CN110172081B - 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用 - Google Patents

一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用 Download PDF

Info

Publication number
CN110172081B
CN110172081B CN201910466751.5A CN201910466751A CN110172081B CN 110172081 B CN110172081 B CN 110172081B CN 201910466751 A CN201910466751 A CN 201910466751A CN 110172081 B CN110172081 B CN 110172081B
Authority
CN
China
Prior art keywords
cys
asn
polypeptide derivative
polypeptide
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910466751.5A
Other languages
English (en)
Other versions
CN110172081A (zh
Inventor
孙卫斌
王晴晴
苗雷英
李全利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jiuwzhenwei Medical Technology Co ltd
Original Assignee
Nanjing Jiuwzhenwei Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jiuwzhenwei Medical Technology Co ltd filed Critical Nanjing Jiuwzhenwei Medical Technology Co ltd
Priority to CN201910466751.5A priority Critical patent/CN110172081B/zh
Publication of CN110172081A publication Critical patent/CN110172081A/zh
Application granted granted Critical
Publication of CN110172081B publication Critical patent/CN110172081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins

Abstract

本发明提供一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用,属于生物医学材料技术领域。该多肽分子衍生物,其分子结构通式为X‑X‑Cys‑Cys‑Cys‑Cys‑Y‑Y‑Z‑W‑NH2;X为Asn或葡萄糖基化天冬酰胺;Y为Arg或Lys;Z为Glu或Asp;W为磷酸化丝氨酸或磷酸化苏氨酸。本发明多肽分子衍生物可以诱导磷灰石晶体的取向生长,合成具有类似机体硬组织微结构的生物材料;可以在氯化钙的诱导下自组装形成3D纳米水凝胶,可以应用于骨组织工程支架材料,或应用于细胞的3D原位培养;可以与胶原纤维结合,诱导胶原纤维的矿化,因此可以应用于骨组织再生的研究,以及诱导牙骨质、牙本质的矿化再生修复。

Description

一种生物医学组织工程用具有矿化功能的多肽分子衍生物及 其应用
技术领域
本发明属于生物医学材料技术领域,具体涉及一种具有矿化功能的多肽分子衍生物。
背景技术
机体硬组织一旦缺损,很难实现自愈性修复,因此硬组织的再生修复是临床医学、口腔医学的重要研究课题之一。实现人体硬组织再生的关键之一是通过生长因子或者其仿生类似物诱导钙磷酸盐的形成。口腔医学中牙周组织的再生更为复杂。重建功能性牙周复合体的关键之一是使牙周膜纤维结缔组织附着在牙骨质及牙槽骨表面的矿化层。其中,牙骨质是一种无血管的附着在牙根表面的矿化硬组织,牙周膜的纤维结缔组织通过沙比纤维(Sharpey’s fibers)锚链在牙骨质矿化层表面,从而使牙周膜附着在牙根上。因此,牙骨质的再生对于牙周复合体的重建具有重要意义。
现有技术中缺乏用于牙骨质再生的具有高效矿化功能的生物材料。
发明内容
本发明的目的是提供一种生物医学组织工程用具有矿化功能的多肽分子衍生物,可以用于制备具有类似人体硬组织微结构的生物材料、骨组织工程支架材料,可以与胶原纤维结合诱导牙齿的仿生矿化。
一种生物医学组织工程用具有矿化功能的多肽分子衍生物,其分子结构通式为:
X-X-Cys-Cys-Cys-Cys-Y-Y-Z-W-NH2
其中:
X为Asn或葡萄糖基化天冬酰胺;
Y为Arg或Lys;
Z为Glu或Asp;
W为磷酸化丝氨酸或磷酸化苏氨酸。
本发明中,所述多肽分子衍生物的N端连接有脂肪酸链。
本发明中,所述脂肪酸链为碳原子个数为10-20的脂肪酸链。
优选的技术方案中,脂肪酸链为碳原子个数为16的脂肪酸链。
其中图7显示了葡萄糖基化天冬酰胺的结构式。图8显示了磷酸化丝氨酸Ser(p)的结构式。图9显示了磷酸化苏氨酸Thr(p)的结构式。
本发明还提供所述多肽分子衍生物在组织工程支架材料、牙周组织再生生物材料、防治龋病和牙本质敏感的材料方面的应用。
本发明提供的多肽分子衍生物具有以下功能:可以诱导磷灰石晶体的取向生长,合成具有类似人体硬组织微结构的生物材料,因此具有较好的生物活性;可以在氯化钙的诱导下自组装形成3D纳米水凝胶,因此可以应用于骨组织工程支架材料,或应用于细胞的3D原位培养;可以与胶原纤维结合,诱导胶原纤维的矿化,因此可以应用于骨组织再生的研究,以及诱导牙骨质、牙本质的矿化再生修复。
附图说明
图1:多肽衍生物CEMP1仿生寡肽的分子骨架及3D结构图。
图2:多肽衍生物CEMP1仿生寡肽自组装后的形态,其中a为透射电镜照片;b为扫描电镜照片。
图3:多肽衍生物CEMP1仿生寡肽诱导矿化性能的表征,a:透射电镜和选区电子衍射;b:扫描电镜及局部放大;c-g:扫描电镜和对应区域的EDS-mapping(元素分布图),d:碳元素分布;e:氧元素分布,f:钙元素分布;g:磷元素分布。
图4:CEMP1仿生寡肽诱导胶原纤维矿化。其中a:实验组透射电镜和选区电子衍射及能谱分析,b:实验组扫描电镜及局部区域放大,c:对照组透射电镜和选区电子衍射及能谱分析,d:对照组扫描电镜及局部区域放大。
图5:牙本质薄片用磷酸脱矿后及结合多肽后的扫描电镜图,a为新鲜牙本质(实施例1标题4中A步骤所得)的扫描电镜图,b为新鲜牙本质经酸蚀后的扫描电镜图(实施例1标题4中B步骤所得),c-d:酸蚀后的牙本质结合多肽后的表面及断面观(实施例1标题4中C步骤所得)。
图6:CEMP1仿生寡肽在牙本质表面诱导形成的类牙体硬组织表面扫描电镜图。其中a,c,e:是实验组分别矿化1天,2天,3天后的扫描电镜图及局部区域放大(实施例1标题4中C步骤所得)。b,d,f:对照组分别矿化1天,2天,3天后的扫描电镜图及局部区域放大(实施例1标题4中D步骤所得)。
图7显示了葡萄糖基化天冬酰胺的结构式。
图8显示了磷酸化丝氨酸Ser(p)的结构式。
图9显示了磷酸化苏氨酸Thr(p)的结构式。
具体实施方式
本发明实施例中CEMP1仿生寡肽可以采用如下方法合成:将不溶性树脂(不溶性树脂共有三类:聚苯乙烯-苯二乙烯交联树脂;聚丙烯酰胺;聚乙烯-乙二醇类树脂及衍生物)作为高分子固相载体,首先将一个氨基被封闭基团(氨基的保护基有烷氧羰基,叔丁氧羰基,9-芴甲氧羰基)保护的氨基酸共价连接在固相载体上。在脱保护剂(脱保护剂有:三氟乙酸;哌啶-CH2Ccl2或者哌啶-DMF)的作用下,脱掉氨基的保护基,这样第一个氨基酸就接到了固相载体上了。然后将氨基被封闭的第二个氨基酸采用羧基活化剂活化,再与已接在固相载体的第一个氨基酸的氨基反应形成肽键,这样在固相载体上就生成了一个带有保护基的二肽。重复上述肽键形成反应,按照氨基酸分子的序列,使肽链从氨基酸的羧基端(C端)向氨基端(N端)生长,直至达到所需要的肽链长度。然后,在多肽的N端氨基酸,即谷氨酰胺的氨基,在棕榈酰氯和N,N-二异丙基乙胺(DIEA)的作用下,与脂肪酸(C15H31-COOH)的羧基进行缩合反应,从而将脂肪酸结构接在多肽分子的N端。
最后脱去保护基,用无机酸水解肽链和固相载体之间的酯键,就得到了合成好的肽。
修饰糖基:N-糖基化(N-linked glycosylation)是通过糖链的还原端N-乙酰胺基葡萄糖(Glc-Nac)和肽链中Asn侧链酰胺基上的N原子相连,再将带有糖片段的氨基酸作为一个氨基酸构建单元,按照最优化的条件将其引入到多肽序列中,按照上述的多肽固相合成法经过进一步的多肽序列的延伸,完成糖肽的组装。
多肽衍生物2-96参照上述方法合成。
本发明实施例中各多肽衍生物均是上海科肽生物科技有限公司(ShanghaiScience Peptide Biological Techology Co.,ltd,)合成。
实施例1多肽衍生物CEMP1仿生寡肽的生物活性
多肽衍生物CEMP1仿生寡肽,结构式为:
C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Ser(p)-NH2,其中Ser(p)表示磷酸化丝氨酸。
1.诱导自组装获得纳米水凝胶,用于骨牙组织工程支架材料,或应用于细胞的3D原位培养。
A:取2mg多肽衍生物CEMP1仿生寡肽粉末加入100ul二甲基亚砜(dimethylsulfoxide,DMSO)使之完全溶解,然后加入1900ul的去离子水,配置成1mg/ml的多肽溶液。
B:取A步骤中获取的浓度为1mg/ml多肽衍生物溶液200ul,加入1M氯化钙溶液,超声震荡,充分混匀,常温下自组装2h,获得半固体水凝胶,即自组装多肽衍生物水凝胶。
C:纳米水凝胶纤维的扫描电子显微镜观察:将步骤B得到的自组装多肽衍生物水凝胶,用2ml无水酒精充分分散均匀,然后滴加在透射电镜铜网上,用2.5%的戊二醛溶液使自组装多肽衍生物充分固定在透射电镜铜网上(固定时间约2h)。将自组装多肽衍生物固定在透射电镜铜网上的样本进行梯度酒精脱水,依次在30%,50%,70%,85%,90%的酒精溶液中脱水15min,无水乙醇中脱水两次,每次持续15min。临界点干燥仪中进行干燥处理。将干燥的样本进行喷金处理,后在场发射扫面电镜下观察自组装多肽衍生物能否进行自组装,及自组装后的形态特点。从图2可见,多肽衍生物小分子能够自组装形成纳米纤维结构,这种纳米纤维彼此交织形成多孔的网状结构。这种纳米纤维的直径在40-60nm之间;长度可达到微米级别(图2是多肽衍生物自组装形成的纳米纤维的电镜图)。
上述实验结果表明,多肽衍生物CEMP1仿生寡肽可以在氯化钙的诱导下自组装形成3D纳米水凝胶,可以应用于骨组织工程支架材料,或应用于细胞的3D原位培养。
2.自组装多肽衍生物诱导磷灰石晶体的生长,获得新型类骨修复材料。
A:取2mg多肽衍生物CEMP1仿生寡肽粉末加入100ul二甲基亚砜(dimethylsulfoxide,DMSO)使多肽衍生物粉末完全溶解,然后加入1900ul的去离子水,配置成1mg/ml的多肽衍生物溶液。
B:取A步骤中获取的浓度为1mg/ml多肽衍生物溶液200ul,加入1M氯化钙溶液,超声震荡,充分混匀,常温下自组装2h,获得组装后的半固体水凝胶,即自组装多肽衍生物水凝胶。
C:将步骤B得到的自组装多肽衍生物水凝胶浸泡在矿化液中2-8h后取出。冷冻干燥,获得复合骨修复材料。所述矿化液含有2.58mmol/L钙离子,1.55mmol/L磷酸根离子,180mmol/L氯化钠,溶剂是50mmol/L、pH=7.6的缓冲溶液。
D:材料结构的表征:将复合骨修复材料梯度脱水及干燥,进行透射电镜及选区电子衍射检测和喷金后的扫描电镜及EDS-mapping检测,来鉴定该多肽衍诱导矿化的性能。由图3可见,颗粒状的矿化物沉积在多肽衍生物自组装形成的纳米纤维的表面,EDS-mapping分析发现这些颗粒状的矿化物的主要成分为钙和磷。
由本实施例中试验结果可以看出:多肽衍生物CEMP1仿生寡肽可以诱导磷灰石矿物质的生长,合成具有类似机体硬组织微结构的生物材料,从而具有更好的生物活性。
3.多肽衍生物与胶原纤维结合及其诱导胶原纤维的矿化。
(1)将重组胶原溶液(即collagen solution type I(3mg/ml),购自Gibco-Invitrogen,USA)滴入缓冲液(50mM glycine and 200mM KCl,pH=9.0)中,在室温中孵育20min,制备得到50mg·mL-1重组胶原溶液。实验组:将1mg/ml多肽衍生物溶液加入上述获得的50mg·mL-1重组胶原溶液。对照组:是不加入多肽溶液的50mg·mL-1重组胶原溶液。
(2)分别取20μl实验组和对照组溶液,滴于TEM铜网上,用0.25w t%戊二醛溶液固定2h。然后将其置于矿化液(同上)中矿化,37℃下矿化2h。然后TEM观察矿化的胶原纤维。由图4a、图4b可见,在加入多肽衍生物CEMP1仿生寡肽后,胶原纤维能够发生矿化,且选区电子衍射分析发现,形成的矿化物沿着胶原纤维的长轴排列,且这些能谱分析发现矿化物的主要成分为钙磷。在对照组中,没有见到沿着胶原纤维长轴排列的矿物质的形成。上述实验结果显示,多肽衍生物CEMP1仿生寡肽可以与胶原纤维结合,诱导胶原纤维的矿化。因此,多肽衍生物CEMP1仿生寡肽可以应用于骨组织再生的研究,医用胶原相关产品的优化,以及诱导牙骨质、牙本质的矿化再生修复。
4.诱导脱矿牙本质表面形成矿化层结构
A:将收集的第一前磨牙用17%的EDTA溶液和有效氯浓度为5.25%的次氯酸钠溶液的混合液浸泡12h。随后,超声下震荡2h,去除牙根表面的牙骨质。金刚石低速切割机,切取牙根颈部1/3的牙根,制成2×2cm2的新鲜牙本质薄片。
B:取A中获取的牙本质薄片,然后用质量百分浓度为37%的磷酸溶液酸蚀30s,单蒸水冲洗30s,放置在含有0.02%的叠氮化钠的单蒸水中,得到酸蚀后的牙本质。
C:取B步骤酸蚀后的牙本质,浸泡在1mg/ml多肽衍生物CEMP1仿生寡肽溶液中。喷洒钙离子溶液在其表面诱导多肽溶液在牙本质表面的自组装,随后将该牙本质片浸泡在矿化液中,每24h更换一次矿化液。分别浸泡1,2,3天。
D:取B步骤中获取的牙本质片,不浸泡在多肽溶液CEMP1仿生寡肽中,而是直接浸泡在矿化液中,每24h更换一次矿化液。分别浸泡1,2,3天。
E:取B步骤中获取的牙本质片,浸泡在多肽衍生物CEMP1仿生寡肽溶液中。喷洒钙离子在其表面诱导表面多肽衍生物在牙本质表面的自组装。但不浸泡在矿化溶液中。
F:将A、B、C、D、E步骤中获取的牙本质片,进行梯度酒精脱水及临界点干燥处理。
G:将步骤F中干燥后的样本进行喷金处理,扫描电镜观察矿化表面及横断面。由图5可以看出,多肽衍生物自组装形成的纳米纤维能够附着在磷酸酸蚀后的牙本质表面及牙本质小管内部。从图6中a、c、e可见多肽衍生物附着在牙本质表面后,脱矿的牙本质胶原纤维发生了矿化,图6中b、d、f可见并没有再生的矿化层形成。
从上述实验及结果可以看到,多肽衍生物自组装形成的纳米纤维能够附着在磷酸酸蚀后的牙本质表面及牙本质小管内部。各多肽衍生物附着在牙本质表面后,脱矿的牙本质胶原纤维发生了矿化,从而能够诱导类牙体硬组织矿化再生。
实施例2
按照实施例1中方法对多肽衍生物2-96进行如下实四个方面的试验:
1.诱导自组装获得纳米水凝胶,用于骨牙组织工程支架材料,或应用于细胞的3D原位培养。
结果:多肽衍生物能够自组装形成纳米纤维结构,这种纳米纤维彼此交织形成多孔的网状结构。这种纳米纤维的直径在40-60nm之间;长度可达到微米级别。因此多肽衍生物CEMP1仿生此活性分子可以在氯化钙的诱导下自组装形成3D纳米水凝胶,可以应用于骨牙组织工程支架材料,或应用于细胞的3D原位培养。
2.自组装多肽衍生物诱导磷灰石晶体的生长,获得新型类骨修复材料。
结果:颗粒状的矿化物沉积在各多肽衍生物自组装形成的纳米纤维的表面,EDS-mapping分析发现这些颗粒状的矿化物的主要成分为钙和磷。因此,多肽衍生物2-96均可以诱导磷灰石晶体的取向生长,合成具有类似机体硬组织微结构的生物材料,从而具有更好的生物活性。
3.多肽衍生物与胶原纤维结合及其诱导胶原纤维的矿化。
结果:在加入多肽衍生物后,胶原纤维能够发生矿化,且选区电子衍射分析发现,形成的矿化物沿着胶原纤维的长轴排列,且这些能谱分析发现矿化物的主要成分为钙磷。实验结果显示,多肽衍生物CEMP1仿生寡肽可以与胶原纤维分子结合,诱导胶原纤维的矿化。因此,多肽衍生物CEMP1可以应用于骨组织再生的研究,医用胶原相关产品的优化,以及诱导牙骨质、牙本质的矿化再生修复。
4.诱导脱矿牙本质表面形成的矿化层结构。
结果:各多肽衍生物自组装形成的纳米纤维能够附着在磷酸酸蚀后的牙本质表面及牙本质小管内部。各多肽衍生物附着在牙本质表面后,脱矿的牙本质胶原纤维发生了矿化。
其各衍生物的结构式如下:
多肽衍生物2:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Ser(p)-NH2
多肽衍生物3:分子C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Ser(p)-NH2
多肽衍生物4:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Ser(p)-NH2
多肽衍生物5:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Ser(p)-NH2
多肽衍生物6:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Ser(p)-NH2
多肽衍生物7:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Ser(p)-NH2
多肽衍生物8:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Ser(p)-NH2
多肽衍生物9:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Thr(p)-NH2
多肽衍生物10:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Thr(p)-NH2
多肽衍生物11:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Thr(p)-NH2
多肽衍生物12:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Thr(p)-NH2
多肽衍生物13:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Thr(p)-NH2
多肽衍生物14:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Thr(p)-NH2
多肽衍生物15:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Thr(p)-NH2
多肽衍生物16:C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Thr(p)-NH2
多肽衍生物17:
Figure BDA0002079645110000071
多肽衍生物18:
Figure BDA0002079645110000072
多肽衍生物19:
Figure BDA0002079645110000073
多肽衍生物20:
Figure BDA0002079645110000074
多肽衍生物21:
Figure BDA0002079645110000075
多肽衍生物22:
Figure BDA0002079645110000076
多肽衍生物23:
Figure BDA0002079645110000077
多肽衍生物24:
Figure BDA0002079645110000078
多肽衍生物25:
Figure BDA0002079645110000081
多肽衍生物26:
Figure BDA0002079645110000082
多肽衍生物27:
Figure BDA0002079645110000083
多肽衍生物28:
Figure BDA0002079645110000084
多肽衍生物29:
Figure BDA0002079645110000085
多肽衍生物30:
Figure BDA0002079645110000086
多肽衍生物31:
Figure BDA0002079645110000087
多肽衍生物32:
Figure BDA0002079645110000088
多肽衍生物33:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Ser(p)-NH2
多肽衍生物34:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Ser(p)-NH2
多肽衍生物35:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Ser(p)-NH2
多肽衍生物36:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Ser(p)-NH2
多肽衍生物37:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Ser(p)-NH2
多肽衍生物38:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Ser(p)-NH2
多肽衍生物39:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Ser(p)-NH2
多肽衍生物40:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Ser(p)-NH2
多肽衍生物41:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Thr(p)-NH2
多肽衍生物42:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Thr(p)-NH2
多肽衍生物43:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Thr(p)-NH2
多肽衍生物44:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Thr(p)-NH2
多肽衍生物45:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Thr(p)-NH2
多肽衍生物46:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Thr(p)-NH2
多肽衍生物47:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Thr(p)-NH2
多肽衍生物48:C18H35O-Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Thr(p)-NH2
多肽衍生物49:
Figure BDA0002079645110000091
多肽衍生物50:
Figure BDA0002079645110000092
多肽衍生物51:
Figure BDA0002079645110000093
多肽衍生物52:
Figure BDA0002079645110000094
多肽衍生物53:
Figure BDA0002079645110000095
多肽衍生物54:
Figure BDA0002079645110000096
多肽衍生物55:
Figure BDA0002079645110000101
多肽衍生物56:
Figure BDA0002079645110000102
多肽衍生物57:
Figure BDA0002079645110000103
多肽衍生物58:
Figure BDA0002079645110000104
多肽衍生物59:
Figure BDA0002079645110000105
多肽衍生物60:
Figure BDA0002079645110000106
多肽衍生物61:
Figure BDA0002079645110000107
多肽衍生物62:
Figure BDA0002079645110000108
多肽衍生物63:
Figure BDA0002079645110000109
多肽衍生物64:
Figure BDA00020796451100001010
多肽衍生物65:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Ser(p)-NH2
多肽衍生物66:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Ser(p)-NH2
多肽衍生物67:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Ser(p)-NH2
多肽衍生物68:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Ser(p)-NH2
多肽衍生物69:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Ser(p)-NH2
多肽衍生物70:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Ser(p)-NH2
多肽衍生物71:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Ser(p)-NH2
多肽衍生物72:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Ser(p)-NH2
多肽衍生物73:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Thr(p)-NH2
多肽衍生物74:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Glu-Thr(p)-NH2
多肽衍生物75:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Glu-Thr(p)-NH2
多肽衍生物76:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Glu-Thr(p)-NH2
多肽衍生物77:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Asp-Thr(p)-NH2
多肽衍生物78:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Lys-Asp-Thr(p)-NH2
多肽衍生物79:Asn-Asn-Cys-Cys-Cys-Cys-Arg-Lys-Asp-Thr(p)-NH2
多肽衍生物80:Asn-Asn-Cys-Cys-Cys-Cys-Lys-Arg-Asp-Thr(p)-NH2
多肽衍生物81:
Figure BDA0002079645110000111
多肽衍生物82:
Figure BDA0002079645110000112
多肽衍生物83:
Figure BDA0002079645110000113
多肽衍生物84:
Figure BDA0002079645110000114
多肽衍生物85:
Figure BDA0002079645110000121
多肽衍生物86:
Figure BDA0002079645110000122
多肽衍生物87:
Figure BDA0002079645110000123
多肽衍生物88:
Figure BDA0002079645110000124
多肽衍生物89:
Figure BDA0002079645110000125
多肽衍生物90:
Figure BDA0002079645110000126
多肽衍生物91:
Figure BDA0002079645110000127
多肽衍生物92:
Figure BDA0002079645110000128
多肽衍生物93:
Figure BDA0002079645110000129
多肽衍生物94:
Figure BDA00020796451100001210
多肽衍生物95:
Figure BDA0002079645110000131
多肽衍生物96:
Figure BDA0002079645110000132

Claims (2)

1.一种生物医学组织工程用具有矿化功能的多肽分子衍生物,其分子结构通式为:
C16H310-Asn-Asn-Cys-Cys-Cys-Cys-Arg-Arg-Glu-Ser(p)-NH2,其中Ser(p)表示磷酸化丝氨酸,具体如下:
Figure FDA0003806866710000011
2.权利要求1所述多肽分子衍生物在制备组织工程支架材料、牙周组织再生药物、防治龋病和牙本质敏感的药物中的应用。
CN201910466751.5A 2019-05-31 2019-05-31 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用 Active CN110172081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910466751.5A CN110172081B (zh) 2019-05-31 2019-05-31 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910466751.5A CN110172081B (zh) 2019-05-31 2019-05-31 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用

Publications (2)

Publication Number Publication Date
CN110172081A CN110172081A (zh) 2019-08-27
CN110172081B true CN110172081B (zh) 2022-12-13

Family

ID=67696831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910466751.5A Active CN110172081B (zh) 2019-05-31 2019-05-31 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用

Country Status (1)

Country Link
CN (1) CN110172081B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111544568B (zh) * 2020-05-25 2024-02-27 苏州知会智能科技有限公司 一种治疗牙本质过敏的药物组合物及其制备方法、应用
CN114106094B (zh) * 2021-10-22 2023-11-03 天津市口腔医院(天津市整形外科医院、南开大学口腔医院) 一种可诱导人牙髓细胞成牙本质分化和矿化的多肽、多肽衍生物、纳米纤维及其应用
CN114605516B (zh) * 2022-03-25 2023-11-07 中国人民解放军国防科技大学 具有自组装特性和生物矿化功能的藤壶胶蛋白20k衍生多肽、其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019649A1 (en) * 2004-07-15 2006-02-23 Dentigenix Inc. Mineralizing composite materials for restoring teeth
KR100775958B1 (ko) * 2005-03-30 2007-11-13 김정문 조직재생 기능을 가지는 비활성 폴리펩티드 및 그 제조방법
CN106632610B (zh) * 2017-01-24 2020-06-12 四川大学 一种诱导脱矿牙釉质再矿化的短肽及其应用
CN107400171B (zh) * 2017-08-30 2020-06-23 四川大学 抗菌和促再矿化双效应防龋多肽、其衍生物和盐及应用
CN111544568B (zh) * 2020-05-25 2024-02-27 苏州知会智能科技有限公司 一种治疗牙本质过敏的药物组合物及其制备方法、应用

Also Published As

Publication number Publication date
CN110172081A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN110172081B (zh) 一种生物医学组织工程用具有矿化功能的多肽分子衍生物及其应用
Fan et al. Controlled remineralization of enamel in the presence of amelogenin and fluoride
US7491690B2 (en) Self-assembly and mineralization of peptide-amphiphile nanofibers
Gaillard et al. Carbon nanotubes carrying cell‐adhesion peptides do not interfere with neuronal functionality
US7700721B2 (en) Beta sheet tapes ribbons in tissue engineering
Cao et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine
Fan et al. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly
US7534761B1 (en) Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom
Mukherjee et al. Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel
US8748569B2 (en) Peptide amphiphiles and methods to electrostatically control bioactivity of the ikvav peptide epitope
Chen et al. Histidine as a key modulator of molecular self-assembly: Peptide-based supramolecular materials inspired by biological systems
Yin et al. Chemical regeneration of human tooth enamel under near-physiological conditions
JPS62111933A (ja) 骨形態形成剤
Zheng et al. Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering
WO2006098326A1 (ja) 生体材料用複合体およびその製造方法
WO2004106359A2 (en) Self-assembled peptide-amphiphiles & self-assembled peptide nanofiber networks presenting multiple signals
Urry et al. Prolyl hydroxylation of the polypentapeptide model of elastin impairs fiber formation
WO2005003292A2 (en) Composition and method for self-assembly and mineralization of peptide amphiphiles
US9109047B2 (en) High molecular ordered fibrilar structures, method for their preparation and uses thereof
CN102241738A (zh) 一种非胶原蛋白的模拟多肽及其在仿生矿化中的应用
CN111544568B (zh) 一种治疗牙本质过敏的药物组合物及其制备方法、应用
Neshatian et al. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes
Thula-Mata et al. Remineralization of artificial dentin lesions via the polymer-induced liquid-precursor (PILP) process
EP3412681B1 (de) Protransduzin b ein enhancer des gentransfers
Wang et al. Dentin remineralization induced by nanobioactive glass in association with RGDS peptide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant