CN110183684B - 一种改性油页岩半焦及其制备方法和在高分子材料中的应用 - Google Patents

一种改性油页岩半焦及其制备方法和在高分子材料中的应用 Download PDF

Info

Publication number
CN110183684B
CN110183684B CN201910510572.7A CN201910510572A CN110183684B CN 110183684 B CN110183684 B CN 110183684B CN 201910510572 A CN201910510572 A CN 201910510572A CN 110183684 B CN110183684 B CN 110183684B
Authority
CN
China
Prior art keywords
oil shale
semicoke
coupling agent
modified
silane coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910510572.7A
Other languages
English (en)
Other versions
CN110183684A (zh
Inventor
张哲�
潘昊
张元硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Jiahe polymer material Co.,Ltd.
Original Assignee
Yantai Jiahe Polymer Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Jiahe Polymer Material Co ltd filed Critical Yantai Jiahe Polymer Material Co ltd
Priority to CN201910510572.7A priority Critical patent/CN110183684B/zh
Publication of CN110183684A publication Critical patent/CN110183684A/zh
Application granted granted Critical
Publication of CN110183684B publication Critical patent/CN110183684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种改性油页岩半焦,该改性油页岩半焦为表面接枝了对氨基苯磺酰基团的油页岩半焦。通过包括:(1)油页岩半焦与硅烷偶联剂在水介质中反应,得到硅烷偶联剂改性的油页岩半焦;(2)硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯反应,得到所述的改性油页岩半焦。与现有油页岩半焦相比,本发明的改性油页岩半焦可显著提高高分子材料的力学性能,阻燃性,抑烟性,耐候性和绝缘性能,降低烟气毒性,是一种优良的高分子材料添加剂。

Description

一种改性油页岩半焦及其制备方法和在高分子材料中的应用
技术领域
本发明涉及一种改性油页岩半焦及其制备方法和在高分子材料中的应用。
背景技术
油页岩又称油母页岩,是一种高灰分的固体可燃有机矿产,低温干馏可获得页岩油,含油率大于3.5%,有机质含量较高,主要为腐泥质、腐殖质或混合型,其发热量一般大于4187J/g。世界油页岩资源十分丰富,其世界总储量折算成发热量仅次于煤炭而居第二位。油页岩在世界许多地区都有分布,但分布并不均匀,主要分布于美国、中国、加拿大、爱沙尼亚和巴西等国家。根据目前全球油页岩现状,若将它折算成页岩油,可以达到50多亿吨,这一数字将随着油页岩资源进一步开发、利用的加大而增大。
油页岩炼油后的废渣称作半焦,或者低温焦,或者兰炭。页岩油的炼制,会产生大量的废渣即半焦,大部分半焦被直接丢弃堆置在附近的灰渣场。堆积的半焦不但占用大量的土地,而且半焦中含有重金属、放射性元素和致癌物质等,这些物质经过雨水淋浸,分化扩散后严重污染周围生态环境、破坏土壤结构,使土地毒化、酸化和失去生产能力,严重危害人民的健康。爱沙尼亚是世界上油页岩工业比较发达的国家,废渣堆积物已经超过8×109吨,结果大片森林被毁坏,地下水位下降,空气、河流、湖泊都受到严重污染,这与油页岩半焦堆积物密切相关。我国油页岩资源的开发利用已有多年的历史,仅广东茂名石油公司每年就会产生万吨的油页岩半焦或灰渣,覆盖面积达到9749亩,酸性水渗进农田,使土壤发臭,污染作物,给当地造成了严重的环境污染。随着油页岩炼油和发电规模的不断扩大,解决油页岩半焦的堆积问题显得尤为重要。
目前,油页岩半焦的综合利用研究较多,涉及多个领域。工业中用作水泥的制备原料,这个应用相对成熟,以油页岩半焦为原料制备水泥和混凝土材料不但能够降低生产成本,而且减少了半焦对环境的污染;制备外墙保温用隔热板,该材料具有多孔质轻、强度高和保温隔热性能好等优点,可以用作承重和非承重空心砌块,外墙保温材料,广泛用于高层建筑,桥梁工程等,工地临时工棚建设等;制备微晶玻璃,该是一种在玻璃相中均匀分布着大量气孔和微晶体的新型环保建筑材料,具有轻质高强、隔热、吸声、防火、耐腐蚀及可加工等优越性能,因此广泛用于建筑承重墙、热油储罐、隔音材料和石油化工生产领域;用于吸附领域,油页岩半焦具有较大的比表面积,较高的孔隙率,已被成功的应用于污水处理,地基防潮,污染土壤修复等领域;用于农业肥料领域,主要是农业用肥料、土壤改良剂等;用于塑料和橡胶领域,作为添加剂加入能够提高橡胶的拉伸强度,300%定伸应力、硬度及扯断伸长率,使产品具有更好的耐热性、耐磨性、硬度、尺寸稳定性和抗老化性。
申请人在研究本发明产品前期,调查了市场中橡塑添加剂的种类,发现半焦用于高分子材料领域,仅仅是文献报道,未见实际市售产品。在文献报道中,仅仅有几篇文献中提到或者研究了半焦在橡塑材料中添加的工艺及对复合材料性能带来的影响。
蒋鹏等人报道的《油页岩碴超细粉碎及其在天然橡胶中的应用》(非金属矿,2006)将油页岩渣超细粉碎后,按不同粒度、不同份数添加到天然橡胶中制备硫化胶,测试结果表明:平均粒径为5.16μm的油页岩碴,添加量为10份时,胶片拉伸强度达到最高,为26.3MPa,撕裂强度为37.5kN·m-1,添加量为60份时,胶片拉伸强度为14.4MPa,撕裂强度为26.9kN·m-1
中国专利CN 1098117A报道了《油页岩灰聚烯烃填充剂及其制备方法》,是由油页岩灰、偶联剂、分散剂、润滑剂、树脂按一定比例在高速混合机中高速混合,再切成所需的颗粒。该发明的填充剂由于使用合适的偶联剂,从而提高了填充剂的抗冲强度、剪切强度、拉伸强度,而且制备工艺简单,填充剂易与塑料、橡胶混合。
肖其海报道了《油页岩灰填充母粒的研制》(中国塑料,2000),将页岩灰填充母粒填充到树脂PP和PE中,结果表明当填充量为10份时,使用页岩灰填充母粒的树脂的拉伸强度为18.4MPa,比纯树脂的拉伸强度提高5.7%,比填充CaCO3的提高41.5%,而且在抗压强度和耐冲击性上也有明显的增强作用。此外页岩灰填充母粒还被用于试制橡塑发泡鞋底、即蓄电池槽、夹克管和管材。
任涛等人报道了《油页岩渣/橡胶复合材料的制备和性能研究》(北方建筑,2019),采用混炼硫化法,以油页岩渣为填料,以橡胶为基质材料,制备了油页岩渣/橡胶复合材料,并探讨了油页岩渣的颗粒粒径和填充量对复合材料相关性能的影响。结果表明:当粒度为2.005μm(球磨2h),填充量为10份时,复合材料拉伸强度最大为8.960MPa,效果最佳。
魏存弟等人报道的专利《一种利用改性油页岩半焦制备橡胶填料的方法》(CN106867065 A),该发明涉及一种用改性油页岩半焦作橡胶填料的制备方法。其特征在于它包括:1)将干流后的油页岩半焦进行超细粉碎;2)放入高温炉中居烧,隔绝空气保温,随炉冷却制成炭化油页岩半焦;3)将上述碳化的油页岩半焦超细粉体经表面改性剂改性后得到改性油页岩半焦粉体,表面改性剂的加入量为粉体质量的2%,改性温度室温,改性时间30分钟;4)将改性油页岩半焦,生胶,炭黑,氧化样,硬脂酸,抗氧化剂,液体石蜡,硫磺,促进剂,放入混炼机中,在一定温度下混炼;5)冷却后在平板硫化机上成型。该发明虽然具体讲述了半焦在高分子材料中的应用,但是过程比较复杂,首先其半焦在利用之前进行了碳化,业内人员均知,半焦碳化需要超过700℃的温度,非常耗能,如果工业化利用则占用非常大的成本;其次未见机械性能之外的其他性能测试。
以上文献报道可以看出,研究人员仅仅是关注了半焦用于橡塑材料后,对复合材料力学性能带来的变化,未见有文献报道改性半焦对高分子材料阻燃,抑烟及低毒性的报道。就目前复合材料改性的发展趋势看,仅仅改善其力学性能是远远不够的,需要将力学性能,阻燃性,低烟性,低毒性等完整的统筹起来。
发明内容
根据现有油页岩半焦应用于高分子材料时的不足,本发明的目的是提供一种改性油页岩半焦及其制备方法和在高分子材料中的应用。
为实现上述目的,本发明采用如下技术方案:
一种改性油页岩半焦,所述的改性油页岩半焦为表面接枝了对氨基苯磺酰基团的油页岩半焦。
优选地,所述的对氨基苯磺酰基团通过硅烷偶联剂接枝在油页岩半焦的表面。
优选地,所述的油页岩半焦的粒度在3000目以上。
上述改性油页岩半焦的制备方法,包括:
(1)油页岩半焦与硅烷偶联剂在水介质中反应,得到硅烷偶联剂改性的油页岩半焦;
(2)硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯反应,得到所述的改性油页岩半焦。
优选地,油页岩半焦在与硅烷偶联剂反应之前,先用碱活化油页岩半焦,优选地,用碱活化油页岩半焦的过程为:油页岩半焦在浓度为30wt%的氢氧化钠溶液中于70℃下回流10小时。碱活化的目的一方面是去除油页岩半焦所含的可燃性有机物,如页岩油等,另一方面是增加油页岩半焦表面的羟基,以便与硅烷偶联剂结合。
上述碱活化处理过程中,每1克油页岩半焦用5~50mL浓度为30wt%的氢氧化钠溶液回流。
优选地,步骤(1)中,所述的硅烷偶联剂为KH-550,用量为油页岩半焦质量的1~10%,反应温度为60~80℃,时间1~5小时。
在水中,硅烷偶联剂先发生水解,水解产生的硅醇再通过缩合接枝到油页岩半焦表面。为提高该步骤的接枝效率,硅烷偶联剂可预先充分水解,再与油页岩半焦混合回流反应。
步骤(2)中,硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯在催化量的氢氧化钠催化下反应,对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的1~10%,反应温度为60~80℃,时间3~6小时。
优选地,对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的3~10%,更优选地,对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的6~10%,最优选地,对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的10%。
上述改性油页岩半焦作为添加剂在高分子材料中的应用。
一种半焦基高分子材料多功能助剂,包括如下重量份数的组分:如上所述的改性油页岩半焦90~98份和马来酸酐接枝聚乙烯蜡1~5份。
优选地,所述的半焦基高分子材料多功能助剂还含锡酸锌0.5~3份、锂基蒙脱土0.5~3份。优选地,所述的半焦基高分子材料多功能助剂的粒径D97不低于3000目。
一种EVA复合材料,组分为:乙烯-醋酸乙烯共聚物40wt%,如上所述的半焦基高分子材料多功能助剂58wt%,余量为抗老化剂和润滑剂。
与现有油页岩半焦相比,本发明的改性油页岩半焦可显著提高高分子材料的力学性能,阻燃性,抑烟性,耐候性和绝缘性能,降低烟气毒性,是一种优良的高分子材料添加剂,如作为电线电缆用无卤低烟阻燃电缆料的添加剂。
附图说明
图1为实施例1所制备的有机化半焦的扫描电镜图。
图2为实施例1所制备的有机化半焦红外光谱图。
图3为实施例1所制备的有机化半焦半焦XRD谱图。
具体实施方式
以下结合附图及优选实施例对本发明做进一步详细说明。
如无特别说明,本发明的份数为重量份数。
实施例1
(1)将油页岩半焦原矿粉碎至3000目以上,取100克半焦粉末加入500毫升30wt%的氢氧化钠溶液中70℃下回流10小时,冷却至室温后过滤,用蒸馏水洗涤至中性后配置成固液比为25%的浆料。
(2)向浆料中添加水解好(每50毫升水中添加10毫升硅烷偶联剂KH-550,充分水解)的硅烷偶联剂KH-550,偶联剂添加量为半焦质量的10%,70℃下回流2小时,之后过滤,得到的过滤产物无需干燥,直接用乙醇索氏提取12小时,除去未接枝到半焦表面的偶联剂。真空干燥乙醇溶剂,最大程度除去半焦吸附乙醇,得到硅烷接枝半焦粉末。
(3)取硅烷接枝半焦粉末100克,按1wt%添加氢氧化钠,将上述混合物加入500mL蒸馏水中,搅拌并超声分散0.5小时,之后加入硅烷接枝半焦粉末质量10%的对氨基苯磺酰氯,在70℃下反应5小时,反应完成后加入1mol/L的稀盐酸10毫升,室温搅拌0.5小时,过滤,并用蒸馏水洗涤至检测不出氯离子,然后用三氯甲烷索氏提取物理吸附在半焦表面的对氨基苯磺酰基团,真空干燥索氏提取后产品,即得本发明的表面接枝对氨基苯磺酰基团的改性半焦产品,标记为有机化半焦。
从图1可以看出,有机化半焦的疏松度非常高,具有很好地片层结构。
从图2中可以看出,在经过长时间索氏提取后,仍然能够明显观察到磺酸基的特征峰,1089cm-1处的吸收峰为C-S伸缩振动吸收峰,749cm-1为苯环C-H面外弯曲振动,说明本发明成功将对氨基苯磺酰基团接枝到半焦表面。
从图3可以看出,经过表面有机化改性几乎没有改变半焦原矿的结构。
实施例2
半焦基高分子材料多功能助剂复配:96份有机化半焦(按实施例1制备),1份锡酸锌(作为阻燃抑烟协效剂),1份锂基蒙脱土(作为阻燃抑烟协效剂),2份马来酸酐接枝聚乙烯蜡(相容剂),将这四种物质混合均匀后通过连续式粉体表面改性机(转速3000转/分钟),之后再次气流粉碎,使混合粉体的粒径D97不低于3000目,即得油页岩半焦基高分子材料多功能助剂。
EVA(乙烯-醋酸乙烯共聚物)复合材料:以40份EVA为基体,添加上述油页岩半焦基高分子材料多功能助剂58份,其他抗老化剂和润滑剂共2份,密炼(120℃下混炼15分钟)制备复合材料,测试复合材料力学性能,阻燃性,抑烟性,锥量燃烧相关性能,烟气毒性,体积电阻率,及耐候性。
实施例3
EVA复合材料的制备过程与实施例2相同,区别只在于:半焦基高分子材料多功能助剂是由98份有机化半焦(按实施例1制备)和2份马来酸酐接枝聚乙烯蜡复配得到。
对比例1
EVA复合材料的制备过程与实施例2相同,区别只在于:半焦基高分子材料多功能助剂是由98份纯油页岩半焦和2份马来酸酐接枝聚乙烯蜡复配得到。
对比例2
EVA复合材料的制备过程与实施例2相同,区别只在于:半焦基高分子材料多功能助剂是由96份纯油页岩半焦,1份锡酸锌,1份锂基蒙脱土,2份马来酸酐接枝聚乙烯蜡复配得到。
对比例3
EVA复合材料的制备过程与实施例2相同,区别只在于:半焦基高分子材料多功能助剂是由98份硅烷接枝半焦粉末(按实施例1的步骤(1)-(2)制备)和2份马来酸酐接枝聚乙烯蜡复配得到。
对比例4
EVA复合材料的制备过程与实施例2相同,区别只在于:半焦基高分子材料多功能助剂是由96份硅烷接枝半焦粉末,1份锡酸锌,1份锂基蒙脱土,2份马来酸酐接枝聚乙烯蜡复配得到。
对比例5市售无卤低烟阻燃EVA复合材料
EVA复合材料的制备过程与实施例2相同,区别只在于:有机化半焦全部用超细氢氧化镁替代。
上述各EVA复合材料性能测试结果如下(下表数据测试方法无特殊说明,均按照国标GB/T 32129-2015执行):
Figure BDA0002093349000000071
Figure BDA0002093349000000081
从实施例2与对比例2、对比例4,实施例3与对比例1、对比例3的对比结果可以看出,与纯油页岩半焦和硅烷接枝半焦相比,添加本发明的有机化半焦的EVA复合材料各项性能均有显著的改善。
实施例4
(1)将油页岩半焦原矿粉碎至3000目以上,取100克半焦粉末加入500毫升30wt%的氢氧化钠溶液中70℃下回流10小时,冷却至室温后过滤,用蒸馏水洗涤至中性后配置成固液比为25%的浆料。
(2)向浆料中添加水解好的硅烷偶联剂KH-550,偶联剂添加量为半焦质量的10%,70℃下回流2小时,之后过滤,得到的过滤产物无需干燥,直接用乙醇索氏提取12小时,除去未接枝到半焦表面的偶联剂。真空干燥乙醇溶剂,最大程度除去乙醇,得到硅烷接枝半焦粉末。
(3)取硅烷接枝半焦粉末100克,按5wt%添加氢氧化钠,将上述混合物加入500mL蒸馏水中,搅拌并超声分散0.5小时,之后加入硅烷接枝半焦粉末质量10%的对氨基苯磺酰氯,在70℃下反应5小时,反应完成后加入1mol/L的稀盐酸10毫升,室温搅拌0.5小时,过滤,并用蒸馏水洗涤至检测不出氯离子,然后用三氯甲烷索氏提取物理吸附在半焦表面的对氨基苯磺酰基团,真空干燥索氏提取后产品,即得本发明的表面接枝对氨基苯磺酰基团的改性半焦产品,标记为有机化半焦。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种改性油页岩半焦,所述的改性油页岩半焦为表面接枝了对氨基苯磺酰基团的油页岩半焦;
所述的对氨基苯磺酰基团通过硅烷偶联剂接枝在油页岩半焦的表面;
所述的改性油页岩半焦通过硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯反应得到;
所述硅烷偶联剂为KH-550,用量为油页岩半焦质量的1~10%;
对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的1~10%。
2.根据权利要求1所述的改性油页岩半焦,其特征在于:所述的油页岩半焦的粒度在3000目以上。
3.权利要求1~2任一所述的改性油页岩半焦的制备方法,包括:
(1)油页岩半焦与硅烷偶联剂在水介质中反应,得到硅烷偶联剂改性的油页岩半焦;
(2)硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯反应,得到所述的改性油页岩半焦。
4.根据权利要求3所述的制备方法,其特征在于:油页岩半焦在与硅烷偶联剂反应之前,先用碱活化油页岩半焦。
5.根据权利要求4所述的制备方法,其特征在于:用碱活化油页岩半焦的过程为:油页岩半焦在浓度为30wt%的氢氧化钠溶液中于70℃下回流10小时。
6.根据权利要求3所述的制备方法,其特征在于:步骤(1)中,所述的硅烷偶联剂为KH-550,用量为油页岩半焦质量的1~10%,反应温度为60~80℃,时间1~5小时;
步骤(2)中,硅烷偶联剂改性的油页岩半焦与对氨基苯磺酰氯在催化量的氢氧化钠催化下反应,对氨基苯磺酰氯的用量为硅烷偶联剂改性的油页岩半焦质量的1~10%,反应温度为60~80℃,时间3~6小时。
7.权利要求1~2任一所述的改性油页岩半焦作为添加剂在高分子材料中的应用。
8.一种半焦基高分子材料多功能助剂,包括如下重量份数的组分:权利要求1~2任一所述的改性油页岩半焦 90~98份和马来酸酐接枝聚乙烯蜡1~5份。
9.根据权利要求8所述的半焦基高分子材料多功能助剂,其特征在于:还含锡酸锌0.5~3份、锂基蒙脱土0.5~3份。
10.一种EVA复合材料,组分为:乙烯-醋酸乙烯共聚物40wt%,权利要求8或9所述的半焦基高分子材料多功能助剂 58wt%,余量为抗老化剂和润滑剂。
CN201910510572.7A 2019-06-13 2019-06-13 一种改性油页岩半焦及其制备方法和在高分子材料中的应用 Active CN110183684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910510572.7A CN110183684B (zh) 2019-06-13 2019-06-13 一种改性油页岩半焦及其制备方法和在高分子材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910510572.7A CN110183684B (zh) 2019-06-13 2019-06-13 一种改性油页岩半焦及其制备方法和在高分子材料中的应用

Publications (2)

Publication Number Publication Date
CN110183684A CN110183684A (zh) 2019-08-30
CN110183684B true CN110183684B (zh) 2021-10-15

Family

ID=67721662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910510572.7A Active CN110183684B (zh) 2019-06-13 2019-06-13 一种改性油页岩半焦及其制备方法和在高分子材料中的应用

Country Status (1)

Country Link
CN (1) CN110183684B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072411A (zh) * 2019-12-24 2020-04-28 中国科学院青岛生物能源与过程研究所 一种油页岩半焦及其改性材料的应用
CN111187448B (zh) * 2020-02-17 2021-09-03 西北师范大学 一种油页岩半焦基复合阻燃剂及其制备方法和在高分子材料中的应用
CN111154166B (zh) * 2020-02-21 2022-07-29 窑街煤电集团有限公司 一种油页岩半焦基多功能地膜及其制备方法
CN112300443B (zh) * 2020-11-30 2022-05-06 西北师范大学 一种改性半焦阻燃抑烟剂的制备及在制备pvc复合材料中的应用
CN112919977B (zh) * 2021-04-12 2023-04-28 兰州交通大学 一种改性油页岩半焦包膜缓、控释肥料及其制备方法
CN113388428B (zh) * 2021-04-12 2022-11-11 西北大学 一种煤中低温热解半焦钝化组合物
CN113121884B (zh) * 2021-05-10 2022-12-23 西北师范大学 一种改性油页岩半焦及其制备方法和在橡胶中的应用
CN113527766B (zh) * 2021-07-15 2023-04-07 烟台佳合塑胶科技有限公司 一种改性油页岩半焦及其制备方法和在低成本管道包覆料中的应用
CN114057428B (zh) * 2022-01-17 2022-04-12 甘肃智通科技工程检测咨询有限公司 一种油页岩半焦吸附抑制剂及其在混凝土制备中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735681A (zh) * 2008-11-18 2010-06-16 新泰莱博有限公司 聚合物纳米复合物阻燃性发泡型涂料及其制备方法和应用
CN105255035A (zh) * 2015-10-23 2016-01-20 全椒祥瑞塑胶有限公司 一种聚苯乙烯改性耐热复合塑料
CN109096493A (zh) * 2018-08-24 2018-12-28 北京理工大学 一种聚合反应型环氧树脂阻燃剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867065A (zh) * 2017-03-08 2017-06-20 吉林大学 一种利用改性油页岩半焦制备橡胶填料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735681A (zh) * 2008-11-18 2010-06-16 新泰莱博有限公司 聚合物纳米复合物阻燃性发泡型涂料及其制备方法和应用
CN105255035A (zh) * 2015-10-23 2016-01-20 全椒祥瑞塑胶有限公司 一种聚苯乙烯改性耐热复合塑料
CN109096493A (zh) * 2018-08-24 2018-12-28 北京理工大学 一种聚合反应型环氧树脂阻燃剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Flame Retardancy and Thermal Stability of Polypropylene Composite Containing Ammonium Sulfamate Intercalated Kaolinite;Wufei Tang等;《Industrial & Engineering Chemistry Research》;20160624;第7669-7678页 *
Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides;Mauro Zammarano等;《Polymer》;20050810;第9314–9328页 *
插层水滑石对聚丙烯阻燃性能和力学性能的影响;涂永鑫;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20180415(第04期);B016-229 *
油母页岩粉体的结构改性及其橡胶复合材料的性能研究;赵红梅;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20051115(第07期);B016-95 *

Also Published As

Publication number Publication date
CN110183684A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
CN110183684B (zh) 一种改性油页岩半焦及其制备方法和在高分子材料中的应用
Nguyen et al. Agricultural wastes preparation, management, and applications in civil engineering: a review
Kang et al. Rejuvenated fly ash in poly (vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression
Wei et al. Environment-friendly dual-network hydrogel dust suppressant based on xanthan gum, polyvinyl alcohol and acrylic acid
Eterigho-Ikelegbe et al. Coal as a filler in polymer composites: a review
CN101831187B (zh) 一种橡胶改性沥青温拌剂、制备方法和应用
CN106867065A (zh) 一种利用改性油页岩半焦制备橡胶填料的方法
CN102417737A (zh) 低碳电气石改性沥青及其制备方法
CN109293190B (zh) 一种含油污泥的处理方法
CN106147912A (zh) 一种固硫高热稳定性的低阶煤的型煤制备方法
CN102329598A (zh) 一种钻井液用清洁润滑剂及制备方法
CN1036223A (zh) 防水的可燃性集料,它的生产方法及用于该方法的原料组合物
Yaro et al. Utilization of palm oil mill residue as sustainable pavement materials: A review
CN102653631A (zh) 一种道路用混合沥青及其制备方法
CN110862827A (zh) 用于矿山修复的凹凸棒石土壤修复剂及其制备方法
CN110964335A (zh) 一种将油基钻屑处理残渣用于铺路沥青填料的方法
Zhang et al. A review of converting woody biomass waste into useful and eco-friendly road materials
CN106710664A (zh) 一种高导电性煅烧石油焦炭及其制备方法
CN111187448B (zh) 一种油页岩半焦基复合阻燃剂及其制备方法和在高分子材料中的应用
CN113527766B (zh) 一种改性油页岩半焦及其制备方法和在低成本管道包覆料中的应用
CN106118473A (zh) 非固化橡胶沥青防水涂料及其制备方法
CN102167545B (zh) 一种低温隧道无烟阻燃路面材料及制备方法
CN105819750A (zh) 生活垃圾焚烧飞灰直接作为沥青混合料的填料及其在路面中的清洁应用
Rangan et al. Compressive strength of laterite soil stabilized with rice straw ash and fly ash based geopolymer
CN114015254A (zh) 一种具有阻根作用的改性沥青及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210916

Address after: 264000 Haiyang Economic Development Zone Industrial Park, Yantai City, Shandong Province

Applicant after: Yantai Jiahe polymer material Co.,Ltd.

Address before: 730070 No. 967 Anning East Road, Anning District, Gansu, Lanzhou

Applicant before: Northwest Normal University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant