CN110180872B - Explosion-proof processing device for metal powder - Google Patents

Explosion-proof processing device for metal powder Download PDF

Info

Publication number
CN110180872B
CN110180872B CN201910565006.6A CN201910565006A CN110180872B CN 110180872 B CN110180872 B CN 110180872B CN 201910565006 A CN201910565006 A CN 201910565006A CN 110180872 B CN110180872 B CN 110180872B
Authority
CN
China
Prior art keywords
reaction kettle
feeding
exhaust
pipeline
communicated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910565006.6A
Other languages
Chinese (zh)
Other versions
CN110180872A (en
Inventor
程汉华
冯奔
唐涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Oriental Environment Technology Research Co ltd
Original Assignee
Suzhou Oriental Environment Technology Research Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Oriental Environment Technology Research Co ltd filed Critical Suzhou Oriental Environment Technology Research Co ltd
Priority to CN201910565006.6A priority Critical patent/CN110180872B/en
Publication of CN110180872A publication Critical patent/CN110180872A/en
Application granted granted Critical
Publication of CN110180872B publication Critical patent/CN110180872B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

An explosion-proof treatment device for metal powder; comprises a reaction kettle, the upper part of which is open and is provided with a first feeding port and a second feeding port; the stirring device comprises a stirring shaft and a driving mechanism; the stirring shaft vertically extends into the reaction kettle and is provided with a plurality of stirring paddles; an exhaust part is arranged at the upper section of the inner wall of the reaction kettle and communicated with an exhaust pipeline for exhausting gas to the atmosphere through the exhaust pipeline; the bottom of the reaction kettle is provided with a discharge port which is communicated with a centrifugal machine, and solid and liquid are separated and discharged through the centrifugal machine; the reaction kettle is also provided with a guide sleeve, the upper end of the guide sleeve is fixed relative to the reaction kettle and is communicated with the upper opening, the lower end of the guide sleeve is in height difference with the mixture in the reaction kettle, and the side wall of the guide sleeve is arranged at intervals with the inner wall of the reaction kettle. The invention solves the problem that metal powder is difficult to treat, eliminates dangerous sources, and ensures that hydrogen generated by reaction is controllable and safe to discharge. The powder treatment device has the practical progressive characteristics of ingenious structural design, good powder treatment effect, high safety in the treatment process, high automation degree and the like.

Description

Explosion-proof processing device for metal powder
Technical Field
The invention relates to the technical field of metal powder treatment, in particular to an explosion-proof treatment device for metal powder. The metal powder includes, but is not limited to, aluminum powder and magnesium powder.
Background
In the production link of industrial casting, metal dust generated by surface treatment is listed as an important supervision and improvement object for safe production in various areas by national security authorities in recent years due to the risk of deflagration.
The conventional dust collection methods include a dry collection method and a wet collection method, and both the collection methods can collect metal dust, but the collected metal powder is easy to deflagrate and react with water to generate hydrogen after contacting with moisture, and the hydrogen is inflammable and explosive gas, so that the metal powder is inconvenient to store and transport. It can be seen that how to achieve localized safe and harmless treatment of metal powder remains an industry challenge, and there is still a lack of rational solutions.
Therefore, how to solve the above-mentioned drawbacks of the prior art is a subject to be studied and solved by the present invention.
Disclosure of Invention
The invention aims to provide an explosion-proof treatment device for metal powder.
In order to achieve the above purpose, the invention adopts the following technical scheme:
An explosion-proof treatment device for metal powder; comprises a reaction kettle, wherein the upper part of the reaction kettle is open and is provided with a first feeding port and a second feeding port; the first feeding port is used for feeding quantitative metal powder, and the second feeding port is used for feeding quantitative liquid medicine;
The stirring device comprises a stirring shaft and a driving mechanism for driving the stirring shaft to rotate; the stirring shaft vertically extends into the reaction kettle and is positioned at the center of the cross section of the reaction kettle; the stirring shaft is connected with a plurality of stirring paddles for stirring the mixture of the metal powder and the liquid medicine in the reaction kettle so as to promote the reaction;
The upper section of the inner wall of the reaction kettle is provided with an exhaust part along the circumferential direction, the exhaust part is communicated with an exhaust pipeline, the exhaust pipeline is used for exhausting air through an air extracting pump, and the exhausted air is discharged into the atmosphere through an exhaust end of the exhaust pipeline;
A discharge hole is arranged at the bottom of the reaction kettle and used for discharging a solid-liquid mixture generated by the reaction; the discharge port is communicated with a centrifugal machine, solid and liquid separation is carried out through the centrifugal machine, and a liquid outlet and a solid outlet are arranged for respectively discharging solid and liquid;
The reaction kettle is also internally provided with a guide sleeve barrel which is fixed relative to the reaction kettle and communicated with the upper opening, the lower end of the guide sleeve barrel is provided with a height difference with the mixture in the reaction kettle, and the side wall of the guide sleeve barrel is arranged at intervals with the inner wall of the reaction kettle.
The relevant content explanation in the technical scheme is as follows:
1. In the above scheme, the first feed port is used for quantitatively feeding through a vibration feeding sieve, and the discharging material of the vibration feeding sieve is introduced into the reaction kettle through a first feeding pipeline.
2. In the above scheme, a weighing tray is also arranged corresponding to the vibration feeding sieve, a mass sensing device is arranged at the bottom of the weighing tray, and the mass sensing device is electrically connected with a control circuit; the first feeding pipeline is controlled to be on-off through a first valve, and the first valve is electrically connected with the control circuit.
3. In the scheme, the second feeding port is used for quantitatively feeding materials through a liquid medicine barrel, and the feeding materials of the liquid medicine barrel are led into the reaction kettle through a second feeding pipeline.
4. In the above scheme, the second feeding pipeline is controlled to be on-off through a second valve, and the second valve is electrically connected with the control circuit.
5. In the above scheme, the discharge port is communicated with the centrifugal machine through a discharge pipeline, the discharge pipeline is controlled to be on-off through a third valve, and the third valve is electrically connected with the control circuit.
6. In the above scheme, the exhaust part is a plurality of exhaust holes, each exhaust hole is uniformly distributed along the circumferential direction of the upper section of the inner wall of the reaction kettle, and each exhaust hole is communicated with the exhaust pipeline.
7. In the above scheme, the exhaust part is an exhaust groove which is formed along the circumferential direction of the upper section of the inner wall of the reaction kettle and is communicated with the exhaust pipeline.
8. In the above scheme, the stirring shaft is further provided with a fin impeller which is arranged in parallel with the stirring blade and is positioned in the air guide sleeve for blowing air into the reaction kettle downwards.
9. In the above scheme, the exhaust pipeline is provided with a hydrogen concentration detector, and the hydrogen concentration detector is electrically connected with a control circuit and is used for detecting the concentration of hydrogen in the exhausted mixed gas.
The working principle and the advantages of the invention are as follows:
The invention relates to an explosion-proof treatment device for metal powder; comprises a reaction kettle, the upper part of which is open and is provided with a first feeding port and a second feeding port; the stirring device comprises a stirring shaft and a driving mechanism; the stirring shaft vertically extends into the reaction kettle and is provided with a plurality of stirring paddles; the upper section of the inner wall of the reaction kettle is provided with an exhaust part along the circumferential direction, and is communicated with an exhaust pipeline for exhausting gas to the atmosphere through the exhaust pipeline; the bottom of the reaction kettle is provided with a discharge port which is communicated with a centrifugal machine, and solid and liquid are separated and discharged through the centrifugal machine; the reaction kettle is also provided with a guide sleeve, the upper end of the guide sleeve is fixed relative to the reaction kettle and is communicated with the upper opening, the lower end of the guide sleeve is in height difference with the mixture in the reaction kettle, and the side wall of the guide sleeve is arranged at intervals with the inner wall of the reaction kettle.
Compared with the prior art, the invention solves the problem that the metal powder is difficult to process and eliminates the dangerous source through the innovative design of the metal powder explosion-proof treatment device; on the other hand, the hydrogen generated by the reaction in the treatment process is mixed with air through a specially designed air guide structure, so that the concentration of the hydrogen is reliably controlled within the safety standard range, and finally, the high-altitude harmless safety emission is carried out; the liquid generated by the reaction has no explosion hazard and can be recovered as a byproduct of powder treatment; the solid produced by the reaction has no explosion hazard and can be treated by conventional solid waste treatment.
In conclusion, the invention has the practical progress of ingenious structural design, good powder treatment effect, high safety in the treatment process, high automation degree and the like.
Drawings
FIG. 1 is a schematic diagram of an embodiment of the present invention;
FIG. 2 is a schematic structural diagram of a reaction kettle according to an embodiment of the invention;
Fig. 3 is a schematic top view of fig. 2.
In the above figures: 1. a reaction kettle; 2. the upper part is open; 3. a first feed port; 4. a second feed port; 5. vibrating the feeding screen; 6. a first feed conduit; 7. a first valve; 8. a liquid medicine barrel; 9. a feed pump; 10. a second feed conduit; 11. a second valve; 12. a stirring shaft; 13. a driving mechanism; 14. stirring paddles; 15. an exhaust line; 16. an air extracting pump; 17. an exhaust end; 18. an exhaust hole; 19. a gas collecting hood; 20. a discharge port; 21. a centrifuge; 22. a liquid outlet; 23. a solids outlet; 24. a discharge pipe; 25. a third valve; 26. a pod; 27. a fin impeller; 28. a hydrogen concentration detector; 29. and a jacket.
Detailed Description
The invention is further described below with reference to the accompanying drawings and examples:
Examples: the present invention will be described in detail with reference to the drawings, wherein modifications and variations are possible in light of the teachings of the present invention, without departing from the spirit and scope of the present invention, as will be apparent to those of skill in the art upon understanding the embodiments of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. Singular forms such as "a," "an," "the," and "the" are intended to include the plural forms as well, as used herein.
The terms "first," "second," and the like, as used herein, do not denote a particular order or sequence, nor are they intended to be limiting, but rather are merely used to distinguish one element or operation from another in the same technical term.
As used herein, "connected" or "positioned" may refer to two or more components or devices in physical contact with each other, or indirectly, or in operation or action with each other.
As used herein, the terms "comprising," "including," "having," and the like are intended to be open-ended terms, meaning including, but not limited to.
The term (terms) as used herein generally has the ordinary meaning of each term as used in this field, in this disclosure, and in the special context, unless otherwise noted. Certain terms used to describe the disclosure are discussed below, or elsewhere in this specification, to provide additional guidance to those skilled in the art in light of the description of the disclosure.
The terms "front", "rear", "upper", "lower", "left", "right" and the like used herein are directional terms, and are merely used to describe positional relationships among the structures in the present application, and are not intended to limit the specific directions of the present application in protecting reactions and practical implementations.
Referring to the accompanying drawings 1-3, an explosion-proof treatment device for metal powder is disclosed; comprises a reaction kettle 1, wherein the upper part of the reaction kettle 1 is opened 2, and is provided with a first feeding port 3 and a second feeding port 4; the first feeding port 3 is used for feeding quantitative metal powder, such as magnesium powder, aluminum powder and the like. The second feeding port 4 is used for feeding quantitative liquid medicine, and the liquid medicine is acid liquor or alkali liquor. Specifically, when the metal powder is magnesium powder, HCl is selected as the liquid medicine, and when the metal powder is aluminum powder, naOH is selected as the liquid medicine, and hydrogen is generated through reaction.
When the device is operated for the first time, a sufficient amount of liquid medicine is firstly added into the reaction kettle through the second feeding hole 4, and then metal powder is added into the reaction kettle 1 through the first feeding hole 3.
Wherein, first feed opening 3 carries out the ration through a vibrations feeding sieve 5 and throws the material, and the ejection of compact of this vibrations feeding sieve 5 is through a first feeding pipeline 6 lets in the inside of reation kettle 1.
A weighing tray (not depicted in the figure) is also arranged corresponding to the vibration feeding screen 5, and a mass sensing device is arranged at the bottom of the weighing tray and is electrically connected with a control circuit; the first feeding pipeline 6 is controlled to be on-off through a first valve 7, and the first valve 7 is electrically connected with the control circuit. When the weighing tray accumulates metal powder with a set mass through the vibration feeding sieve 5, the value fed back to the control circuit by the mass sensing device accords with the preset value of opening the first valve 7, and the control circuit controls the first valve 7 to be opened, so that the metal powder is accurately and quantitatively fed into the reaction kettle 1.
Wherein, the second feeding port 4 is used for quantitatively feeding materials through a liquid medicine barrel 8, and the feeding materials of the liquid medicine barrel 8 are pumped into a second feeding pipeline 10 through a feeding pump 9 and then are led into the reaction kettle 1. The second feeding pipeline 10 is controlled to be on-off through a second valve 11, and the second valve 11 is electrically connected with the control circuit. The second valve 11 is opened at regular time by the control circuit to realize the quantitative flow of the liquid medicine in the liquid medicine barrel 8 into the reaction kettle 1.
The stirring device comprises a stirring shaft 12 and a driving mechanism 13 for driving the stirring shaft 12 to rotate, wherein the driving mechanism 13 can be a motor; the stirring shaft 12 vertically extends into the reaction kettle 1 and is positioned at the center of the cross section of the reaction kettle 1; the stirring shaft 12 is connected with a plurality of stirring paddles 14 for stirring the mixture of the metal powder and the liquid medicine in the reaction kettle 1 to promote the reaction.
The upper section of the inner wall of the reaction kettle 1 is provided with an exhaust part along the circumferential direction, the exhaust part is communicated with an exhaust pipeline 15, the exhaust pipeline 15 is pumped by an air pump 16, the pumped gas is a mixed gas of hydrogen and air, and the mixed gas is discharged into the atmosphere through an exhaust end 17 of the exhaust pipeline 15.
The exhaust part is provided with a plurality of exhaust holes 18, each exhaust hole 18 is uniformly distributed along the circumferential direction of the upper section of the inner wall of the reaction kettle 1, and each exhaust hole 18 is communicated with the exhaust pipeline 15 through a gas collecting hood 19.
Or the exhaust part is an exhaust groove (not shown) which is opened along the circumferential direction of the upper section of the inner wall of the reaction kettle 1 and is communicated with the exhaust pipeline 15 through a gas collecting hood 19.
Preferably, the exhaust end 17 is disposed vertically upwards, preferably at least one meter above the ridge of the building in which the device is located, to achieve high-altitude drainage. The density of the hydrogen is small, and the high-altitude discharge is not only beneficial to improving the discharge rate, but also ensures the safety.
A discharge hole 20 is formed in the bottom of the reaction kettle 1 and is used for discharging a solid-liquid mixture generated by the reaction; the discharge port 20 is communicated with a centrifugal machine 21, solid and liquid are separated through the centrifugal machine 21, and a liquid outlet 22 and a solid outlet 23 are arranged to discharge solid and liquid respectively, so that the liquid can be recycled later, and solid waste treatment is carried out on the solid.
Wherein, the discharge port 20 is communicated with the centrifugal machine 21 through a discharge pipeline 24, the discharge pipeline 24 is controlled to be on-off through a third valve 25, and the third valve 25 is electrically connected with the control circuit. The solid-liquid mixture in the reaction kettle 1 flows into the centrifuge 21 by opening the third valve 25 at regular time by the control circuit.
As shown in fig. 2, a guide sleeve 26 is further disposed in the reaction kettle 1, the upper end of the guide sleeve 26 is fixed relative to the reaction kettle 1 and is communicated with the upper opening 2, the mixture in the reaction kettle 1 is provided with a height difference at the lower end, the side wall of the guide sleeve 26 is spaced from the inner wall of the reaction kettle 1, so that external air enters the reaction kettle 1 through the guide sleeve 26, firstly flows down in the guide sleeve 26, then flows up through the guide sleeve 26 through the height difference through the lower opening of the guide sleeve 26, and is mixed with hydrogen generated in the reaction kettle 1 to form a mixed gas, and then flows into the exhaust pipeline 15 through the exhaust part to be exhausted.
Preferably, the stirring shaft 12 is further provided with a fin impeller 27, and the fin impeller 27 is disposed parallel to the stirring blade 14 and in the air guide sleeve 26, so as to blow air into the reaction kettle 1 downwards, thereby facilitating the formation of an exhaust air duct.
Preferably, the discharge ports of the first feeding pipe 6 and the second feeding pipe 10 are located below the exhaust portion, so as to avoid the influence of air flow on feeding.
Preferably, a hydrogen concentration detector 28 is disposed in the exhaust pipeline 15, and the hydrogen concentration detector 28 is electrically connected to the control circuit, and is used for detecting the concentration of hydrogen in the exhausted mixed gas. By detecting the real-time concentration of the hydrogen, the method is favorable for judging whether the discharged mixed gas is safe or not, grasping the proceeding degree of the reaction and determining whether the feeding and discharging are needed or not.
Preferably, the reaction kettle 1 is further provided with a PH detecting element (not depicted in the figure), and the PH detecting element is electrically connected to the control circuit, and is used for detecting the real-time PH value of the solid-liquid mixture. The real-time PH value of the solid-liquid mixture is detected, so that the reaction proceeding degree is mastered, whether feeding and discharging are needed or not is judged, and meanwhile, the change of the hydrogen generation amount is calculated. Can work in conjunction with the hydrogen concentration detector 28.
Preferably, a jacket 29 is further fixedly arranged on the outer side of the reaction kettle 1, and a cavity is formed in the jacket 29 and is used for circulating a high-temperature medium to heat the reaction kettle 1. The high-temperature medium can be hot water, hot gas and the like, and the reaction efficiency is improved by heating the reaction kettle 1 to keep the temperature in the reaction kettle 1 at the optimal reaction temperature.
Wherein the hydrogen content in the mixed gas is less than 4%, and preferably less than 2%. The metal powder and the liquid medicine are quantitatively input, so that the generation amount of the hydrogen is controllable, and the aim of adjusting the hydrogen proportion in the exhaust gas can be achieved by adjusting the amount of the entering air. Such as adjusting the rotational speed of the fin impeller 27.
The automatic operation degree of the lifting device is facilitated through the control circuit and the arrangement of the first valve, the second valve and the third valve, so that the reaction work sustainability of the device is stronger, and the reliability can be ensured. Because the participation of operators is reduced, the personnel cost is reduced, and the personnel safety is ensured.
Compared with the prior art, the invention solves the problem that the metal powder is difficult to process and eliminates the dangerous source through the innovative design of the metal powder explosion-proof treatment device; on the other hand, the hydrogen generated by the reaction in the treatment process is mixed with air through a specially designed air guide structure, so that the concentration of the hydrogen is reliably controlled within the safety standard range, and finally, the high-altitude harmless safety emission is carried out; the liquid generated by the reaction has no explosion hazard and can be recovered as a byproduct of powder treatment; the solid produced by the reaction has no explosion hazard and can be treated by conventional solid waste treatment.
In conclusion, the invention has the practical progress of ingenious structural design, good powder treatment effect, high safety in the treatment process, high automation degree and the like.
The above embodiments are provided to illustrate the technical concept and features of the present invention and are intended to enable those skilled in the art to understand the content of the present invention and implement the same, and are not intended to limit the scope of the present invention. All equivalent changes or modifications made in accordance with the spirit of the present invention should be construed to be included in the scope of the present invention.

Claims (3)

1. An explosion-proof treatment device for metal powder; the method is characterized in that:
Comprises a reaction kettle, wherein the upper part of the reaction kettle is open and is provided with a first feeding port and a second feeding port; the first feeding port is used for feeding quantitative metal powder, and the second feeding port is used for feeding quantitative liquid medicine;
The stirring device comprises a stirring shaft and a driving mechanism for driving the stirring shaft to rotate; the stirring shaft vertically extends into the reaction kettle and is positioned at the center of the cross section of the reaction kettle; the stirring shaft is connected with a plurality of stirring paddles for stirring the mixture of the metal powder and the liquid medicine in the reaction kettle so as to promote the reaction;
The upper section of the inner wall of the reaction kettle is provided with an exhaust part along the circumferential direction, the exhaust part is communicated with an exhaust pipeline, the exhaust pipeline is used for exhausting air through an air extracting pump, and the exhausted air is discharged into the atmosphere through an exhaust end of the exhaust pipeline;
A discharge hole is arranged at the bottom of the reaction kettle and used for discharging a solid-liquid mixture generated by the reaction; the discharge port is communicated with a centrifugal machine, solid and liquid separation is carried out through the centrifugal machine, and a liquid outlet and a solid outlet are arranged for respectively discharging solid and liquid;
The reaction kettle is also internally provided with a guide sleeve barrel which is fixed relative to the reaction kettle and communicated with the upper opening, the lower end of the guide sleeve barrel is provided with a height difference with the mixture in the reaction kettle, and the side wall of the guide sleeve barrel is arranged at intervals with the inner wall of the reaction kettle;
the stirring shaft is also provided with a fin impeller which is arranged in parallel with the stirring blade and is positioned in the guide sleeve cylinder for blowing air downwards into the reaction kettle;
the first feeding port is used for quantitatively feeding materials through a vibrating feeding screen, and the discharged materials of the vibrating feeding screen are introduced into the reaction kettle through a first feeding pipeline;
The vibrating feeding screen is also provided with a weighing disc corresponding to the vibrating feeding screen, the bottom of the weighing disc is provided with a mass sensing device, and the mass sensing device is electrically connected with a control circuit; the first feeding pipeline is controlled to be switched on and off through a first valve, and the first valve is electrically connected with the control circuit;
The second feeding port is used for quantitatively feeding materials through a liquid medicine barrel, and the feeding materials of the liquid medicine barrel are introduced into the reaction kettle through a second feeding pipeline;
The second feeding pipeline is controlled to be switched on and off through a second valve, and the second valve is electrically connected with the control circuit;
The discharge port is communicated with the centrifugal machine through a discharge pipeline, the discharge pipeline is controlled to be on-off through a third valve, and the third valve is electrically connected with the control circuit;
the exhaust pipeline is internally provided with a hydrogen concentration detector which is electrically connected with the control circuit and used for detecting the concentration of hydrogen in the exhausted mixed gas.
2. The metal powder explosion-proof processing apparatus according to claim 1, wherein: the exhaust part is provided with a plurality of exhaust holes, each exhaust hole is uniformly distributed along the circumferential direction of the upper section of the inner wall of the reaction kettle, and each exhaust hole is communicated with the exhaust pipeline.
3. The metal powder explosion-proof processing apparatus according to claim 1, wherein: the exhaust part is an exhaust groove which is formed along the circumferential direction of the upper section of the inner wall of the reaction kettle and is communicated with the exhaust pipeline.
CN201910565006.6A 2019-06-27 2019-06-27 Explosion-proof processing device for metal powder Active CN110180872B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910565006.6A CN110180872B (en) 2019-06-27 2019-06-27 Explosion-proof processing device for metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910565006.6A CN110180872B (en) 2019-06-27 2019-06-27 Explosion-proof processing device for metal powder

Publications (2)

Publication Number Publication Date
CN110180872A CN110180872A (en) 2019-08-30
CN110180872B true CN110180872B (en) 2024-06-04

Family

ID=67723694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910565006.6A Active CN110180872B (en) 2019-06-27 2019-06-27 Explosion-proof processing device for metal powder

Country Status (1)

Country Link
CN (1) CN110180872B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791138A (en) * 1996-01-11 1998-08-11 Burbank Aeuronautical Corporation Ii Turbofan engine with reduced noise
JP2004130250A (en) * 2002-10-11 2004-04-30 Hitachi Constr Mach Co Ltd Wind power sorter
JP2005225684A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
CN101142017A (en) * 2005-01-15 2008-03-12 康帕克特Gtl有限公司 Catalytic reactor
CN201426650Y (en) * 2009-07-02 2010-03-24 李子泉 Food processor with electric motor airflow guide sleeve
CN203593661U (en) * 2013-11-26 2014-05-14 武汉森泰环保工程有限公司 Spiral upflow self-circulation anaerobic reactor
CN104240777A (en) * 2014-09-17 2014-12-24 四川材料与工艺研究所 Online regular check and regeneration device and method based on hydrogen-oxygen composite catalytic plate in nuclear power plant containment
CN104549065A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Slurry-bed circulation flow reactor and application and method for producing hydrogen peroxide
CN105214590A (en) * 2015-10-14 2016-01-06 南京化工特种设备检验检测研究所 Stirring-type reactor
CN105936543A (en) * 2016-06-24 2016-09-14 江苏贞环保科技有限公司 Novel equipment for processing sewage of villages and towns
CN205590487U (en) * 2016-03-09 2016-09-21 苏州市东方环境技术研究有限公司 Chemistry nickel liquid waste processing system
CN108238585A (en) * 2016-12-27 2018-07-03 天津维金斯环保科技有限公司 A kind of hydrogen generator for sodium borohydride hydrogen manufacturing
JP2018135555A (en) * 2017-02-21 2018-08-30 株式会社ベルノ技研 Hydrogen generator
CN108821235A (en) * 2018-08-31 2018-11-16 深圳市雄韬电源科技股份有限公司 The controllable continuous hydrolysis hydrogen generating system of hydrogen production rate
CN208540676U (en) * 2018-01-26 2019-02-26 湖北好彩头食品有限公司 A kind of feed proportioning system of gel candy
CN211613774U (en) * 2019-06-27 2020-10-02 苏州市东方环境技术研究有限公司 Explosion-proof metal powder processing device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791138A (en) * 1996-01-11 1998-08-11 Burbank Aeuronautical Corporation Ii Turbofan engine with reduced noise
JP2004130250A (en) * 2002-10-11 2004-04-30 Hitachi Constr Mach Co Ltd Wind power sorter
JP2005225684A (en) * 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus
CN101142017A (en) * 2005-01-15 2008-03-12 康帕克特Gtl有限公司 Catalytic reactor
CN201426650Y (en) * 2009-07-02 2010-03-24 李子泉 Food processor with electric motor airflow guide sleeve
CN104549065A (en) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 Slurry-bed circulation flow reactor and application and method for producing hydrogen peroxide
CN203593661U (en) * 2013-11-26 2014-05-14 武汉森泰环保工程有限公司 Spiral upflow self-circulation anaerobic reactor
CN104240777A (en) * 2014-09-17 2014-12-24 四川材料与工艺研究所 Online regular check and regeneration device and method based on hydrogen-oxygen composite catalytic plate in nuclear power plant containment
CN105214590A (en) * 2015-10-14 2016-01-06 南京化工特种设备检验检测研究所 Stirring-type reactor
CN205590487U (en) * 2016-03-09 2016-09-21 苏州市东方环境技术研究有限公司 Chemistry nickel liquid waste processing system
CN105936543A (en) * 2016-06-24 2016-09-14 江苏贞环保科技有限公司 Novel equipment for processing sewage of villages and towns
CN108238585A (en) * 2016-12-27 2018-07-03 天津维金斯环保科技有限公司 A kind of hydrogen generator for sodium borohydride hydrogen manufacturing
JP2018135555A (en) * 2017-02-21 2018-08-30 株式会社ベルノ技研 Hydrogen generator
CN208540676U (en) * 2018-01-26 2019-02-26 湖北好彩头食品有限公司 A kind of feed proportioning system of gel candy
CN108821235A (en) * 2018-08-31 2018-11-16 深圳市雄韬电源科技股份有限公司 The controllable continuous hydrolysis hydrogen generating system of hydrogen production rate
CN211613774U (en) * 2019-06-27 2020-10-02 苏州市东方环境技术研究有限公司 Explosion-proof metal powder processing device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三段进气环流反应器气泡参数与传质特性研究;李绍果;薛天艳;齐涛;刘长厚;;高校化学工程学报(第05期);61-66 *
多管旋风除尘器在石油焦系统的应用;刘念;;青岛科技大学学报(自然科学版);20151215(第S2期);127-129 *

Also Published As

Publication number Publication date
CN110180872A (en) 2019-08-30

Similar Documents

Publication Publication Date Title
CA2352025C (en) Method and apparatus for removing gas from drilling mud
RU2426761C2 (en) Device for treatment of substances
CN110180871B (en) Explosion-proof processing apparatus of metal powder
CN110180872B (en) Explosion-proof processing device for metal powder
CN211613774U (en) Explosion-proof metal powder processing device
CN107096647A (en) A kind of oily crumb centrifugal separator
CN211613773U (en) Explosion-proof processing apparatus of metal powder
CN108147483A (en) A kind of hazardous waste processing system and treatment process
CN110574881A (en) Eggshell membrane separation equipment, separation method and production line thereof
CN211946370U (en) Centrifuge for sewage treatment
CN106679442A (en) Smelting furnace flue gas treatment device with raw material preheating function
EP3048160A1 (en) Method for the elimination of plastic contained in urban and industrial waste, and facility for implementing same
CN215768565U (en) Environment-friendly soil heavy metal detection device for soil remediation
CN105521737A (en) Powder unloading and quick dissolution integrated device for ton bag
FI66548B (en) ANORDNING FOER SEPARERING AV FASTHAEFTAD PLAST ELLER RUBBER FRAON METAL I FLASKORKAR GENOM ATT FOERA AOTMINSTONE EN COMPONENT SKOER VID EN LAOG TEMPERATUR
CN109513400B (en) Small-amount quantitative uniform solid material feeding system
CN1026460C (en) Process for the preparation of Chinese pharmaceuticals
CN208574469U (en) A kind of sodium bicarbonate automation deacidification system
KR101773299B1 (en) Dust eliminating apparatus
CN109276917B (en) Wet reactor and reaction method
CN107854866A (en) Liquid, liquid, gas, exhaust system is automatically separated admittedly
CN110747346A (en) Novel aluminium ash piece-rate system of environmental protection
CN215250625U (en) With useless dry distillation pyrolysis oil system of danger
CN220969124U (en) Anti-blocking ring-closing kettle
CN213613221U (en) Dust collecting device of horizontal pear sword mixer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant