CN110183742B - 一种应力响应的多色彩变化的复合薄膜及制备方法和应用 - Google Patents

一种应力响应的多色彩变化的复合薄膜及制备方法和应用 Download PDF

Info

Publication number
CN110183742B
CN110183742B CN201910412850.5A CN201910412850A CN110183742B CN 110183742 B CN110183742 B CN 110183742B CN 201910412850 A CN201910412850 A CN 201910412850A CN 110183742 B CN110183742 B CN 110183742B
Authority
CN
China
Prior art keywords
composite film
stress
responsive
polyvinyl alcohol
sodium alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910412850.5A
Other languages
English (en)
Other versions
CN110183742A (zh
Inventor
余亚东
刘昭明
唐睿康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910412850.5A priority Critical patent/CN110183742B/zh
Publication of CN110183742A publication Critical patent/CN110183742A/zh
Application granted granted Critical
Publication of CN110183742B publication Critical patent/CN110183742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种应力响应的多色彩变化的复合薄膜材料,复合薄膜包括50~90wt%的有机物和10~50wt%的磷酸钙纳米簇,所述有机物包括聚乙烯醇和海藻酸钠,所述聚乙烯醇和海藻酸钠的质量比为3~9:1。本发明还公开了一种制备应力响应的多色彩变化的复合薄膜材料的方法:(1)使用磷酸钙纳米簇作为无机单元前驱体,先后加入海藻酸钠水溶液和聚乙烯醇水溶液,通过乳液蒸发诱导自组装法制备各向同性的复合薄膜。本发明提供的复合薄膜现出优异的韧性,可以卷曲、折叠和具有较高的力学承载能力,具有优异的弹性。在正交偏振光系统下具有可逆的高度灵敏的色彩变化,可应用于光学器件、传感器或信息存储材料。

Description

一种应力响应的多色彩变化的复合薄膜及制备方法和应用
技术领域
本发明涉及功能薄膜材料技术领域,特别涉及一种应力响应的多色彩变化的复合薄膜及其制备方法和应用。
背景技术
各向异性材料因其独特的力学和光学性能成为材料科学领域的一个重要研究热点。在自然界中,动物的骨骼和海洋贝壳能够抵抗轴向压缩、弯曲和拉伸,都是因为其特殊的分级有序结构。蝴蝶翅膀和海洋贝壳的五颜六色和变色龙的变色行为同样源于结构的各向异性,即它们都是具有定向排列的晶体阵列的材料,在特定的光线下,会产生双折射,光的衍射,反射最终表现出五颜六色。兼具有各向异性和双折射的韧性材料在光学传感器,信息存储方面具有巨大的应用前景。
然而,目前人工合成的此类材料主要通过施加电场,磁场,机械力,温度梯度和离子浓度梯度等。且这些材料一般局限于水凝胶体系,这是由于其结构的柔韧性和可逆性。比如利用纤维素纳米晶或者纤维素纳米纤维在水凝胶中通过轴向拉伸获得的各向异性弹性水凝胶。如公开号为CN108409997A的中国专利文献公开了一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法。该方法是通过主客体作用制得以纤维素纳米晶须物理交联的单交联水凝胶,且在二次交联之前,通过外力实现对单交联水凝胶预拉伸取向,加入Fe3+二次交联可固定网络中纤维素纳米晶须的取向,制得力学性能更优的各向异性水凝胶。如公开号为CN107043441A的中国专利文献公开了一种海鞘纤维素纳米晶体/聚合物水凝胶及其制备方法和应用。该发明将海鞘纤维素制备成海鞘纤维素纳米晶体水悬浮液,向海鞘纤维素纳米晶体水悬浮液中加入亲水性聚合物单体和引发剂,混合均匀后在一定条件下发生交联反应,得到海鞘纤维素纳米晶体/聚合物水凝胶。
与固态材料相比,水凝胶材料的力学性能较弱,且必须存储在稳定的水环境中。在弹性固态薄膜中构建有序的纳米晶体阵列以获得具有可逆应力响应的光学薄膜仍然比较困难。因此,探索一种简单制备具有可逆应力响应的光学弹性薄膜的方法在物理,材料科学领域都有重大的研究意义与实际应用价值。
发明内容
本发明提供了一种应力响应的多色彩变化的复合薄膜及其制备方法,具有优异的弹性恢复和可逆的高度灵敏的色彩变化,应用于光学器件、传感器或信息存储材料。
本发明提供如下技术方案:
一种应力响应的多色彩变化的复合薄膜,所述复合薄膜包括50~90wt%的有机物和10~50wt%的磷酸钙纳米簇,所述有机物包括聚乙烯醇和海藻酸钠,所述聚乙烯醇和海藻酸钠的质量比为3~9:1。
优选的,所述复合薄膜包括52.5~61.4wt%的有机物和10.6~38.6wt%的磷酸钙纳米簇,所述有机物包括聚乙烯醇和海藻酸钠,所述聚乙烯醇和海藻酸钠的质量比为6:1。通过优化组分比例,上述范围的复合薄膜的弹性恢复能力和对色彩变化的灵敏度更好。
所述磷酸钙纳米簇的尺寸(直径)为1.75±0.27nm。
本发明还提供一种应力响应的多色彩变化的复合薄膜的制备方法,所述制备方法包括:
(1)使用磷酸钙纳米簇作为无机结晶单元前驱体,加入海藻酸钠水溶液和聚乙烯醇水溶液复合形成均匀的乳液;
(2)乳液通过蒸发诱导的自组装法得到各向同性的复合薄膜。
在本发明提供的复合薄膜中:聚乙烯醇构成复合薄膜的有机主网络结构。磷酸钙纳米簇在形成复合薄膜的过程中,逐渐相变(均匀矿化结晶)为结晶的羟基磷灰石纳米晶体,并与海藻酸钠分子以离子键结合。海藻酸钠作为连接聚乙烯醇与羟基磷灰石纳米晶体的中间体材料,获得各向同性的有机-无机复合薄膜,使得复合薄膜的网络成为有机-无机双网络,结构更加紧密,性能更加优异。通过调节磷酸钙的加入量,可以获得不同强度和韧性的复合薄膜。
在步骤(1)中,所述聚乙烯醇水溶液的浓度为1~5wt%,海藻酸钠水溶液的浓度为0.1~1wt%。钙盐与磷酸的反应温度为25℃左右。
对步骤(2)制备的复合薄膜进行保水处理。
为了保持复合薄膜的柔韧性,可以对干燥后的复合薄膜进行保水处理,保水处理的具体方法为:将复合薄膜浸于水与甘油的混合溶液中(甘油与水的体积比为8:2~2:8),进行保水处理5~10min。
所述磷酸钙纳米簇的制备方法为:以三乙胺作为稳定剂,将钙盐作为钙源、磷酸作为磷源加入到有机溶剂中生成磷酸钙纳米簇。
在磷酸钙纳米簇的制备过程中:所述有机溶剂选自乙二醇或丙三醇或两者的混合溶剂。
所述钙盐的浓度为0.001~0.5mol/L,保持钙磷摩尔比在1~2,三乙胺的浓度为0.02~1mol/L。
优选的,以乙醇为溶剂,使用二水氯化钙为钙源,磷酸为磷源。钙盐的浓度为0.02~0.05mol/L,保持钙磷摩尔比在1~1.67,三乙胺的浓度为0.2~0.5mol/L,反应温度在25℃左右。
本发明还提供一种应力响应的多色彩变化的复合薄膜在光学器件、传感器或信息存储材料的应用。
对本发明提供的复合薄膜在5~10%的应变范围内进行预拉伸,可以获得弹性应变在0~30%的弹性薄膜。在正交偏振光下,由于外加应力使得薄膜内部的有机链网络结构重排,同时带动无序的羟基磷灰石纳米晶体运动形成有序化晶体阵列,由于晶体的双折射和薄膜厚度变化产生的光的衍射现象,获得具有应力响应的多色彩变化的复合弹性薄膜材料。
附图说明
图1为本发明提供的复合薄膜的制备方法流程图;
图2为本发明提供的复合薄膜在弯曲或折叠下的变形示意图;
图3为本发明提供的复合薄膜在正交偏振光系统下的连续可逆的色彩变幻以及不同色彩状态的剪纸展示图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
实施例1
如图1所示的制备方法制备本发明提供的复合薄膜:使用磷酸钙纳米簇作为无机单元前驱体,先后加入海藻酸钠水溶液和聚乙烯醇水溶液形成均匀的乳液,通过蒸发诱导自组装法制备复合薄膜,薄膜内部形成大量的氢键和离子键作用力,从而赋予复合薄膜优异的力学性能。
具体制备方法如下:
制备磷酸钙纳米簇:配制氯化钙的乙醇溶液,11.76g二水合氯化钙溶于1.60L无水乙醇中,加入221.79mL三乙胺,搅拌30min,随后逐滴加入磷酸的乙醇溶液(4.18mL磷酸溶于80mL乙醇),剧烈搅拌12h,通过离心获得白色沉淀,反复用乙醇清洗,离心,再分散于乙醇中,制备浓度约为30mg mL-1的磷酸钙纳米簇。
复合薄膜是通过乳液蒸发诱导自组装法制备的,这是一种简单的自下而上的方法。首先,取6份20mL浓度约为30mg mL-1的磷酸钙纳米簇置于50mL离心管,8000rpm离心5min,倒掉上清液,分别加入10mL浓度为0.5wt%的海藻酸钠水溶液振荡均匀,随后加入10mL浓度为3.0wt%的聚乙烯醇水溶液,振荡均匀,转移至250mL烧杯中,剧烈搅拌3h,最后将均匀的乳液超声除气泡后转移至12cm×12cm的培养皿中,室温干燥,最后从培养皿中剥离,获得干燥后的复合薄膜。
复合薄膜具有优异的光学与力学性能。如图2所示,复合薄膜表现出良好的透明度,可以弯曲,折叠成复杂形状,可以裁剪。宽度为1cm,厚度为150μm的薄膜样条可以提拉6Kg重物而不断裂。为了保持薄膜的柔韧性,将薄膜先置于水中浸泡5min,随后置于甘油与水的混合溶液中(甘油与水的体积比为8:2),进行保水处理5~10min。
预拉伸(应变范围:5~10%)后获得弹性应变在0~30%的弹性薄膜。如图3所示,在正交偏振光系统下,循环应力作用于所制备的薄膜,随着应变的增大,颜色逐渐由淡黄到黄色,到粉红色最终到紫色的变化。脱加载后,薄膜表现出优异的弹性恢复。色彩变化是高度灵敏,可逆的。
实施例2
首先,取6份10mL浓度约为30mg mL-1的磷酸钙纳米簇置于50mL离心管,8000rpm离心5min,倒掉上清液,分别加入10mL浓度为0.5wt%的海藻酸钠水溶液振荡均匀,随后加入10mL浓度为3.0wt%的聚乙烯醇水溶液,振荡均匀,转移至250mL烧杯中,剧烈搅拌3h,最后将均匀的乳液超声除气泡后转移至12cm×12cm的培养皿中,室温干燥,最后从培养皿中剥离,获得干燥后的复合薄膜。所制备的复合薄膜同样表现出优异的韧性和在偏振光系统下的可逆的多色彩变幻。
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,所述复合薄膜包括50~90wt%的有机物和10~50wt%的磷酸钙纳米簇,所述有机物包括聚乙烯醇和海藻酸钠,所述聚乙烯醇和海藻酸钠的质量比为3~9:1;
所述制备方法包括:
(1)使用磷酸钙纳米簇作为无机结晶单元前驱体,加入海藻酸钠水溶液和聚乙烯醇水溶液复合形成均匀的乳液;
(2)乳液通过蒸发诱导的自组装法得到各向同性的复合薄膜。
2.根据权利要求1所述的应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,所述复合薄膜包括52.5~89.4wt%的有机物和10.6~47.5wt%的磷酸钙纳米簇,所述有机物包括聚乙烯醇和海藻酸钠,所述聚乙烯醇和海藻酸钠的质量比为6:1。
3.根据权利要求1-2任一所述的应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,所述磷酸钙纳米簇的尺寸为1.75±0.27nm。
4.根据权利要求1所述的应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,对步骤(2)制备的复合薄膜进行保水处理。
5.根据权利要求1所述的应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,所述磷酸钙纳米簇的制备方法为:以三乙胺作为稳定剂,将钙盐作为钙源、磷酸作为磷源加入到有机溶剂中生成磷酸钙纳米簇。
6.根据权利要求5所述的应力响应的多色彩变化的复合薄膜的制备方法,其特征在于,所述钙盐的浓度为0.001~0.5mol/L,保持钙磷摩尔比在1~2,三乙胺的浓度为0.02~1mol/L。
CN201910412850.5A 2019-05-17 2019-05-17 一种应力响应的多色彩变化的复合薄膜及制备方法和应用 Active CN110183742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910412850.5A CN110183742B (zh) 2019-05-17 2019-05-17 一种应力响应的多色彩变化的复合薄膜及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910412850.5A CN110183742B (zh) 2019-05-17 2019-05-17 一种应力响应的多色彩变化的复合薄膜及制备方法和应用

Publications (2)

Publication Number Publication Date
CN110183742A CN110183742A (zh) 2019-08-30
CN110183742B true CN110183742B (zh) 2020-07-07

Family

ID=67716790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910412850.5A Active CN110183742B (zh) 2019-05-17 2019-05-17 一种应力响应的多色彩变化的复合薄膜及制备方法和应用

Country Status (1)

Country Link
CN (1) CN110183742B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110669231B (zh) * 2019-09-10 2020-11-10 浙江大学 一种高强韧仿生肌肉水凝胶材料及其制备方法和应用
CN110607569B (zh) * 2019-09-16 2022-01-18 东华大学 一种二维限域自组装制备纳米纤维素液晶微纤维的方法
CN112980120B (zh) * 2021-03-02 2022-02-18 浙江大学 一种离子矿物塑料的制备方法及其产品和应用
CN113234237B (zh) * 2021-06-18 2022-04-29 武汉大学 一种高强度纳米纤维素/海藻酸复合水凝胶的制备方法
CN113577103B (zh) * 2021-08-11 2022-07-26 浙江大学 一种小尺寸的磷酸钙纤维及其制备方法和应用
WO2023213792A1 (en) * 2022-05-05 2023-11-09 Basf Se Composition, preparation for the same and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254539A (zh) * 2013-04-23 2013-08-21 天津工业大学 一种高强度高韧性蛋白质分子印迹杂化凝胶膜及其制备方法
CN103756646A (zh) * 2014-02-11 2014-04-30 北京科技大学 一种金属有机骨架基复合相变材料的制备方法
CN105968405A (zh) * 2016-05-30 2016-09-28 天津工业大学 一种抗菌保湿可降解多孔凝胶保鲜膜及其制备方法和应用
CN106141171A (zh) * 2015-04-27 2016-11-23 中国科学院宁波材料技术与工程研究所 核壳型超结构纳米材料、其制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417514B (zh) * 2015-11-18 2017-11-21 湖北工业大学 一种油基羟基磷灰石胶态液晶的制备方法
CN106729928B (zh) * 2017-01-16 2020-01-14 武汉理工大学 一种聚乙烯醇/海藻酸钠/羟基磷灰石复合纤维膜及其制备方法、应用
CN107215885B (zh) * 2017-06-23 2019-01-25 浙江大学 一种无机聚离子团簇及其制备方法和应用
CN109295546B (zh) * 2018-10-25 2021-04-23 中国科学技术大学 一种仿生多级螺旋超韧纳米复合纤维及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254539A (zh) * 2013-04-23 2013-08-21 天津工业大学 一种高强度高韧性蛋白质分子印迹杂化凝胶膜及其制备方法
CN103756646A (zh) * 2014-02-11 2014-04-30 北京科技大学 一种金属有机骨架基复合相变材料的制备方法
CN106141171A (zh) * 2015-04-27 2016-11-23 中国科学院宁波材料技术与工程研究所 核壳型超结构纳米材料、其制备方法及应用
CN105968405A (zh) * 2016-05-30 2016-09-28 天津工业大学 一种抗菌保湿可降解多孔凝胶保鲜膜及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"HAp granules encapsulated oxidized alginate–gelatin-biphasic";Avik Sarker 等;《International Journal of Biological Macromolecules》;20151130(第81期);第898-911页 *
"胶原矿化与仿生修复";吴媛媛 等;《化学进展》;化学进展;20181022;第30卷(第10期);第1503-1510页 *

Also Published As

Publication number Publication date
CN110183742A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN110183742B (zh) 一种应力响应的多色彩变化的复合薄膜及制备方法和应用
Lu et al. Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity
Ma et al. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil
Hu et al. Functionalized bacterial cellulose derivatives and nanocomposites
Aguirre et al. Tunable colors in opals and inverse opal photonic crystals
Cui et al. Aggregated structures and their functionalities in hydrogels
Muscatello et al. Poly (vinyl alcohol) rehydratable photonic crystal sensor materials
Wang et al. Fast photoinduced large deformation of colloidal spheres from a novel 4-arm azobenzene compound
Zhang et al. Aligned/unaligned conducting polymer cryogels with three-dimensional macroporous architectures from ice-segregation-induced self-assembly of PEDOT-PSS
Hussain et al. Photonic cholesteric liquid-crystal elastomers with reprogrammable helical pitch and handedness
Mehandzhiyski et al. A novel supra coarse-grained model for cellulose
CN112851972B (zh) 一种纳米纤维素聚合物光学复合水凝胶的制备方法和应用
CN103145914A (zh) 一种高强度pH、温度快速双响应纳米复合水凝胶的制备方法
Chen et al. Physically controlled cross-linking in gelated crystalline colloidal array photonic crystals
Hamad Photonic and semiconductor materials based on cellulose nanocrystals
Miyagi et al. Construction of functional materials in various material forms from cellulosic cholesteric liquid crystals
Ma et al. Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography
Guo et al. Fabrication of gradient anisotropic cellulose hydrogels for applications in micro-strain sensing
Luo et al. Fabrication of antiseptic, conductive and robust polyvinyl alcohol/chitosan composite hydrogels
Wang et al. Self-healable poly (vinyl alcohol) photonic crystal hydrogel
Zheng et al. Anisotropic chitosan/tunicate cellulose nanocrystals hydrogel with tunable interference color and acid-responsiveness
Li et al. Controlled tuning of LCST based on poly (N-isopropylacrylamide)/Hydroxypropyl cellulose temperature-sensitive hydrogel by electron beam pre-radiation method
Yin et al. Robust self-healing magnetically induced colloidal photonic crystal hydrogels
Hu et al. Advances in bioinspired and multifunctional biomaterials made from chiral cellulose nanocrystals
Wang et al. Reprogrammable humidity-driven liquid crystalline polymer actuator enabled by dynamic ionic bonds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant