CN110180542A - 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 - Google Patents
一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 Download PDFInfo
- Publication number
- CN110180542A CN110180542A CN201910257526.0A CN201910257526A CN110180542A CN 110180542 A CN110180542 A CN 110180542A CN 201910257526 A CN201910257526 A CN 201910257526A CN 110180542 A CN110180542 A CN 110180542A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- graphene
- tri compound
- catalysis material
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 223
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 104
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 90
- 239000000463 material Substances 0.000 title claims abstract description 71
- 239000000126 substance Substances 0.000 title claims abstract description 61
- 150000001875 compounds Chemical class 0.000 title claims abstract description 52
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 238000007540 photo-reduction reaction Methods 0.000 title claims abstract description 9
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 238000005452 bending Methods 0.000 claims abstract description 10
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 9
- 241000673705 Viburnum tinus Species 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 46
- 239000000047 product Substances 0.000 claims description 38
- 239000010949 copper Substances 0.000 claims description 37
- 229910052802 copper Inorganic materials 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 23
- 239000010936 titanium Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 23
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 22
- 230000001699 photocatalysis Effects 0.000 claims description 19
- 238000003756 stirring Methods 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 12
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 11
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 11
- 229960000935 dehydrated alcohol Drugs 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 8
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000012805 post-processing Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000004005 microsphere Substances 0.000 claims description 2
- 239000012265 solid product Substances 0.000 claims description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims 1
- 229910052801 chlorine Inorganic materials 0.000 claims 1
- 239000000460 chlorine Substances 0.000 claims 1
- 229910021505 gold(III) hydroxide Inorganic materials 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 23
- 239000001257 hydrogen Substances 0.000 abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 23
- 238000006303 photolysis reaction Methods 0.000 abstract description 21
- 238000010189 synthetic method Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 48
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 238000005245 sintering Methods 0.000 description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- 238000007146 photocatalysis Methods 0.000 description 8
- 229960004756 ethanol Drugs 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 7
- 238000004817 gas chromatography Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 230000015843 photosynthesis, light reaction Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910052724 xenon Inorganic materials 0.000 description 7
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000011941 photocatalyst Substances 0.000 description 6
- 239000011218 binary composite Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 241000790917 Dioxys <bee> Species 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- -1 graphite Alkene Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000001420 photoelectron spectroscopy Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000004435 EPR spectroscopy Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 2
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- SJUCACGNNJFHLB-UHFFFAOYSA-N O=C1N[ClH](=O)NC2=C1NC(=O)N2 Chemical compound O=C1N[ClH](=O)NC2=C1NC(=O)N2 SJUCACGNNJFHLB-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HGWOWDFNMKCVLG-UHFFFAOYSA-N [O--].[O--].[Ti+4].[Ti+4] Chemical compound [O--].[O--].[Ti+4].[Ti+4] HGWOWDFNMKCVLG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明提供了一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法。所述二氧化钛/石墨烯/金属单质三元复合光催化材料为由弯曲纳米片组成的微球,具有类绣球花的花状分级结构,石墨烯包覆在弯曲纳米片组装的二氧化钛微球表面,金属纳米粒子分散在弯曲纳米片表面。其通过光还原合成方法制备得到,合成方法简单,成本低。可用于高效光解水产氢。
Description
技术领域
本发明涉及光催化材料合成技术领域,具体涉及一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法。
背景技术
二氧化钛是一种重要的半导体材料,有着其独特的物理和化学性能。二氧化钛在光催化,太阳能电池,锂离子电池等领域有着广泛的应用前景,引起人们的关注。研究表明,二氧化钛作为光催化剂,在被用来光解水产氢,净化空气,降解有机物等方面,有着很好的作用。
但反应过程中,电子-空穴对的复合严重降低了二氧化钛光催化的效率,因此如何提高电子-空穴分离效率成为亟待解决的问题。而通过增加电子-空穴分离效率来提高其光催化性,主要有三种途径:一是通过制备异质结结构;二是进行元素掺杂,这个方法成本较高;三是负载金属纳米粒子,这一途径主要以负载Pt纳米颗粒应用最为广泛。
但是目前的二氧化钛担载金属纳米颗粒制备光催化材料的方法以氢气高温还原以及强还原剂还原为主,还原方法复杂、成本较高,不能适应现有行业的需要。同时,在二氧化钛上担载石墨烯虽然在一定程度上可以提高光催化性能,但其性价比不高,并不能完全发挥石墨烯的高效性能。因此亟需一种工艺简单,合成成本低的具有高光解水产氢催化活性二氧化钛光催化材料。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供工艺简单的光还原制备二氧化钛/石墨烯/金属单质三元复合光催化材料的方法及二氧化钛/石墨烯/金属单质三元复合光催化材料,该二氧化钛/石墨烯/金属单质三元复合光催化材料具有高光解水产氢催化活性。
为了解决上述技术问题,本发明采用的技术方案为:
提供一种光还原制备二氧化钛/石墨烯/金属单质三元复合光催化材料的方法,包含如下步骤:
步骤一、以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经180-220℃水热反应20-30h,300-500℃煅烧得到花状多孔二氧化钛片球;
步骤二、配置氧化石墨烯溶液;
步骤三、向步骤二所得氧化石墨烯溶液中加入步骤一所得花状多孔二氧化钛片球材料,超声分散;
步骤四、将步骤三所得溶液置于350-400nm波长光照7-10h,并保持持续匀速搅拌;
步骤五、向步骤四所得溶液中加入金属盐前驱体溶液,继续用波长为350-400nm的光照射2-5h,并保持匀速搅拌;
步骤六、将步骤五所得产物过滤取固体产物,后处理即得到所述的二氧化钛/石墨烯/金属单质三元复合光催化材料。
按上述方案,所述氧化石墨烯溶液的配制方法:将氧化石墨烯水分散液分散于无水乙醇中,超声分散时间10-40分钟,所述氧化石墨烯水分散液的浓度为1.5-2.5mg/mL。
按上述方案,所述的搅拌速度为300-600r/min。
按上述方案,所述的二氧化钛、氧化石墨烯和金属前驱体以金属计的用量质量比为:200-500:4.5-15:2-5。
按上述方案,所述步骤三的光催化体系中二氧化钛的浓度为0.2wt%-0.5wt%。
按上述方案,所述的后处理为:用无水乙醇清洗并4000-6000r/min离心分离,重复清洗、离心过程至少三遍,然后在40-70℃条件烘干。
按上述方案,所述金属盐前驱体溶液为氯化铜溶液、氯金酸溶液、硝酸银溶液等可溶性金属盐。
按上述方案,所述的金属盐前驱体溶液的浓度为0.05-1mol/L。
提供一种二氧化钛/石墨烯/金属单质三元复合光催化材料,所述三元复合光催化材料为由弯曲纳米片组成的微球,具有类绣球花的花状分级结构,石墨烯包覆在弯曲纳米片组装的二氧化钛微球表面,金属纳米粒子分散在弯曲纳米片表面。
按上述方案,所述的微球尺寸均一,微球的粒径为0.8-1.5μm,弯曲纳米片的长度为40-100nm,厚度为4-8nm。
按上述方案,所述的二氧化钛微球含有钛空位。
按上述方案,所述的金属单质为Cu,Ag或Au。
与现有技术相比,本发明具有如下有益效果:
本发明提供的二氧化钛/石墨烯/金属单质三元复合光催化材料可为光电子的转移提供了两种不同的路径,金属纳米粒子由于其较高的功函数,可以作为光催化反应的活性位点,在金属粒子的担载点,光生电子可以直接穿过石墨烯转移至金属位点上,进而发生光催化反应;在未担载金属纳米粒子的二氧化钛表面,光生电子先转移至石墨烯表面,由于石墨烯的高电子转移效率,电子可通过石墨烯进行转移达到金属位点上,进一步提高光生电子及空穴的分离效率,从而实现高效光解水产氢。该二氧化钛/石墨烯/铜单质三元复合光催化剂的光解水产氢速率约是二氧化钛/石墨烯材料的6.5倍,纯片状TiO2的13倍。
本发明采用光照合成二氧化钛/石墨烯/金属单质三元复合光催化材料,合成方法简单,成本低,可以大量合成,适用于工业生产。具体地,反应开始前,氧化石墨烯与二氧化钛均匀分散在溶剂中,光照开始后,二氧化钛产生光生电子及空穴,氧化石墨烯表面的有机官能团在光生电子的作用下发生还原反应,并附着在二氧化钛表面,然后加入金属盐前驱体溶液后,石墨烯表面存在的π电子共轭结构一方面可以有利于金属离子的吸附,同时石墨烯的包覆对二氧化钛的光生载流子起到增强效应,二氧化钛上的光生电子转移至石墨烯上,提高了材料表面的电势,由此可使金属离子在光生电子的作用下被还原并附着在二氧化钛表面,同时高电势也更有助于金属尤其是较难还原的离子如铜向单质转变。另外,二氧化钛/石墨烯/金属单质三元复合光催化材料具有很高的比表面积和丰富的孔道结构,有利于石墨烯的附着及金属纳米粒子的担载。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1(a)为实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的高分辨SEM图;
图1(b)为实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的低分辨SEM图;
图2是实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的XRD图;
图3是实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的拉曼图谱;
图4是实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与纯片状组装二氧化钛的氮气吸附脱附曲线及孔径分布图;
图5为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与实施例2、实施例3、对比例4以及纯片状组装二氧化钛的光解水产氢性能对比图;
图6为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料的铜的2p电子的光电子能谱图;
图7为本材料所用纯二氧化钛基底的电子顺磁共振图谱;
图8为实施例2、实施例3与对比例2、对比例3以及纯片状组装二氧化钛的光解水产氢性能对比图;
图9为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与对比例1以及纯片状组装二氧化钛的光解水产氢性能对比图。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
实施例1
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取4mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于365nm波长光照9h,并持续匀速搅拌;
(5)向(4)所得溶液中加入1.25mL 0.05mol/L氯化铜前驱体溶液,继续用波长为365nm的光照射3h,并匀速搅拌;
(6)将(5)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/石墨烯/铜单质三元复合光催化材料。
(7)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(8)将(7)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
实施例2
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取4mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于365nm波长光照9h,并持续匀速搅拌;
(5)向(4)所得溶液中加入740μL 0.05mol/L硝酸银前驱体溶液,继续用波长为365nm的光照射3h,并匀速搅拌;
(6)将(5)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/石墨烯/银单质三元复合光催化材料。
(7)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(8)将(7)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
实施例3
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取4mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于365nm波长光照9h,并持续匀速搅拌;
(5)向(4)所得溶液中加入400μL 0.05mol/L氯金酸前驱体溶液,继续用波长为365nm的光照射3h,并匀速搅拌;
(6)将(5)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/石墨烯/金单质三元复合光催化材料。
(7)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(8)将(7)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
实施例4
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取4mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于380nm波长光照9h,并持续匀速搅拌;
(5)向(4)所得溶液中加入1.25mL 0.05mol/L氯化铜前驱体溶液,继续用波长为380nm的光照射3h,并匀速搅拌;
(6)将(5)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到二氧化钛/石墨烯/铜单质三元复合光催化材料。
实施例5
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取6mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于365nm波长光照9h,并持续匀速搅拌;
(5)向(4)所得溶液中加入1.25mL 0.05mol/L氯化铜前驱体溶液,继续用波长为365nm的光照射3h,并匀速搅拌;
(6)将(5)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到二氧化钛/石墨烯/铜单质三元复合光催化材料。
对比例1
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取0.4g(1)所得二氧化钛于100mL无水乙醇中,超声分散10分钟;
(3)向(2)所得溶液中加入1.25mL 0.05mol/L氯化铜前驱体溶液,用波长为365nm的光照射3h,并匀速搅拌;
(4)将(3)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/铜单质二元复合光催化材料。
(5)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(6)将(5)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
对比例2
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取0.4g(1)所得二氧化钛于100mL无水乙醇中,超声分散10分钟;
(3)向(2)所得溶液中加入740μL 0.05mol/L硝酸银前驱体溶液,用波长为365nm的光照射3h,并匀速搅拌;
(4)将(3)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/银单质二元复合光催化材料。
(5)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(6)将(5)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
对比例3
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取0.4g(1)所得二氧化钛于100mL无水乙醇中,超声分散10分钟;
(3)向(2)所得溶液中加入400μL 0.05mol/L氯金酸前驱体溶液,用波长为365nm的光照射3h,并匀速搅拌;
(4)将(3)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/金单质二元复合光催化材料。
(5)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(6)将(5)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
对比例4
(1)以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经200℃水热,400℃烧结合成花状多孔氧化钛;
(2)取4mL 2mg/mL氧化石墨烯于100mL无水乙醇中,超声分散30分钟;
(3)向(2)所得溶液中加入0.4g(1)所得二氧化钛,超声分散10分钟;
(4)将(3)所得溶液置于365nm波长光照12h,并持续匀速搅拌;
(5)将(4)所得产物过滤取滤渣,用无水乙醇清洗并离心分离,重复清洗、离心过程至少三遍,然后在60℃条件烘干,即得到所述的二氧化钛/石墨烯二元复合光催化材料。
(5)将10mg 39mg上述产物分散于80mL乙醇和20mL水混合溶液中,超声分散15min,所得溶液置于光解水产氢玻璃反应器中,制得气相光解水产氢测试样品。
(6)将(5)中样品置于密封反应器内,300W的氙灯光照,使用气相色谱FID检测器,检测H2气体浓度变化。
经表征,本发明成功合成了二氧化钛/石墨烯/铜单质三元复合光催化材料,其中二氧化钛为球形,由弯曲的纳米片组成,大小较为均一,具有类绣球花的花状结构,石墨烯包覆在弯曲纳米片组装的二氧化钛微球表面,金属纳米粒子分散在弯曲纳米片表面。
图1(a)为实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的高分辨SEM图,图1(b)为实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的低分辨SEM图,图2是实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的XRD图,图3是实施例1二氧化钛/石墨烯/金属单质三元复合光催化材料的拉曼图谱,图4是实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与纯片状组装二氧化钛的氮气吸附脱附曲线及孔径分布图,图5为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与实施例2、实施例3,对比例4以及纯片状组装二氧化钛(实施例1步骤1的二氧化钛微球)的光解水产氢性能对比图,图6为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料的铜的2p电子的光电子能谱图,图7为本材料所用纯二氧化钛基底的电子顺磁共振图谱,图8为实施例2、实施例3与对比例2、对比例3以及纯片状组装二氧化钛的光解水产氢性能对比图,图9为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与对比例1以及纯片状组装二氧化钛的光解水产氢性能对比图。
从图1(a)中可以看出制备出的二氧化钛/石墨烯/铜单质三元复合光催化材料,其中二氧化钛为球形,由弯曲的纳米片组成,大小较为均一,粒径约为1μm,石墨烯包覆在上面。图2为XRD图,可见制备出的二氧化钛材料为锐钛矿晶型,其中44度左右的峰为铜单质的特征峰,证明铜单质确被还原在二氧化钛上。图3为二氧化钛/石墨烯/铜单质三元复合光催化材料的拉曼图谱,由图可知,左边的四个峰为二氧化钛的特征峰,在1350cm-1和1580cm-1处有属于石墨烯的G峰和D峰,其中G峰是石墨烯的主要特征峰,是由sp2碳原子的面内振动引起的,它出现在1580cm-1附近,与图中所标位置相吻合。D峰通常被认为是石墨烯的无序振动峰,该峰出现位置与激光波长有很大关系,可见石墨烯已经附着在片状二氧化钛表面。图4为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与纯片状组装二氧化钛的氮气吸附脱附曲线及孔径分布图,从图中可以计算得到纯二氧化钛的比表面积达到117m2/g,孔径分布显示该材料具有均一的8-10nm孔径大小的介孔孔道,同时可以看到担载石墨烯及铜粒子之后,比表面积有所降低,孔径没有太大变化,但是孔占比减小,证明石墨烯及铜粒子担载在上面。图5为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与实施例2、实施例3、对比例4以及纯片状组装二氧化钛的光解水产氢性能对比图,由公式l计算所得kTiO2/G/Cu=3279μmol/g/h,kTiO2/G/Au=1522μmol/g/h,kTiO2/G/Ag=1143μmol/g/h,kTiO2/G=523μmol/g/h,kTiO2=253μmol/g/h,我们所制的二氧化钛/石墨烯/铜单质三元复合光催化材料的光解水产氢反应速率常数约是光还原二氧化钛/石墨烯材料的6.5倍,是纯TiO2的13倍之多。图6为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料的铜的2p电子的光电子能谱图,其中双峰的结合能分别为932.4ev和952.2ev,分别对应于铜单质的2p3/2轨道电子的结合能和铜单质的2p1/2轨道电子的结合能,证明本材料通过光还原成功担载铜单质。图7为本材料所用纯二氧化钛基底的电子顺磁共振图谱,图中双峰对应的g值为1.998,对应于二氧化钛的钛空位,证明所用二氧化钛存在钛空位缺陷。图8为实施例2、实施例3与对比例2、对比例3以及纯片状组装二氧化钛的光解水产氢性能对比图。图9为实施例1所制备的二氧化钛/石墨烯/铜单质三元复合光催化材料与对比例1以及纯片状组装二氧化钛的光解水产氢性能对比图,从图中可以看出二氧化钛/石墨烯/铜单质三元复合光催化剂的产氢性能同样比只担载铜的二元催化剂高出约2倍。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。
Claims (10)
1.一种光还原制备二氧化钛/石墨烯/金属单质三元复合光催化材料的方法,其特征在于:包含如下步骤:
步骤一、以异丙醇为溶剂,二乙烯三胺为模板剂,钛酸异丙酯为钛源,经180-220℃水热反应20-30h,300-500℃煅烧得到花状多孔二氧化钛片球;
步骤二、配置氧化石墨烯溶液;
步骤三、向步骤二所得氧化石墨烯溶液中加入步骤一所得花状多孔二氧化钛片球材料,超声分散;
步骤四、将步骤三所得溶液置于350-400nm波长光照7-10h,并保持300-600r/min搅拌速度持续匀速搅拌;
步骤五、向步骤四所得溶液中加入金属盐前驱体溶液,继续用波长为350-400nm的光照射2-5h,并保持匀速搅拌;
步骤六、将步骤五所得产物过滤取固体产物,后处理即得到所述的二氧化钛/石墨烯/金属单质三元复合光催化材料。
2.根据权利要求1所述的方法,其特征在于:所述氧化石墨烯溶液的配制方法:将氧化石墨烯水分散液超声分散于无水乙醇中,所述氧化石墨烯水分散液的浓度为1.5-2.5mg/mL。
3.根据权利要求1所述的方法,其特征在于:所述的二氧化钛、氧化石墨烯和金属前驱体以金属计的用量质量比为:200-500:4.5-15:2-5。
4.根据权利要求1所述的方法,其特征在于:所述步骤三的光催化体系中二氧化钛的浓度为0.2wt%-0.5wt%。
5.根据权利要求1所述的方法,其特征在于:所述的后处理为:用无水乙醇清洗并4000-6000r/min离心分离,重复清洗、离心过程至少三遍,然后在40-70℃条件烘干。
6.根据权利要求1所述的方法,其特征在于:所述金属盐前驱体溶液为氯化铜溶液、氯金酸溶液、硝酸银溶液;所述的金属盐前驱体溶液的浓度为0.05-1mol/L。
7.一种二氧化钛/石墨烯/金属单质三元复合光催化材料,其特征在于:所述三元复合光催化材料为由弯曲纳米片组成的微球,具有类绣球花的花状分级结构,石墨烯包覆在弯曲纳米片组装的二氧化钛微球表面,金属纳米粒子分散在弯曲纳米片表面。
8.根据权利要求7所述的二氧化钛/石墨烯/金属单质三元复合光催化材料,其特征在于:所述的微球尺寸均一,粒径为0.8-1.5μm,弯曲纳米片的长度为40-100nm,厚度为4-8nm。
9.根据权利要求7所述的二氧化钛/石墨烯/金属单质三元复合光催化材料,其特征在于:所述的二氧化钛微球含有钛空位。
10.根据权利要求7所述的二氧化钛/石墨烯/金属单质三元复合光催化材料,其特征在于:所述的金属单质为Cu,Ag或Au。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910257526.0A CN110180542B (zh) | 2019-04-01 | 2019-04-01 | 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910257526.0A CN110180542B (zh) | 2019-04-01 | 2019-04-01 | 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110180542A true CN110180542A (zh) | 2019-08-30 |
CN110180542B CN110180542B (zh) | 2022-06-03 |
Family
ID=67713807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910257526.0A Active CN110180542B (zh) | 2019-04-01 | 2019-04-01 | 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110180542B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112717908A (zh) * | 2020-12-09 | 2021-04-30 | 昆明中友丰钰科技有限公司 | 一种单原子负载光二氧化钛催化材料及其制备方法 |
CN112993278A (zh) * | 2021-02-05 | 2021-06-18 | 青岛科技大学 | 一种花状二氧化钛/还原石墨烯复合载体担载铂及其合金催化剂及其制备和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102688755A (zh) * | 2011-12-12 | 2012-09-26 | 湖南理工学院 | 一种Ag/TiO2/石墨烯纳米复合光催化剂及其制备方法 |
CN104815637A (zh) * | 2015-04-02 | 2015-08-05 | 西北师范大学 | 水热法制备石墨烯负载花状二氧化钛复合材料的方法 |
CN105129849A (zh) * | 2015-09-17 | 2015-12-09 | 上海大学 | 花状二氧化钛纳米材料及其无模板制备方法 |
CN107381632A (zh) * | 2017-08-15 | 2017-11-24 | 齐鲁工业大学 | 一种三维花状二氧化钛纳米材料的制备方法 |
US20180008967A1 (en) * | 2016-07-06 | 2018-01-11 | University-Industry Cooperation Group Of Kyung Hee University | Hybrid nanostructured photocatalysts and preparation method thereof |
CN107899562A (zh) * | 2017-11-24 | 2018-04-13 | 武汉理工大学 | 一种花状分级结构二氧化钛气相光催化材料的制备方法 |
CN107950570A (zh) * | 2017-11-21 | 2018-04-24 | 新化县中润化学科技有限公司 | 一种石墨烯/二氧化钛/纳米银复合材料的制备方法 |
CN109482179A (zh) * | 2018-11-28 | 2019-03-19 | 华东理工大学 | TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解 |
-
2019
- 2019-04-01 CN CN201910257526.0A patent/CN110180542B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102688755A (zh) * | 2011-12-12 | 2012-09-26 | 湖南理工学院 | 一种Ag/TiO2/石墨烯纳米复合光催化剂及其制备方法 |
CN104815637A (zh) * | 2015-04-02 | 2015-08-05 | 西北师范大学 | 水热法制备石墨烯负载花状二氧化钛复合材料的方法 |
CN105129849A (zh) * | 2015-09-17 | 2015-12-09 | 上海大学 | 花状二氧化钛纳米材料及其无模板制备方法 |
US20180008967A1 (en) * | 2016-07-06 | 2018-01-11 | University-Industry Cooperation Group Of Kyung Hee University | Hybrid nanostructured photocatalysts and preparation method thereof |
CN107381632A (zh) * | 2017-08-15 | 2017-11-24 | 齐鲁工业大学 | 一种三维花状二氧化钛纳米材料的制备方法 |
CN107950570A (zh) * | 2017-11-21 | 2018-04-24 | 新化县中润化学科技有限公司 | 一种石墨烯/二氧化钛/纳米银复合材料的制备方法 |
CN107899562A (zh) * | 2017-11-24 | 2018-04-13 | 武汉理工大学 | 一种花状分级结构二氧化钛气相光催化材料的制备方法 |
CN109482179A (zh) * | 2018-11-28 | 2019-03-19 | 华东理工大学 | TiO2/石墨烯/纳米银复合光催化剂的制备及其对甲醛的降解 |
Non-Patent Citations (1)
Title |
---|
姜凌霄 等: ""Ag(Au)/石墨烯-TiO2 复合光催化剂的制备及其模拟太阳光光催化性能"", 《催化学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112717908A (zh) * | 2020-12-09 | 2021-04-30 | 昆明中友丰钰科技有限公司 | 一种单原子负载光二氧化钛催化材料及其制备方法 |
CN112993278A (zh) * | 2021-02-05 | 2021-06-18 | 青岛科技大学 | 一种花状二氧化钛/还原石墨烯复合载体担载铂及其合金催化剂及其制备和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110180542B (zh) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | NH2-UiO-66 (Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis | |
Zou et al. | Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite | |
Wu et al. | Rational Design and Fabrication of Noble‐metal‐free NixP Cocatalyst Embedded 3D N‐TiO2/g‐C3N4 Heterojunctions with Enhanced Photocatalytic Hydrogen Evolution | |
Peng et al. | MnO2-decorated N-doped carbon nanotube with boosted activity for low-temperature oxidation of formaldehyde | |
Yu et al. | Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania | |
Cui et al. | Spontaneous redox approach to the self-assembly synthesis of Au/CeO2 plasmonic photocatalysts with rich oxygen vacancies for selective photocatalytic conversion of alcohols | |
Ye et al. | The high photocatalytic efficiency and stability of LaNiO 3/gC 3 N 4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen | |
Vu et al. | Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution | |
Shi et al. | Fabrication of Au/TiO2 nanowires@ carbon fiber paper ternary composite for visible-light photocatalytic degradation of gaseous styrene | |
Zhu et al. | Visible-light-driven Ag/Ag 3 PO 4-based plasmonic photocatalysts: Enhanced photocatalytic performance by hybridization with graphene oxide | |
Cai et al. | Fe 2 O 3-modified porous BiVO 4 nanoplates with enhanced photocatalytic activity | |
Wang et al. | Au single atom-anchored WO 3/TiO 2 nanotubes for the photocatalytic degradation of volatile organic compounds | |
Wei et al. | Synthesis and photocatalytic activity of polyaniline–TiO 2 composites with bionic nanopapilla structure | |
CN104707542B (zh) | 一种光催化剂/SiO2复合气凝胶材料及其制备方法 | |
Lv et al. | Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants | |
Liu et al. | Three-dimensional cuprous oxide microtube lattices with high catalytic activity templated by bacterial cellulose nanofibers | |
An et al. | Nano-fibrillated cellulose (NFC) as versatile carriers of TiO 2 nanoparticles (TNPs) for photocatalytic hydrogen generation | |
Azam et al. | In-situ synthesis of TiO2/La2O2CO3/rGO composite under acidic/basic treatment with La3+/Ti3+ as mediators for boosting photocatalytic H2 evolution | |
Liang et al. | One-step introduction of metallic Bi and non-metallic C in Bi 2 WO 6 with enhanced photocatalytic activity | |
Darwish et al. | Increased production of hydrogen with in situ CO2 capture through the process of water splitting using magnetic core/shell structures as novel photocatalysts | |
CN110180542A (zh) | 一种二氧化钛/石墨烯/金属单质三元复合光催化材料及光还原制备方法 | |
Mao et al. | N-doped porous carbon supported Au nanoparticles for benzyl alcohol oxidation | |
Bhat et al. | Improving the thermal stability and n-butanol oxidation activity of Ag-TiO2 catalysts by controlling the catalyst architecture and reaction conditions | |
Liu et al. | TiO 2/gC 3 N 4 heterojunction hollow porous nanofibers as superior visible-light photocatalysts for H 2 evolution and dye degradation | |
Cui et al. | Novel wood membrane decorated with covalent organic frameworks and palladium nanoparticles for reduction of aromatic organic contaminants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |