备、系统及方法。
背景技术
增材制造技术,俗称3D打印,是一种采用分层制造并叠加的原理直接从CAD模型制造出三维实体零部件的制造技术,是先进制造领域研究的前沿。与传统的减材加工(切削加工)、等材制造(铸造、锻造)等加工方法不同,它是利用材料累加法来加工制造高分子材料、陶瓷、金属及各种复合材料的零部件,其最大的优势是可成形任意复杂结构零件,并可实现零件的免装配一次整体成形以及材料-结构的一体化成形,因此已在航空航天、生物医疗、汽车工业领域得到广泛应用。
然而,目前国内外商品化SLS成形装备的台面较小,无法一次整体成形大尺寸复杂零件,通常采用分段制造再拼接的方法,这就造成制件精度及性能下降、效率低、成本高。在国外,著名SLS成形装备制造商美国3D Systems公司生产的最大型装备sProTM 140HS的台面也仅为:0.55米×0.55米;德国EOS公司最大SLS成形装备为专门用于铸造砂型(芯)成形的EOS INT 750,其台面也只达到0.72米×0.38米。在国内,武汉滨湖机电技术产业有限公司(技术开发依托于华中科技大学)于2011年推出当时世界上最大台面1.4米×0.7米的HRPS-VII型双激光SLS成形装备。目前,对于尺寸大于1.4米的零件,只能将大型零件的CAD模型进行分割,再分别进行各部分的SLS成形制造,最后将成形好的各个部分进行拼接而得到一个完整的大型零件,然而,由于SLS成形和人工后处理拼接等操作的误差,成形零件的精度和性能往往达不到要求,而且耗时长、效率低、成本高。
目前,现有最大SLS成形装备的台面为1.4米×0.7米,进行进一步扩大,必将面临“装备大型化”的技术难题。主要包括:已有的双激光扫描系统随着成形腔的进一步扩大,激光聚焦光斑以及成形效率无法满足要求,必须采用多激光振镜扫描系统,但是存在多激光协同扫描、多激光负载均衡以及多激光精度校准等一系列技术难题;大型零件SLS成形后由于素坯强度较低,制件在取出过程中或后处理时极易发生破裂甚至坍塌,造成成形零件报废。因此,现有粉床增材制造技术仅能实现小尺寸零件的成形,无法实现大型复杂陶瓷零件的一体化成形。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了成形一种大型复杂零件的激光选区烧结成形装备、系统及方法,通过采用成形台不动,SLS成形机构上下移动进行切片层的逐层加工的方式进行加工,避免加工大型零件过程中由于零件的上下移动导致的部分结构的坍塌、弯曲和变形,以及大型零件从一个工位进入下一个工位时搬运过程中的损坏,进而解决现有SLS装备不能用于加工尺寸大的复杂零件的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种大型复杂零件的激光选区烧结成形装备,该激光选区烧结成形装备,包括成形机构、成形台和驱动机构,其中:
所述成形台为待成形零件的成形平台,所述成形机构设置在所述成形台上方,用于在成形台上对待成形零件的切片层进行铺粉,并对所铺的粉末进行激光选区烧结成形;
所述驱动机构设置在所述成形机构的下方,该驱动机构包括竖直驱动机构和水平驱动机构,当所述成形机构在所述成形台上完成一个切片层的激光选区烧结成形后,所述竖直驱动机构驱动所述成形机构上升一个切片层高度,在成形台高度不变的情况下,通过逐层上升所述成形机构的高度实现待成形零件的逐层加工,避免成形过程中成形台带动待成形零件上下移动,所述水平驱动机构用于驱动所述成形机构在成形台上方的水平方向上来回移动,以此将所述成形机构移至所述成形台上方或与成形台分离,使得成形零件保留在成形台面进行后续的工序,避免SLS成形完成后移动成形零件。
进一步优选地,所述成形机构包括壳体和铺粉单元,所述铺粉单元设置在所述壳体的下方,包括送粉缸和铺粉辊,所述送粉缸对称设置在所述成形台的两侧,所述铺粉辊在所述送粉缸和成形台形之间来回运动,使得所述送粉缸中的粉末铺放至所述成形台上实现铺粉,所述壳体中设置有隔离单元,该隔离单元将所述壳体的内部空间分割为上半部分和下半部分,所述上半部分中设置有激光、振镜单元,用于发射激光对所述成形台上的粉末进行激光选区烧结成形,所述下半部分作为待成形零件的成形腔,其中设置有均匀分布的多个加热单元,用于对所述成形台上的粉末进行激光烧结前的预热。
进一步优选地,所述成形台中设置有成形缸,所述铺粉单元铺的粉末铺在所述成形缸上,当完成一个切片层的成形后,所述成形缸的缸壁上升一个切片层的厚度,避免成形缸中的粉末散落。
进一步优选地,所述壳体内侧设置有保温层,用于保持所述成形腔内的温度。
按照本发明的另一个方面,提供了一种激光选区烧结SiC陶瓷零件的成形系统,该系统包括上述所述的激光选区烧结成形装备,清粉装备和后固化-碳化装备,其中:所述激光选区烧结成形装备的水平驱动机构中包括设置在所述成形台两侧的导轨,所述激光选区烧结成形装备、清粉装备和后固化装备-碳化装备上均设置有与所述导轨配合的滑轮,所述激光选区烧结成形装备、清粉装备和后固化装备-碳化装备通过在导轨上移动,依次对所述成形台上的待成形零件进行激光选区烧结成形、清粉、后固化和碳化工序。
进一步优选地,所述清粉装备包括清粉舱和设置在该清粉舱中的旋转轨道、吹风口和吸风口,所述吹风口和吸风口设置在所述旋转轨道旋转,当所述清粉装备移至所述成形台的上方时,所述成形台置于所述清粉舱的旋转轨道中央,通过所述吹风口和吸风口配合清除所述成形台上成形零件上的残余的粉末。
进一步优选地,所述后固化-碳化装备包括密封舱和加热机构,所述密封舱用于将成形台上的成形零件密封,所述加热机构环绕所述成形台,用于对成形零件进行加热后固化,所述密封舱上设置有进气管和排气管,通过该排气管和进气管保持所述密封舱中真空或惰性气体氛围。
按照本发明的又一个方面,提供了一种利用上述所述的SiC陶瓷零件成形系统成形SiC陶瓷零件的成形方法,该方法包括下列步骤:
(a)选取树脂或树脂复合材料作为原料,根据待成形零件的结构构建其三维模型,对该三维模型切片获得多个切片层信息,将所述原料置于所述成形机构中,根据所述每层切片层信息,铺粉单元在成形台上铺粉,加热单元对所铺的粉末进行预热,激光单元对预热的粉末进行激光选区烧结成形,以此完成一个切片层的加工,成形机构上升一个切片层高度,对下一个切片层进行加工,以此对待成形零件逐层进行成形,直至在所述成形台上获得待成形零件的初坯;
(b)所述成形机构从所述成形台上方移走,所述清粉装备移至所述成形台上方,所述旋转轨道旋转,所述吹风口和吸风口配合工作,对所述初坯进行360度旋转清粉;
(c)所述清粉装备从所述成形台上方移走,所述后固化-碳化装备移至所述成形台上方,关闭所述密封舱舱门,加热机构开始加热使得所述初坯后固化;将密封舱中充满惰性气体或抽真空,加热机构加热至600℃~1500℃,使得固化后的初坯碳化,以此获得所需零件的碳预制件,将该碳预制件进行渗硅,获得所需的SiC陶瓷零件。
进一步优选地,在步骤(c)中,所述渗硅的方法优选采用先驱体浸渍裂解法、化学气相渗透法或反应熔渗法。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、本发明提供的激光选区烧结装备,其中成形台不动,通过SLS成形机构上下移动进行切片层的逐层加工,与现有的装备中通过成形台的上下移动实现切片层的逐层加工方式相比,由于加工过程中零件保持不动,避免加工大型零件过程中由于零件的上下移动导致部分结构的坍塌、弯曲和变形,另外,SLS成形机构通过水平方向的移动使得零件始终保持在成形台上,避免为进行下一个工序将成形零件从成形装备中取出后去下一个工位,进而避免移动过程中成形零件的损坏;
2、本发明提供的成形机构在进行激光选区烧结成形过程中,通过采用壳体将成形台罩住,使得整个成形过程处于全封闭的环境,同时通过保温层和加热单元的配合作用使得成形腔内温度分布均匀,避免温度分布不均带来的零件翘曲变形;
3、本发明提供的SiC陶瓷零件成形系统,通过导轨实现激光选区烧结成形、清粉和后固化-碳化装备的依次有序进行,其中成形台始终保持不同,进而成形零件始终保持不同,避免大型零件在不同工位之间搬运时的损坏,同时将三个工序一体化大大降低了加工时间,提高加工效率;
4、本发明提供的SiC陶瓷零件的成形方法,在激光选区烧结成形中获得的初坯为含碳的零件,然后通过清粉、后固化、碳化和渗硅后获得所需的SiC陶瓷零件,现有的直接获得SiC陶瓷零件的方法,由于陶瓷零件本身硬度高,脆性大,对于成形零件的结构有诸多的限制,而采用本发明提供的激光选区烧结成形、清粉和后固化-碳化装备一体化的方法,既保持了SiC陶瓷零件自身的特性,又对所需成形的陶瓷零件的三维结构没有限制,可用于成形任意三维结构的产品,适用范围更加广泛。
附图说明
图1是按照本发明的优选实施例所构建的大型复杂零件的激光选区烧结成形装备的结构示意图;
图2是按照本发明的优选实施例所构建的大型复杂零件成形系统的结构示意图;
图3是按照本发明的优选实施例所构建的清粉装备的俯视图;
图4是按照本发明的优选实施例所构建的后固化-碳化装备的俯视图;
图5是按照本发明的优选实施例所构建的SiC陶瓷零件流程图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1-成形机构,2-清粉装备,3-后固化-碳化装备,6-导轨,7-地面,10-壳体,11-激光器,12-振镜,13-保温层,14-加热单元,15-铺粉辊,16-送粉缸,17-成形缸,18-缸壁,19-成形形坯,20-隔离单元,111-成形缸缸壁升降机构,112-竖直驱动机构,113-滑轮,115-地面,21-吹风口,22-吸风口,23-旋转轨道,24-清粉舱舱门,25-清粉舱,30-密封舱,31-密封舱舱门,32-密闭层,33-加热机构,34-进气管,35-抽气管。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种大型复杂零件的激光选区烧结成形装备、系统及方法,在不移动成形台面的基础上,采用导轨移动激光选区烧结成形装备、清粉装备和后固化-碳化装备,其中激光选区烧结成形装备采用多激光、多振镜协同工作,从而实现大型复杂陶瓷零件的整体成形制造。
图1是按照本发明的优选实施例所构建的大型复杂零件的激光选区烧结成形装备的结构示意图,如图1所示,该装备包括成形机构、成形台和驱动机构,所述成形台为待成形零件的成形平台,所述成形机构设置在所述成形台上方,用于在成形台上对待成形零件的切片层进行铺粉,并对所铺的粉末进行激光选区烧结成形;所述驱动机构设置在所述成形机构的上方,该驱动机构包括竖直驱动机构和水平驱动机构,当所述成形机构在所述成形台上完成一个切片层的激光选区烧结成形后,所述竖直驱动机构所述成形机构上升一个切片层高度,在成形台高度不变的情况下,通过逐层上升所述成形机构的高度实现待成形零件的逐层加工,避免成形过程中待成形零件的上下移动,所述水平驱动机构用于驱动所述成形机构在水平方向上移动,以此将所述成形机构与成形台分离,使得待成形零件保留在成形台面进行后续的工序,避免SLS成形完成后移动待成形零件。
所述成形机构包括壳体10和铺粉单元,所述铺粉单元设置在所述壳体的下方,包括送粉缸16和铺粉辊15,所述送粉缸16对称设置在所述成形台的两侧,所述铺粉辊15在所述送粉缸和成形台形之间来回运动,使得所述送粉缸16中的粉末铺放至所述成形台上实现铺粉,所述壳体10中设置有隔离单元20,该隔离单元20将所述壳体的内部空间分割为上半部分和下半部分,所述上半部分中设置有激光单元,用于发射激光对所述成形台上的粉末进行激光选区烧结成形,所述下半部分作为待成形零件的成形腔,其中设置有均匀分布的多个加热单元14,用于对所述成形台上的粉末进行激光烧结前的预热。壳体中设置有多套激光单元和加热单元,每个激光单元包括激光器11和振镜12,本实施例中,为加工5米左右的零件,采用3×3套激光单元;加热单元14用于对成形台上的粉体进行激光烧结前的预热,加热方式可为电阻加热和辐射加热,壳体中设置有保温层13,成形腔中的温度分布均匀使得粉体均匀预热;隔离单元20设置在壳体中,其将激光单元与成形腔分开,避免激光单元过热。
成形机构1采用的供粉方式包括上落粉和下铺粉;供粉缸固机构定在成形机构上,供粉缸机构中设置加热部件,能够实现对成性粉末的预热;铺粉辊随同成形机构1由支撑于导轨上的竖直驱动机构112定量提升,实现铺粉平面的定量上升;成形机构1采用多激光、多振镜协同工作,实现大型零部件的快速、高质量成形;成形机构1采用大数据量处理软、硬件,实现多激光扫描路径规划。
成形机构下方设置有水平驱动机构,其中,水平驱动机构中包括导轨6,成形机构下方设置有与导轨6配合的滑轮113,通过在导轨6上的运动能够实现成形机构移至、移离成形台面上方。
所述成形台包括成形缸17,所述铺粉单元铺的粉末铺在所述成形缸17上,当完成一个切片层的成形后,所述成形缸的缸壁18上升一个切片层的厚度,避免成形缸中的粉末散落,成形形坯19在成形缸17内,成形缸缸壁升降机构111和成形机构的竖直驱动机构112协同上升。
图2是按照本发明的优选实施例所构建的SiC陶瓷零件成形系统的结构示意图,如图2所示,该系统包括所述激光选区烧结成形装备,清粉装备2和后固化-碳化装备3,其中,所述激光选区烧结成形装备的水平驱动机构中包括设置在所述成形台两侧的导轨6,导轨6设置在地面7上,所述成形机构1、清粉装备2和后固化装备-碳化装备3上均设置有与所述导轨6配合的滑轮113,所述成形机构、清粉装备和后固化装备-碳化装备通过在导轨6上移动,依次对所述成形台上的待成形零件进行激光选区烧结成形、清粉、后固化和碳化工序。
图3是按照本发明的优选实施例所构建的清粉装备的俯视图,如图3所示,所述清粉装备2包括清粉舱25和设置在该清粉舱中的旋转轨道23、吹风口21和吸风口22,所述吹风口21和吸风口22设置在所述旋转轨道旋转,当所述清粉装备2移至所述成形台的上方时,所述成形台置于所述清粉舱25的旋转轨道中央,关闭清粉舱舱门24,通过所述吹风口21和吸风口22配合清除所述成形台上成形零件上的残余的粉末,实现360度旋转吹、吸粉。
清粉装备2可由导轨6平移,可实现在不移动成形台面情况下将清粉装备移动至成形台面上;清粉装备具有吹、吸喷口,吹粉口与吸粉口相对,并同时进行吹粉和吸粉,实现高效清粉;所述吹、吸粉装备可进行360度旋转,实现全角度吹、吸粉,提高清粉质量。
图4是按照本发明的优选实施例所构建的后固化-碳化装备的俯视图,如图4所示,所述后固化-碳化装备3包括密封舱30和加热机构33,所述密封舱30上设置有密封层32,用于将成形台上的成形零件密封,所述后固化-碳化装备移动至成形台上方后关闭密封舱舱门31,所述加热机构33环绕所述成形台,用于对成形零件进行加热后固化,所述密封舱30上设置有进气管34和排气管35,通过该排气管和进气管保持所述密封舱30中真空或惰性气体氛围,进气管34负责排入惰性气体,抽气管35负责抽真空和排出气体。
后固化-碳化装备3可由导轨6平移,可实现在不移动成形台面情况下将后固化-碳化装备移动至成形台面上;后固化-碳化装备3沿导轨6方向有前、后炉门,可实现成形零件的密闭处理;后固化-碳化装备3采用加热方式进行后固化处理,加热机构最高可将成形零件加热至1000℃,可对多种材料成形零件进行后固化处理。
图5是按照本发明的优选实施例所构建的SiC陶瓷零件流程图,如图5所示,一种大型复杂SiC陶瓷零件成形方法,包括以下步骤:
(1)激光选区烧结成形;
由导轨6和导轨轮113平移SLS装备至成形台面上方,供粉缸16和铺粉刮板15机构固定在SLS装备上,随同SLS装备由支撑于导轨上的升降机构112定量提升,实现铺粉平面的定量上升;成形缸17固定在成形台面上,缸壁由升降机构111随铺粉平面的上升同步上升;SLS装备采用多激光11、多振镜12协同工作,实现大型零部件的快速、高质量成形;由大数据量处理软、硬件,实现多激光扫描路径规划。
(2)清粉;
SLS成形后,由导轨6移走SLS装备1,将清粉装备2平移至成形台面上方,成形缸缸壁18在升降机构111控制下下降,同时开启吹风口21、吸风口22机构,由导轨23旋转进行360度旋转清粉。
(3)后固化;
清粉完成后,由导轨6移走清粉装备2,将后固化-碳化装备3平移至成形台面上方,关闭后固化-碳化装备炉门4密闭,加热实现成形树脂结构后固化。
(4)碳化;
后固化完成后,将后固化-碳化装备密闭层33密闭,由排气管35抽气,进气管34充入惰性气体,在真空或惰性气体氛围下加热至600-1500℃,制备大型复杂结构碳预制体。
(5)渗硅;
将制得的大型复杂结构碳预制体采用渗硅的方法,制得大型复杂SiC陶瓷零件。
优选的,步骤(1)中所述固定成形台面为方形,边长为1m~10m;所述成形缸固定在成形台面上,缸壁由升降机构最大提升高度10m。
优选的,成形机构由竖直驱动机构最大提升高度10m;
优选的,步骤(4)中所述的保护气体包括氮气、氩气;所述加热碳化温度为600-1500℃。
优选的,步骤(4)中所述的渗硅方法包括先驱体浸渍裂解法、化学气相渗透法和反应熔渗法(包括液相和气相渗硅法)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种大型复杂零件的激光选区烧结成形装备,其特征在于,该激光选区烧结成形装备包括成形机构、成形台和驱动机构,其中:
所述成形台为待成形零件的成形平台,所述成形机构设置在所述成形台上方,用于在成形台上对待成形零件的切片层进行铺粉,并对所铺的粉末进行激光选区烧结成形;
所述驱动机构设置在所述成形机构的下方,该驱动机构包括竖直驱动机构和水平驱动机构,当所述成形机构在所述成形台上完成一个切片层的激光选区烧结成形后,所述竖直驱动机构驱动所述成形机构上升一个切片层高度,在成形台高度不变的情况下,通过逐层上升所述成形机构的高度实现待成形零件的逐层加工,避免成形过程中成形台带动待成形零件上下移动,所述水平驱动机构用于驱动所述成形机构在成形台上方的水平方向上来回移动,以此将所述成形机构移至所述成形台上方或与成形台分离,使得成形零件保留在成形台面进行后续的工序,避免SLS成形完成后移动成形零件。
2.如权利要求1所述的一种大型复杂零件的激光选区烧结成形装备,其特征在于,所述成形机构包括壳体(10)和铺粉单元,所述铺粉单元设置在所述壳体的下方,包括送粉缸(16)和铺粉辊(15),所述送粉缸(16)对称设置在所述成形台的两侧,所述铺粉辊(15)在所述送粉缸和成形台形之间来回运动,使得所述送粉缸(16)中的粉末铺放至所述成形台上实现铺粉,所述壳体中设置有隔离单元(20),该隔离单元(20)将所述壳体的内部空间分割为上半部分和下半部分,所述上半部分中设置有激光、振镜单元,用于发射激光对所述成形台上的粉末进行激光选区烧结成形,所述下半部分作为待成形零件的成形腔,其中设置有均匀分布的多个加热单元(14),用于对所述成形台上的粉末进行激光烧结前的预热。
3.如权利要求2所述的一种大型复杂零件的激光选区烧结成形装备,其特征在于,所述成形台中设置有成形缸(17),所述铺粉单元铺的粉末铺在所述成形缸上,当完成一个切片层的成形后,所述成形缸的缸壁(18)上升一个切片层的厚度,避免成形缸中的粉末散落。
4.如权利要求2所述的一种大型复杂零件的激光选区烧结成形装备,其特征在于,所述壳体(10)内侧设置有保温层(13),用于保持所述成形腔内的温度。
5.一种激光选区烧结SiC陶瓷零件的成形系统,其特征在于,该系统包括权利要求1-4任一项所述的激光选区烧结成形装备,清粉装备(2)和后固化-碳化装备(3),其中,所述激光选区烧结成形装备的水平驱动机构中包括设置在所述成形台两侧的导轨(6),所述激光选区烧结成形装备(1)、清粉装备(2)和后固化-碳化装备(3)上均设置有与所述导轨(6)配合的滑轮(113),所述激光选区烧结成形装备、清粉装备和后固化-碳化装备通过在导轨(6)上移动,依次对所述成形台上的待成形零件进行激光选区烧结成形、清粉、后固化和碳化工序。
6.如权利要求5所述的SiC陶瓷零件的成形系统,其特征在于,所述清粉装备包括清粉舱(25)和设置在该清粉舱中的旋转轨道(23)、吹风口(21)和吸风口(22),所述吹风口(21)和吸风口(22)设置在所述旋转轨道(23)旋转,当所述清粉装备(2)移至所述成形台的上方时,所述成形台置于所述清粉舱的旋转轨道中央,通过所述吹风口和吸风口配合清除所述成形台上成形零件上的残余的粉末。
7.如权利要求6所述的SiC陶瓷零件的成形系统,其特征在于,所述后固化-碳化装备(3)包括密封舱(30)和加热机构(33),所述密封舱用于将成形台上的成形零件密封,所述加热机构环绕所述成形台,用于对成形零件进行加热后固化,所述密封舱上设置有进气管(34)和排气管(35),通过该排气管和进气管保持所述密封舱中真空或惰性气体氛围。
8.一种利用权利要求7所述的SiC陶瓷零件的成形系统成形SiC陶瓷零件的成形方法,其特征在于,该方法包括下列步骤:
(a)选取树脂或树脂复合材料作为原料,根据待成形零件的结构构建其三维模型,对该三维模型切片获得多个切片层信息,将所述原料置于所述成形机构中,根据每层切片层信息,铺粉单元在成形台上铺粉,加热单元对所铺的粉末进行预热,激光单元对预热的粉末进行激光选区烧结成形,以此完成一个切片层的加工,成形机构上升一个切片层高度,对下一个切片层进行加工,以此对待成形零件逐层进行成形,直至在所述成形台上获得待成形零件的初坯;
(b)所述成形机构从所述成形台上方移走,所述清粉装备移至所述成形台上方,所述旋转轨道旋转,所述吹风口和吸风口配合工作,对所述初坯进行360度旋转清粉;
(c)所述清粉装备从所述成形台上方移走,所述后固化-碳化装备移至所述成形台上方,关闭所述密封舱舱门,加热机构开始加热使得所述初坯后固化;将密封舱中充满惰性气体或抽真空,加热机构加热至600℃~1500℃,使得固化后的初坯碳化,以此获得所需零件的碳预制件,将该碳预制件进行渗硅,获得所需的SiC陶瓷零件。
9.如权利要求8所述的SiC陶瓷零件的成形方法,其特征在于,在步骤(c)中,所述渗硅的方法采用先驱体浸渍裂解法、化学气相渗透法或反应熔渗法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910447966.2A CN110194669B (zh) | 2019-05-27 | 2019-05-27 | 一种大型复杂零件的激光选区烧结成形装备、系统及方法 |
JP2019175174A JP6896817B2 (ja) | 2019-05-27 | 2019-09-26 | 大型複雑部品の選択的レーザー焼結成形装置、システム、および方法 |
US16/655,215 US11305456B2 (en) | 2019-05-27 | 2019-10-16 | Selective laser sintering device |
EP19207048.0A EP3744506B1 (en) | 2019-05-27 | 2019-11-05 | Selective laser sintering device |
RU2019140946A RU2745247C1 (ru) | 2019-05-27 | 2019-12-11 | Устройство для селективного лазерного спекания |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910447966.2A CN110194669B (zh) | 2019-05-27 | 2019-05-27 | 一种大型复杂零件的激光选区烧结成形装备、系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110194669A CN110194669A (zh) | 2019-09-03 |
CN110194669B true CN110194669B (zh) | 2020-11-24 |
Family
ID=67753099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910447966.2A Active CN110194669B (zh) | 2019-05-27 | 2019-05-27 | 一种大型复杂零件的激光选区烧结成形装备、系统及方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11305456B2 (zh) |
EP (1) | EP3744506B1 (zh) |
JP (1) | JP6896817B2 (zh) |
CN (1) | CN110194669B (zh) |
RU (1) | RU2745247C1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11485077B2 (en) * | 2017-10-23 | 2022-11-01 | Hewlett-Packard Development Company, L.P. | Forming a layer of build material |
KR102317286B1 (ko) * | 2019-06-07 | 2021-10-26 | 울산대학교 산학협력단 | 3d 프린팅 공정을 이용한 금속 몰드 제조방법 |
CN110919819B (zh) * | 2019-12-20 | 2020-09-18 | 华中科技大学 | 一种基于多场复合的增材制造设备及方法 |
CN111268411B (zh) * | 2020-01-23 | 2021-07-20 | 华东理工大学 | 一种用于大型slm设备的工作台转移运输系统 |
CN112008077A (zh) * | 2020-08-04 | 2020-12-01 | 西安铂力特增材技术股份有限公司 | 一种节约金属粉末的大尺寸slm设备 |
CN114247901B (zh) * | 2021-12-17 | 2024-02-27 | 福建国锐中科光电有限公司 | 一种金属3d打印与后处理一体化成形设备及打印方法 |
CN114799207B (zh) * | 2022-03-31 | 2024-04-12 | 西安航天发动机有限公司 | 一种金属发汗材料复杂预制件的成形方法 |
CN117282992A (zh) * | 2022-06-16 | 2023-12-26 | 上海飞机制造有限公司 | 一种用于处理金属粉末增材制造过程中的飞溅粉末的设备 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7034246B2 (en) * | 2004-08-10 | 2006-04-25 | The Boeing Company | Selective laser sintering reduced volume feed mechanism |
RU137490U1 (ru) * | 2013-07-16 | 2014-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") | Устройство для селективного лазерного спекания заготовок из порошковых материалов |
CN104425123A (zh) * | 2013-09-05 | 2015-03-18 | 爱科科技有限公司 | 一种稀土永磁器件激光选区烧结成型装置及其成型方法 |
EP3140067B1 (en) * | 2014-05-08 | 2019-04-03 | Stratasys Ltd. | Method and apparatus for 3d printing by selective sintering |
RU148163U1 (ru) * | 2014-06-09 | 2014-11-27 | Общество с ограниченной ответственностью "НПЦ "АЛЬФА" | Устройство для селективного лазерного спекания порошка с помощью лазерного излучения |
JP6651754B2 (ja) * | 2014-09-18 | 2020-02-19 | Toto株式会社 | 反応焼結炭化ケイ素部材の製造方法 |
US10799952B2 (en) * | 2015-06-04 | 2020-10-13 | The Regents Of The University Of California | Selective laser sintering using functional inclusions dispersed in the matrix material being created |
CN105127422A (zh) * | 2015-09-06 | 2015-12-09 | 苏州西帝摩三维打印科技有限公司 | 选择性激光熔化多功能成型工作台 |
EP3368279B1 (en) * | 2015-10-30 | 2022-10-19 | Seurat Technologies, Inc. | Part manipulation using printed manipulation points |
CN105563845A (zh) * | 2015-11-06 | 2016-05-11 | 仲炳华 | 激光3d打印机 |
JP6477428B2 (ja) * | 2015-11-09 | 2019-03-06 | トヨタ自動車株式会社 | 積層造形装置の制御方法 |
CN106187195B (zh) * | 2016-06-29 | 2018-11-30 | 华中科技大学 | 采用激光选区烧结工艺制备碳化硅陶瓷件的方法 |
EP3263316B1 (en) * | 2016-06-29 | 2019-02-13 | VELO3D, Inc. | Three-dimensional printing and three-dimensional printers |
CN206415600U (zh) * | 2016-12-22 | 2017-08-18 | 华南理工大学 | 一种激光选区熔化高效成型装置 |
CN206588344U (zh) * | 2017-03-20 | 2017-10-27 | 西安科技大学 | 一种sls成型缸粉末自卸装置 |
DE102017205027A1 (de) * | 2017-03-24 | 2018-09-27 | SLM Solutions Group AG | Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Werkstücken |
US11654490B2 (en) * | 2017-04-18 | 2023-05-23 | Hewlett-Packard Development Company, L.P. | Apparatus having a movable chamber |
DE102017208496A1 (de) * | 2017-05-19 | 2018-11-22 | SLM Solutions Group AG | Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Werkstücken |
CN207615658U (zh) * | 2017-11-23 | 2018-07-17 | 韶关学院 | 一种激光选区熔化3d打印用铺粉装置 |
-
2019
- 2019-05-27 CN CN201910447966.2A patent/CN110194669B/zh active Active
- 2019-09-26 JP JP2019175174A patent/JP6896817B2/ja active Active
- 2019-10-16 US US16/655,215 patent/US11305456B2/en active Active
- 2019-11-05 EP EP19207048.0A patent/EP3744506B1/en active Active
- 2019-12-11 RU RU2019140946A patent/RU2745247C1/ru active
Also Published As
Publication number | Publication date |
---|---|
US11305456B2 (en) | 2022-04-19 |
US20200376708A1 (en) | 2020-12-03 |
EP3744506A1 (en) | 2020-12-02 |
CN110194669A (zh) | 2019-09-03 |
RU2745247C1 (ru) | 2021-03-22 |
JP6896817B2 (ja) | 2021-06-30 |
JP2020192800A (ja) | 2020-12-03 |
EP3744506B1 (en) | 2022-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110194669B (zh) | 一种大型复杂零件的激光选区烧结成形装备、系统及方法 | |
US20240149527A1 (en) | Method and device for manufacturing 3d molded parts | |
US8956692B2 (en) | Device and method for manufacturing a three-dimensional body | |
CN103695681B (zh) | 一种铝基碳化硅颗粒增强复合材料及其构件的成型装置及方法 | |
JP6578433B2 (ja) | 一体形複合鋳型の積層造形によって鋳物部品を直接鋳造するための方法及びシステム | |
WO2019000705A1 (zh) | 一种金属工件的激光3d打印方法及其系统 | |
WO2019047925A1 (zh) | 一种吹气固化法3d打印铸造砂型的成形方法及装置 | |
US20100028645A1 (en) | Adaptive supports for green state articles and methods of processing thereof | |
RU2550670C2 (ru) | Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления | |
CN104010749A (zh) | 用于制备三维物体的方法和装置 | |
US20140175704A1 (en) | Draping and Compression Molding Tool and Method for Producing a Preform and a Fiber-Plastic Composite Component | |
US11718038B2 (en) | Mold lock remediation | |
CN114289685A (zh) | 一种多材质复合砂型成形方法及装置 | |
CN112789130A (zh) | 生产反模板的方法以及使用此类的反模板制造具有复杂形状部件的方法 | |
CN107900331B (zh) | 一种有效防止金属合金构件开裂的激光3d打印成型设备 | |
JP3147744B2 (ja) | 砂鋳型の積層造形方法及びこれを用いた鋳物の製造方法 | |
GB2569814A (en) | Method of creating a mould from refractory material | |
US11712843B2 (en) | Binder jetting apparatus and methods | |
WO2013011853A1 (ja) | ガラス筐体の成形装置及び成形方法 | |
CN117597208B (zh) | 用于金属增材浇铸的砂模成型 | |
JPH10225759A (ja) | 金属地複合体を製造する装置および方法 | |
JPH0259139A (ja) | 消失模型鋳造における異形管類の製造装置 | |
Pattnaik | Investigation of selective laser sintering of zirconium diboride parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |