CN110168694A - 辐射发射设备 - Google Patents

辐射发射设备 Download PDF

Info

Publication number
CN110168694A
CN110168694A CN201780072589.8A CN201780072589A CN110168694A CN 110168694 A CN110168694 A CN 110168694A CN 201780072589 A CN201780072589 A CN 201780072589A CN 110168694 A CN110168694 A CN 110168694A
Authority
CN
China
Prior art keywords
anode
radiation
heating
cathode
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780072589.8A
Other languages
English (en)
Inventor
邹昀
张曦
里敦
杜岩峰
孙海宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Publication of CN110168694A publication Critical patent/CN110168694A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/101Arrangements for rotating anodes, e.g. supporting means, means for greasing, means for sealing the axle or means for shielding or protecting the driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/068Multi-cathode assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/085Target treatment, e.g. ageing, heating

Abstract

提供了一种辐射发射设备。该辐射发射设备可以包括阳极、第一阴极、加热设备和外壳。第一阴极可以包括第一灯丝,其发射撞击阳极的电子束以产生用于成像的放射线。加热设备可以位于第一阴极之外并且被配置为加热阳极。外壳可以被配置为封闭第一阴极和阳极。

Description

辐射发射设备
技术领域
本申请一般涉及辐射发射设备,更具体地,涉及一种具有加热组件的辐射发射设备。
背景技术
对于辐射设备(例如,CT设备),电子束可以从阴极产生并且向阳极加速。然后当电子束撞击阳极时可以产生放射线(例如,X射线)。放射线可以穿过对象,并且可以获得与穿过对象的射线相关的一些投影数据。然而,在成像之前,可能需要对无创成像设备进行加热以保护阳极。传统上,成像设备可能需要长时间空转以使用灯丝进行预热,该灯丝与产生用于成像或治疗的辐射的灯丝相同。因此,期望提供一种有效的方法来加热阳极并防止对患者和/或操作者(例如,医生、成像技术人员、护士)的不必要的放射线曝光量。
发明内容
根据所披露的主题的一些实施例,提供了一种辐射发射设备,所述辐射发射设备包括用于预热辐射发射设备的阳极靶的组件。
本申请的一个方面涉及一种辐射发射设备。所述辐射发射设备可以包括阳极、第一阴极、加热设备、以及外壳。所述第一阴极可以包括可以发射撞击阳极的电子束以产生放射线的第一灯丝。所述加热设备可以位于第一阴极之外并且被配置为加热所述阳极。所述外壳可以被配置为封闭所述第一阴极和所述阳极。
在一些实施例中,所述加热设备可包括第二阴极,所述第二阴极是灯丝或圆盘。
在一些实施例中,所述第二阴极可以包括第二灯丝。
在一些实施例中,当所述第二灯丝加热所述阳极时,来自所述第二灯丝的电子束被配置为沿所述阳极的径向移动。
在一些实施例中,由所述第二灯丝产生的焦斑可以大于由所述第一灯丝产生的焦斑。
在一些实施例中,所述第二灯丝的直径可以大于所述第一灯丝的直径。
在一些实施例中,所述第二灯丝可以是包括1至100匝的线圈。
在一些实施例中,所述第二灯丝可以是节距范围为0.01mm至2mm的线圈。
在一些实施例中,所述第二灯丝可以是直径范围为0.05mm至0.8mm的线圈。
在一些实施例中,所述辐射发射设备可以进一步包括成像电源电路和加热电源电路。所述成像电源电路可以向所述第一阴极提供辐射电压以发射撞击所述阳极的电子束,以产生放射线。所述加热电源电路可以向所述加热设备提供加热电压以加热所述阳极,并且所述辐射电压可以高于所述加热电压。
在一些实施例中,所述加热电压可以是0KV至30KV。
在一些实施例中,所述加热设备的功率可以是100W至10KW。
在一些实施例中,所述辐射发射设备可以包括电磁感应加热设备。
在一些实施例中,所述阳极可以进一步包括电阻丝,并且所述加热设备可以被配置为加热所述电阻丝。
在一些实施例中,所述第一灯丝可以被配置为在所述加热电压下发射第一能量电子束,以加热所述阳极,以及在所述辐射电压下发射第二能量电子束,以产生放射线,用于例如,成像。
在一些实施例中,所述第一能量电子束的强度可以低于所述第二能量电子束的强度。
在一些实施例中,所述辐射发射设备可以进一步包括允许放射线穿过以向对象行进的辐照窗,并且所述辐照窗与所述加热设备之间的距离可以大于所述辐照窗与所述第一阴极之间的距离。
在一些实施例中,所述辐照窗可包括盖板。
在一些实施例中,所述辐射发射设备可以包括被配置为驱动所述阳极在所述轴上旋转的转子,以及被配置为通过至少一个轴承支撑所述轴的套筒。所述转子可以机械地连接到所述轴。
本申请的另一方面涉及一种用于加热辐射发射设备的系统。所述系统可以包括阳极、第一阴极和位于所述第一阴极外部的加热设备。所述系统可以向所述加热设备提供加热电压以加热所述阳极。所述系统可以向所述第一阴极提供辐射电压。
在一些实施例中,所述系统可以通过将所述加热电压应用于所述加热设备,以在所述阳极上产生加热焦斑。所述系统可以通过将所述辐射电压应用于所述第一阴极,以在所述阳极上产生辐射焦斑。所述加热焦斑可以大于所述辐射焦斑。
在一些实施例中,所述加热电压可低于所述辐射电压。
在一些实施例中,所述加热设备加热所述阳极的持续时间可以是0.1分钟至5分钟。
本申请的另一方面涉及一种用于加热辐射发射设备的系统。所述系统可以包括阳极、第一阴极,所述第一阴极包括被配置为发射撞击所述阳极的电子束以产生放射线的第一灯丝。所述第一灯丝可以被配置为在加热电压下发射第一能量电子束,以加热所述阳极,以及在辐射电压下发射第二能量电子束,以产生用于成像的放射线。
在一些实施例中,所述第一能量电子束的强度低于所述第二能量电子束的强度。
本申请的另一方面涉及一种用于加热辐射发射设备的系统。所述系统可以包括阳极、第一阴极,所述第一阴极包括被配置为发射撞击所述阳极的电子束以产生放射线的第一灯丝。所述系统可以进一步包括被配置为加热所述阳极而不产生X射线辐射的加热设备。所述系统可以进一步包括被配置为封闭所述第一阴极和所述阳极的外壳。
本申请的一部分附加特性可以在下面的描述中进行说明。通过对以下描述和相应附图的研究或者对实施例的生产或操作的了解,本申请的一部分附加特性对于本领域技术人员是明显的。本申请的特征可以通过对以下描述的具体实施例的各个方面的方法、手段和组合的实践或使用得以实现和达到。
附图说明
本申请将通过示例性实施例进行进一步描述。这些示例性实施例将通过附图进行详细描述。这些实施例是非限制性的示例性实施例,在这些实施例中,各图中相同的编号表示相似的结构,其中:
图1是根据本申请一些实施例所示的示例性无创成像系统的示意图;
图2是根据本申请一些实施例所示的扫描仪中的示例性成像装置的示意图;
图3是根据本申请一些实施例的示例性辐射发射设备的剖视图;
图4是根据本申请一些实施例的辐射发射设备的一部分的放大视图;以及
图5是根据本申请一些实施例所示的示例性辐射发射设备的示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。然而,本领域技术人员应当理解,可以在没有这些细节的情况下实施本申请。在其他情况下,为了避免不必要地模糊本申请的一些方面,本申请已经以相对较高的层次概略地描述了公知的方法、程序、系统、组件和/或电路。对于本领域的普通技术人员来讲,显然可以对所披露的实施例作出各种改变,并且在不偏离本申请的原则和范围的情况下,本申请中所定义的普遍原则可以适用于其他实施例和应用场景。因此,本申请不限于所示的实施例,而是符合与申请专利范围一致的最广泛范围。
应当理解的是,本文使用的“系统”、“单元”、“模块”、和/或“块”是用于按升序区分不同级别的不同构件、元素、部件、部分或组件的方法。然而,可以使用其它可以达到相同目的表达取代以上术语。
应当理解,当单元、模块或块被称为“在...上”、“连接到”或“耦合到”另一个单元、模块或块时,除非上下文另有明确说明,否则它可以直接在其他单元、模块或块上,连接或耦合到其他单元、模块或块,或者可以存在中间单元、模块或块。在本申请中,术语“和/或”可包括任何一个或以上相关所列条目或其组合。
这里使用的术语仅用于描述特定示例和实施例的目的,而不是限制性的。如本申请使用的单数形式“一”、“一个”及“该”可以同样包括复数形式,除非上下文明确提示例外情形。应当进一步理解,当在本披露中使用时,术语“包括”与“包含”仅表示存在整数、设备、行为、声明的特征、步骤、元素、操作和/或组件,但不排除存在或添加一个或以上其他整数、设备、行为、特征、步骤、元素、操作、组件和/或其组合。
本申请的一个方面涉及一种辐射发射设备。与传统的辐射发射设备(例如,X射线管)不同,本文披露的辐射发射设备还可以包括加热设备。该加热设备可以被配置为加热辐射发射设备的阳极。加热设备可以位于辐射发射设备的阴极之外。在一些实施例中,加热设备可以包括灯丝。该灯丝用于产生电子束,该电子束被加速到一定能量并撞击阳极以加热该阳极。此外,使用如本文所披露的加热设备,用于加热阳极的时间可以减少到大约0.1分钟到5分钟。在一些实施例中,加热设备可以是电磁感应加热设备。在加热阳极后,辐射发射设备可以产生放射线(例如,X射线),用于例如成像、放射治疗。
图1是根据本申请一些实施例所示的示例性无创成像系统的示意图。如图1所示,无创成像系统100可以包括扫描仪110、处理设备120、存储设备130、一个或以上终端140和网络150。成像系统100的组件可以以一个或以上的各种方式连接。仅作为示例,如图1所示,扫描仪110可以通过网络150连接到处理设备120。又例如,扫描仪110可以直接连接到处理设备120。再例如,存储设备130可以直接或通过网络150连接到处理设备120。再例如,一个或以上终端140可以直接或通过网络150连接到处理设备120。
扫描仪110可以通过扫描对象或对象的一部分来生成或提供图像数据。扫描仪10可以包括单模态扫描仪和/或多模态扫描仪。单模态可以包括例如计算机断层摄影(CT)扫描仪。在一些实施例中,CT扫描仪可以是螺旋CT扫描仪。多模态扫描仪可以包括单光子发射计算机断层摄影-计算机断层摄影(SPECT-CT)扫描仪、正电子发射断层摄影-计算机断层摄影(CT-PET)扫描仪、计算机断层摄影-超声波(CT-US)扫描仪、数字减影血管造影-计算机断层摄影(DSA-CT)扫描仪等或其组合。在一些实施例中,对象可以包括身体、物质、物体等或其组合。在一些实施例中,对象可以包括身体的特定部分,例如头部、胸部、腹部、膝盖等或其组合。在一些实施例中,对象可以包括特定器官,例如食道、气管、支气管、胃、胆囊、小肠、结肠、膀胱、输尿管、子宫、输卵管等。
在一些实施例中,扫描仪110可以通过网络150将图像数据发送到处理设备120、存储设备130和/或终端140。例如,图像数据可以被发送到处理设备120以进行进一步处理,或者可以存储在存储设备130中。
处理设备120可以处理从扫描仪110、存储设备130和/或终端140获取的数据和/或信息。例如,处理设备120可以基于由扫描仪110收集的投影数据来重建图像。在一些实施例中,处理设备120可以是单个服务器或服务器组。服务器组可以是集中式的或分布式的。在一些实施例中,处理设备120可以是本地的或远程的。例如,处理设备120可以通过网络150从扫描仪110、存储器130和/或终端140访问信息和/或数据。又例如,处理设备120可以直接连接到扫描仪110、终端140和/或存储器130以访问信息和/或数据。在一些实施例中,处理设备120可以在云平台上实现。例如,该云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
在一些实施例中,处理器设备120还可以包括如图2所示的辐射发射设备控制器250。辐射发射设备控制器250可以产生与扫描仪110的工作模式有关的控制信号。工作模式可以包括工作模式和加热模式。工作模式可以指扫描仪110产生辐射束并获取图像数据的过程。加热模式可以指在扫描器110产生辐射束并获取图像数据之前将组件(例如,扫描器110的管)加热到特定温度或温度范围(例如,2000摄氏度至2500摄氏度)的过程。关于辐射发射设备控制器250的更多描述可以在图2的描述中找到。
存储设备130可以存储数据、指令和/或任何其他信息。在一些实施例中,存储设备130可以存储从扫描仪110、处理设备120和/或终端140获取的数据。在一些实施例中,存储设备130可以存储处理设备120可以执行或使用的数据和/或指令,以执行本申请中描述的示例性方法。在一些实施例中,存储设备可包括大容量存储器、可移动存储器、易失性读写存储器、只读存储器(ROM)等或其任意组合。示例性的大容量存储器可以包括圆盘、光盘、固态圆盘等。示例性的可移动存储器可以包括闪存驱动器、软盘、光盘、存储卡、压缩盘、磁带等。示例性的易失性读写存储器可以包括随机存取存储器(RAM)。示例性的RAM可包括动态随机存取存储器(DRAM)、双倍数据速率同步动态随机存取存储器(DDR SDRAM)、静态随机存取存储器(SRAM)、晶闸管随机存取存储器(T-RAM)和零电容随机存取存储器(Z-RAM)等。示例性的只读存储器可以包括掩模型只读存储器(MROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(PEROM)、电可擦除可编程只读存储器(EEPROM)、光盘只读存储器(CD-ROM)和数字多功能圆盘只读存储器等。在一些实施例中,存储设备130可以在如本申请中其他地方所述的云平台上实现。仅作为示例,该云平台可以包括私有云、公共云、混合云、社区云、分布云、内部云、多层云等或其任意组合。
在一些实施例中,存储设备130可以连接到网络150以与成像系统100中的一个或以上其他组件(例如,处理设备120、终端140等)通信。成像系统100中的一个或以上组件可以通过网络150访问存储设备130中存储的数据或指令。在一些实施例中,存储设备130可以是处理设备120的一部分。
终端140可以与扫描仪110、处理设备120和/或存储设备130连接和/或通信。例如,终端140可以从处理设备120获取处理后的图像。又例如,终端140可以获取由扫描仪110获取的图像数据,并将图像数据发送到处理设备120以进行处理。在一些实施例中,终端140可以包括移动设备140-1、平板电脑140-2、笔记本电脑140-3等或其任意组合。例如,移动设备140-1可以包括移动电话、个人数字助理(PDA)、游戏设备、导航设备、销售点(POS)设备、笔记本电脑、平板电脑等或其任意组合。在一些实施例中,终端140可包括输入设备、输出设备等。输入设备可以包括可以在键盘上实现的字母数字和其他键、触摸屏(例如,具有触觉或触摸反馈)、语音输入、眼动追踪输入、大脑监测系统或任何其他类似的输入机制。通过输入设备接收的输入信息可以通过例如总线传输到处理设备120,以进行进一步处理。其他类型的输入设备可以包括光标控制设备,例如鼠标、轨迹球或光标方向键等。输出设备可以包括显示器、扬声器、打印机等或其组合。在一些实施例中,终端140可以是处理设备120的一部分。
网络150可以包括可以促进成像系统100的信息和/或数据交换的任何合适的网络。在一些实施例中,成像系统100的一个或以上组件(例如,扫描仪110、处理设备120、存储设备130、终端140等)可以通过网络150与成像系统100的一个或以上其他组件交换信息和/或数据。例如,处理设备120可以通过网络150从扫描仪110获取图像数据。又例如,处理设备120可以通过网络150从终端140获取用户指令。网络150可以是和/或包括公共网络(例如,因特网)、专用网络(例如,局域网(LAN)、广域网(WAN)等)、有线网络(例如,以太网)、无线网(例如、802.11网络、Wi-Fi网络等)、蜂窝网络(例如、长期演进(LTE)网络)、帧中继网络、虚拟专用网络(VPN)、卫星网络、电话网络、路由器、集线器、交换机、服务器计算机和/或其任意组合。例如,网络150可以包括电缆网络、有线网络、光纤网络、电信网络、内联网、无线局域网(WLAN)、城域网(MAN)、公共电话交换网络(PSTN)、蓝牙网络、紫蜂网络、近场通信(NFC)网络等或其任意组合。在一些实施例中,网络150可以包括一个或以上网络接入点。例如,网络150可以包括有线和/或无线网络接入点,例如基站和/或互联网交换点,成像系统100的一个或以上组件可通过它们连接到网络150以交换数据和/或信息。
应当理解,所提供的无创成像系统是为了说明的目的,而不是为了限制本申请的范围。包括加热设备或组件的辐射发射设备可以被配置为发射用于除成像之外的目的的辐射。例如,辐射发射设备可以是放射治疗设备的一部分,并且被配置为产生用于治疗目的的辐射。
该描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。可以以各种方式组合本文描述的示例性实施例的特征、结构、方法和其他特征,以获得另外的和/或替代的示例性实施例。例如,存储设备130可以是包括云计算平台的数据存储,例如公共云、私有云、社区云和混合云等。然而,这些变化和修改不会背离本申请的范围。
图2是根据本申请一些实施例所示的扫描仪110中的示例性成像装置200的示意图。成像装置200可以包括辐射发射设备210、检测器230和高压发生器240。在扫描过程中,对象220可以驻留在辐射发射设备210和检测器230之间。在一些实施例中,成像装置200可以在无创成像系统100中实现,例如计算机断层摄影(CT)系统、计算机射线照相(CR)系统、数字射线照相(DR)系统、CT-正电子发射断层扫描(PET)系统或CT-磁共振成像(MRI)系统。
辐射发射设备210可以向对象220发射辐射射线(例如,X射线)。辐射发射设备210可以包括X射线管。例如,X射线管可以利用由高压发生器240提供的电源产生X射线。在一些实施例中,高压发生器240可以包括向辐射发射设备210提供不同大小的电压的一个或以上电路。在一些实施例中,辐射发射设备210可以包括阳极、第一阴极、转子、套筒和外壳。在一些实施例中,辐射发射设备210可以进一步包括加热设备,该加热设备被配置为加热阳极。关于辐射发射设备210的配置的更多描述可以在本申请的其他地方找到。例如,参见图3及其描述。
在一些实施例中,辐射发射设备控制器250可以产生控制信号以选择辐射发射设备210的模式。辐射发射设备210可以处于以下模式之一,包括例如空闲、工作(或成像)、加热和关闭。辐射发射设备控制器250可以基于控制信号控制高压发生器240的操作。例如,在接收到与由辐射发射设备控制器250产生的成像模式有关的控制信号时,高压发生器240可以向辐射发射设备210中的第一阴极提供辐射电压(例如,100KV)以发射电子束,并且检测器230可以检测信号,处理设备120可以基于该信号获取用于图像重建的成像数据。又例如,在收到与辐射发射设备控制器250产生的加热模式有关的控制信号时,高压发生器240可以向辐射发射设备210中包含的加热设备提供加热电压(例如,10KV-30KV),以加热辐射发射设备210。
该描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。可以以各种方式组合本文描述的示例性实施例的特征、结构、方法和其他特征,以获得另外的和/或替代的示例性实施例。例如,辐射发射设备210可包括连接到高压发生器240的一个或以上电路。
图3是根据本申请一些实施例的示例性辐射发射设备的剖视图。如图3所示,辐射发射设备300(例如,X射线管)可以包括套筒310、轴312、一个或以上轴承314、锥形定子316、转子法兰318、转子320、阳极322、外壳324、第一阴极326和辐照窗328。
第一阴极326可以包括一个或以上被配置为发射电子束的第一灯丝。在一些实施例中,第一灯丝可以包括钨丝、铱丝、镍丝、钼丝等或其组合。第一灯丝可以在辐射电压下发射许多自由电子。这些自由电子可以加速以撞击阳极322来进一步产生放射线(例如,X射线)。在一些实施例中,第一阴极326可以包括不同尺寸(例如,不同长度和/或不同直径)的至少两个第一灯丝。
阳极322可以位于第一阴极326的对面。当第一阴极326由某一电压(例如,辐射电压)供电时,电子可以从第一阴极326产生并且在第一阴极326和阳极322之间的电场中加速,以形成撞击阳极322的电子束。阳极322可以由导电材料制成,在高温下具有高机械强度并且具有高熔点。示例性的材料可以包括钛锆钼(TZM)、铁、铜、钨、石墨等或其合金,或其任意组合。
如果电子束撞击冷阳极(例如,室温下的阳极322),则可能造成对该阳极的损害(例如,阳极上的裂缝)。在第一阴极326在辐射电压下向阳极322发射电子束之前,阳极322可能需要被加热到特定的温度或温度范围(例如,500摄氏度到1000摄氏度)。在一些实施例中,第一阴极326可以被配置为通过在加热电压下产生撞击阳极322的电子束来加热阳极322。在这种情况下,由于这些用于加热的额外负载,第一阴极326的第一灯丝的使用寿命可能会降低。另外,一些高能射线可能从辐照窗328泄漏,导致辐射污染。为了保护第一灯丝,辐射发射设备300可以包括用于预热阳极322的额外加热设备或组件。在一些实施例中,加热设备可以位于第一阴极326的外部。关于第一阴极326和加热设备的更多描述可以在本申请的其他地方找到。例如参见图4及其描述。
阳极322可以安装在转子法兰318上。转子法兰318可以机械连接到转子320。可以通过锥形定子316驱动转子320旋转。转子320的旋转可以进一步驱动阳极322旋转。由阳极322、转子法兰318和转子320形成的组件可以由轴312支撑。轴312可以通过例如轴法兰机械地连接到转子法兰318。在一些实施例中,轴法兰和转子法兰318可以通过例如螺栓结构固定在一起。
套筒310可以被配置为保持轴312。套筒310可以限制轴312沿轴312的轴向运动,并允许轴312绕其轴线旋转。另外,套筒310可以通过例如轴承314限制轴312沿垂直于轴312的轴向的方向运动。
外壳324可以容纳转子法兰318、转子320、阳极322和第一阴极326。外壳324可以是密封的或气密的,以在外壳324内保持真空状态。在一些实施例中,外壳324可以由玻璃、陶瓷、金属陶瓷等或其任意组合制成。
外壳324和套筒310可以以不同方式形成整体结构。例如,外壳324可以通过焊接、机械元件等或其组合连接到套筒310。示例性的焊接方式可以包括屏蔽金属电弧焊(SMAW)、金属活性气体焊(MAGW)、金属惰性气体焊(MIGW)、钨极气体保护电弧焊(GTAW)、电阻焊等或其组合。示例性的机械元件可以包括螺栓、螺钉、螺母、垫圈、气密胶、气密胶带等。在一些实施例中,套筒310的第一端和外壳324的一端可以焊接在一起,并且套筒310上与第一端相对的第二端可以位于外壳324的外部。
外壳324和套筒310都可以浸没在冷却介质中以便散热。冷却介质可以包括气体介质、液体介质等。在一些实施例中,气体介质可以包括空气、惰性气体等或其任意组合。在一些实施例中,液体介质可以包括水、聚酯(POE)、聚亚烷基二醇(PAG)等或其组合。在一些实施例中,外壳324可以保持真空。例如,外壳324的真空度可以保持低于1e-5Pa,使得电子束可以直接向阳极322加速。
转子320可以位于阳极322和封闭在套筒310中的组件(例如,轴承314)之间。转子320面向阳极322的表面可以是平的或凹的。锥形定子316可以通过在转子320的位置处提供磁场来驱动转子320旋转。锥形定子316可以具有锥形形状。安装在锥形定子316上的线圈可以产生与轴312的轴向形成倾斜角的磁场。如本文所使用的,倾斜角可以在0到90度、或10到80度、或20到60度、或30到50度等的范围内。锥形定子316可以安装在外壳324的外表面上或在固定于外壳324上的保持器上。
该描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。可以以各种方式组合本文描述的示例性实施例的特征、结构、方法和其他特征,以获得另外的和/或替代的示例性实施例。例如,可以从辐射发射设备100移除转子法兰318。轴312和转子320可通过机械元件(例如,螺栓、螺钉、螺母、垫圈、气密胶、气密胶带)焊接在一起或固定在一起。又例如,锥形定子316可以用另一个能够驱动转子320旋转的定子代替。但是,那些变化和修改不会脱离本申请的范围。
图4是根据本申请一些实施例的辐射发射设备400的一部分的放大视图。第一阴极326中的第一灯丝402可以被配置为在辐射电压下产生电子束。加热设备404可以被配置为加热阳极。加热设备可位于阴极之外。加热设备404可以比第一阴极326更远离辐照窗328。更具体地,辐照窗328与加热设备404之间的第一距离可以大于辐照窗328与第一阴极326之间的第二距离。
在一些实施例中,加热设备404可以包括第二阴极。第二阴极可以是热离子阴极或冷阴极。冷阴极可以在高电场(即,场致发射)下发射电子束。当加热到高温(例如,1000到2000摄氏度)时,热离子阴极可以发射电子束。第二阴极可以是灯丝或圆盘。例如,第二阴极可以是图4中所示的第二灯丝403。在一些实施例中,第二灯丝403可以包括钨丝、铱丝、镍丝、钼丝等或其组合。在一些实施例中,第二灯丝403可以包括钨丝。通过加热阳极的常规方式,第一阴极326中的灯丝可以用于加热阳极322并产生撞击阳极322的电子以产生辐射射线。在第一阴极326中使用这样的灯丝,阳极322的加热可能需要10分钟到15分钟。在一些实施例中,使用加热设备404中包含的第二阴极(例如,第二灯丝403),可能需要不超过10分钟、或不超过8分钟、或不超过6分钟、或不超过5分钟、或不超过4分钟、或不超过2分钟、或不超过1分钟来加热阳极。在一些实施例中,使用加热设备404中包含的第二阴极(例如,第二灯丝403),可能需要1分钟至10分钟、或1分钟至8分钟、或1分钟至6分钟、或1分钟至5分钟、或1分钟至4分钟、或1分钟至2分钟来加热阳极。如本文所使用的,第一灯丝是指第一阴极326中的灯丝,被配置为产生电子或电子束以击打阳极322,使得阳极322产生放射线以用于,例如,成像、放射疗法等。如本文所使用的,第二灯丝是指加热设备中的灯丝或被配置为在加热电压下加热阳极322的组件。第二灯丝403的直径可以大于第一灯丝402的直径。在一些实施例中,第二灯丝403的直径可以在0.05毫米至0.8毫米的范围内。在一些实施例中,第二灯丝403可以是包括1至100匝的线圈。第二灯丝403的线圈的节距可以在0.01mm至2mm的范围内。在一些实施例中,加热设备可以是能够发射电子束的金属圆盘。圆盘的直径可以是1mm至100mm。在一些实施例中,加热设备可以是矩形,其侧边尺寸在1mm至100mm的范围内。
在一些实施例中,第二阴极(例如,第二灯丝403)可进一步被配置为在加热阳极322时沿阳极322的径向移动。阳极322的径向可以指与阳极322的半径平行的方向(例如,图4中所示的方向405)。通过沿阳极322的径向移动第二阴极(例如,第二灯丝403),由第二阴极(例如,第二灯丝403)产生的电子束可以撞击阳极的不同位置,因此,第二阴极(例如,第二灯丝403)可以均匀地加热阳极322。在一些实施例中,电磁感应设备可以放置在第二阴极(例如,第二灯丝403)和阳极322之间。当第二阴极(例如,第二灯丝403)加热阳极322时,电磁感应设备可以被配置为产生磁场。由第二阴极(例如,第二灯丝403)发射的电子束的方向可以由电磁感应设备产生的磁场控制。通过控制磁场的强度,电子束可以撞击阳极的不同位置,因此第二阴极(例如,第二灯丝403)可以均匀地加热阳极322。在一些实施例中,加热设备404中包含的第二阴极(例如,第二灯丝403)可以在加热电压下产生电子束。在加热模式下,由第二阴极(例如,第二灯丝403)产生的电子束可以撞击阳极322并在阳极322上产生第二焦斑。在工作模式下,第一灯丝402还可以在辐射电压下在阳极上产生具有第一焦斑的电子束。焦斑的尺寸可以取决于灯丝的尺寸(例如,灯丝的长度)。由第二阴极(例如,第二灯丝403)产生的第二焦斑可以大于由第一灯丝402产生的第一焦斑。由于焦斑的尺寸较大,由第二阴极(例如,第二灯丝403)撞击阳极322产生的电子束的能量强度可以小于第一灯丝撞击阳极322所产生的电子束的能量强度。当第二阴极(例如,第二灯丝403)加热阳极时,阳极不容易损坏。加热设备可以位于在阳极产生的X射线没有直接通路到达辐照窗的位置。X射线的这种阻挡可以通过阳极材料本身或由可以衰减X射线的材料组成的任何附加结构来实现。可以进一步优化第二阴极(例如,第二灯丝403)或加热设备的位置,使其位于与阳极非常接近的位置。第二灯丝和阳极之间的距离可以在1mm至300mm之间。第二阴极(例如,第二灯丝403)和阳极之间的短距离允许低加热电压和高加热电流。低加热电压和高加热电流允许快速加热阳极并产生低能量和低密度的X射线。这种X射线可以容易地被X射线衰减材料如阳极、辐照窗或辐照窗外的板或任何由X射线衰减材料组成的结构阻挡。
在一些实施例中,加热设备404可以是电磁感应加热设备(例如,电磁感应加热器)。辐射发射设备300的阳极322还可以包括电阻丝。加热设备404可以在电阻丝中产生电流,从而产生热量以加热阳极。
辐射发射设备300的阳极322还可以包括感应线圈(例如,如图4所示的感应线圈406或感应线圈407)。加热设备404可以在加热电压下在感应线圈中引起电磁感应,从而产生热量以加热阳极。在一些实施例中,感应线圈406可以位于管的外部,围绕阳极。在一些实施例中,感应线圈407可以位于管的内部,围绕阳极。
图5是根据本申请一些实施例所示的示例性辐射发射设备的示意图。如图5所示,辐射发射设备500可以包括第一阴极502、加热设备504、阳极506、转子508、辐照窗510、外壳512、成像电源电路514和加热电源电路516。
在一些实施例中,第一阴极502可以包括一个或以上第一灯丝。电连接到第一阴极502的成像电源电路514可以向第一阴极502提供辐射电压。第一阴极502中包含的第一灯丝可以在辐射电压下发射电子束。电子束可以撞击阳极506以产生放射线。放射线可以穿过辐照窗510以照射位于放射线路径中的对象。应当理解,当电子束撞击阳极506时,可以产生成像焦斑。成像焦斑越小,生成的图像越清晰。
与加热设备504电连接的加热电源电路516可以向加热设备504提供加热电压,以加热阳极506。在一些实施例中,加热设备504可以是第二阴极。在一些实施例中,加热设备504可包括一个或以上第二灯丝。第二灯丝或第二阴极可以在加热电压下发射电子束并在阳极506上产生加热焦斑。在一些实施例中,当由第二灯丝或第二阴极发射的电子束撞击阳极506时,可以产生放射线。与第一灯丝产生的放射线相比,由第二灯丝或第二阴极产生的放射线具有较低的能量强度,因此它们可以容易被外壳512屏蔽。在一些实施例中,第二灯丝或第二阴极可以位于比第一灯丝或第一阴极502更远离窗口510的位置。在一些实施例中,由第二灯丝或第二阴极产生的放射线可以被辐照窗328阻挡并且基本上不能穿透辐照窗510。这种对加热过程产生的辐射的阻挡可以进一步通过位于窗外部的额外屏蔽来实现,以使得在加热过程中不会对周围区域产生辐射。例如,辐照窗328还可以包括用于阻挡放射线的盖板(图5中未示出)。盖板可以包括能够吸收至少一部分放射线的材料(在本文中也称为“高吸收性材料”)。示例性的高吸收性材料可以包括钨、铅、铀、金、银、铜、钼、铅等或其合金,或其组合。
加热设备可以加热X射线管以进行管加热,而不会对周围环境产生X射线辐射。对周围环境的额外辐射小于自然背景辐射的10%、100%、200%或400%。
在一些实施例中,成像电源电路514和加热电源电路516可以由高压发生器240控制。例如,如果用户希望在使用辐射发射设备(例如,对对象进行扫描)之前加热阳极506,则用户可以提供指令以通过高压发生器240将加热电压提供给加热设备。在预热完成之后,用户可以进一步提供指令,以向辐射发射设备提供到第一阴极502的辐射电压。第一阴极502中的第一灯丝可以发射撞击阳极506的电子束,以产生用于照射对象的放射线,以用于例如成像、放射治疗等目的。
在一些实施例中,辐射发射设备500正常操作(例如,成像、放射治疗等)之前的加热或预热可以自动执行。例如,当辐射发射设备500接收到操作指令(例如,成像、提供放射治疗疗程)时,辐射发射设备控制器250可以确定辐射发射设备500的状态(空闲、加热、工作、关闭等)并确定是否需要加热或预热。在一些实施例中,辐射发射设备控制器250可以基于例如辐射发射设备500的温度或其一部分、或辐射发射设备500的一个或以上状态参数等或其组合来确定辐射发射设备500的状态。
在一些实施例中,对于本领域普通技术人员来说,可以基于需要照射的对象的类型来确定辐射电压。例如,辐射电压可以设定为80KV、120KV、140KV等。加热电压可以低于辐射电压。例如,加热电压可以是0KV至30KV。由于加热电压较低,加热设备504的第二灯丝或第二阴极产生的放射线可以具有比第一阴极502的第一灯丝产生的放射线低得多的能量强度。在一些实施例中,加热设备504的功率可以设定为100W至10KW以达到加热的目的。加热设备504加热阳极508的时间可以取决于加热电压和/或功率。在一些实施例中,加热阳极506的时间可以持续0.1分钟至5分钟。
在一些实施例中,单独的第一灯丝502也可以被配置为预热阳极。例如,第一灯丝502可以在加热电压下发射第一能量电子束。第一电子束可用于加热阳极506。在加热阳极之后,第一灯丝502可以在辐射电压下发射第二能量电子束以产生放射线,用于例如成像。加热电压可以低于辐射电压,因此第一能量电子束的强度可以低于第二能量电子束的强度。
应当理解,上述实施例的描述是为了理解本申请,而不是为了限制本申请的范围。对于本领域具有普通技术人员来说,可以根据本申请进行各种变化与修改。然而,这些变化和修改不脱离本申请的范围。
上文已对基本概念做了描述,显然,对于阅读此申请后的本领域的普通技术人员来说,上述发明披露仅作为示例,并不构成对本申请的限制。虽然此处并未明确说明,但本领域普通技术人员可以对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。例如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特性。因此,应当强调并注意的是,本说明书中在不同位置两次或以上提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或以上实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域普通技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的过程、机器、产品或物质的组合,或对其任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可以采取体现在一个或以上计算机可读介质中的计算机程序产品的形式,其中含在计算机可读程序代码包。
计算机可读信号介质可以包含一个内含计算机程序代码的传播数据信号,例如在基带上或作为载波的一部分。此类传播信号可以有多种形式,包括电磁形式、光形式等或任何合适的组合。计算机可读信号介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通信、传播或传输供使用的程序。位于计算机可读信号介质上的程序代码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF等,或任何上述介质的组合。
本申请各方面操作所需的计算机程序码可以用一种或以上程序语言的任意组合编写,包括面向对象的编程语言,如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序编程语言,如″C″编程语言、Visual Basic、Fortran 2008、Per1、COBOL 2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy或其它编程语言。该程序代码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或服务器上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或以上发明实施例的理解,前文对本申请的实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。然而,本申请的方法不应被解释为反映所要求保护的主题需要比每个权利要求中明确记载的特征更多的意图。相反,本发明的实施例应具备比上述单一实施例更少的特征。
在一些实施例中,用于描述和要求本申请的某些实施例的表示数量、属性等的数字应理解为在某些情况下由术语“约”、“近似”或“基本上”修改。除非另外说明,“约”、“近似”或“基本上”表示所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值可以根据个别实施例所需特点而改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能地精确。
本文中提及的所有专利、专利申请、专利申请公布和其他材料(如论文、书籍、说明书、出版物、记录、事物和/或类似物)在此通过引用整体并入本文以用于所有目的,与上述文件相关的任何起诉文档记录、与本文件不一致或冲突的任何上述文件或对迟早与本文件相关的权利要求书的最广范围有限定作用的任何上述文件除外。举例来说,如果与任何所包含的材料相关的术语的描述、定义和/或用法与本文件相关的术语之间存在任何不一致或冲突,应以本文件中术语的描述、定义和/或用法为准。
应当理解,本文披露的申请的实施例是对本申请实施例的原理的说明。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。
最后,应当理解的是,本申请中所述实施例仅用于说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。因此,本申请的实施例不限于仅如所示和所述的那些。

Claims (27)

1.一种辐射发射设备,包括:
阳极;
包括第一灯丝的第一阴极,被配置为发射电子束撞击所述阳极以产生放射线;
加热设备,位于所述第一阴极之外,并被配置为加热所述阳极;以及
外壳,被配置为封闭所述第一阴极和所述阳极。
2.根据权利要求1所述的辐射发射设备,其特征在于,所述加热设备包括第二阴极,以及所述第二阴极是灯丝或圆盘。
3.根据权利要求1所述的辐射发射设备,所述第二阴极包括第二灯丝。
4.根据权利要求3所述的辐射发射设备,其特征在于,来自所述第二灯丝的电子束被配置为当所述第二灯丝加热所述阳极时沿所述阳极的径向移动。
5.根据权利要求3所述的辐射发射设备,其特征在于,由所述第二灯丝产生的焦斑大于由所述第一灯丝产生的焦斑。
6.根据权利要求3所述的辐射发射设备,其特征在于,所述第二灯丝的直径大于所述第一灯丝的直径。
7.根据权利要求3所述的辐射发射设备,其特征在于,所述第二灯丝是包括1到100匝的线圈。
8.根据权利要求3所述的辐射发射设备,其特征在于,所述第二灯丝是节距范围为0.01mm至2mm的线圈。
9.根据权利要求3所述的辐射发射设备,其特征在于,所述第二灯丝是直径范围为0.05mm至0.8mm的线圈。
10.根据权利要求1所述的辐射发射设备,进一步包括:
连接到所述第一阴极的成像电源电路,其特征在于,所述成像电源电路向所述第一阴极提供辐射电压以发射撞击所述阳极的所述电子束,以产生用于成像的所述放射线;
连接到所述加热设备的加热电源电路,其特征在于,所述加热电源电路向所述加热设备提供加热电压以加热所述阳极,并且所述辐射电压高于所述加热电压。
11.根据权利要求10所述的辐射发射设备,其特征在于,所述加热电压为0KV至30KV。
12.根据权利要求10所述的辐射发射设备,其特征在于,所述加热设备的功率为100W至10KW。
13.根据权利要求10所述的辐射发射设备,进一步包括电磁感应加热设备。
14.根据权利要求10所述的辐射发射设备,其特征在于,所述阳极进一步包括电阻丝,并且所述加热设备被配置为加热所述电阻丝。
15.根据权利要求10所述的辐射发射设备,其特征在于,所述第一灯丝被配置为在所述加热电压下发射第一能量电子束,以加热所述阳极,以及在所述辐射电压下发射第二能量电子束,以产生用于成像的所述放射线。
16.根据权利要求10所述的辐射发射设备,其特征在于,所述第一能量电子束的强度低于所述第二能量电子束的强度。
17.根据权利要求10所述的辐射发射设备,其特征在于,所述辐射发射设备进一步包括允许所述放射线通过以向对象发射的辐照窗,所述辐照窗与所述加热设备之间的距离大于所述辐照窗与所述第一阴极之间的距离。
18.根据权利要求17所述的辐射发射设备,其特征在于,所述辐照窗包括盖板。
19.根据权利要求1所述的辐射发射设备,其特征在于,所述辐射发射设备进一步包括:
被配置为驱动所述阳极在所述轴上旋转的转子,所述转子与所述轴机械连接,以及
被配置为通过至少一个轴承支撑所述轴的套筒。
20.一种用于加热无创成像系统的辐射发射设备的方法,所述无创成像系统包括阳极、第一阴极和位于所述第一阴极之外的加热设备,所述方法包括:
向所述加热设备提供加热电压以加热所述阳极;以及
向所述第一阴极提供辐射电压。
21.根据权利要求20所述的方法,进一步包括:
通过将所述加热电压应用于所述加热设备,在所述阳极上产生加热焦斑;
通过将所述辐射电压应用于所述第一阴极,在所述阳极上产生成像焦斑,其特征在于,所述加热焦斑大于所述成像焦斑。
22.根据权利要求20所述的方法,其特征在于,所述加热电压低于所述辐射电压。
23.根据权利要求20所述的方法,其特征在于,所述加热电压为0KV至30KV。
24.根据权利要求20所述的方法,其特征在于,所述加热设备加热所述阳极的持续时间为0.1分钟至5分钟。
25.一种辐射发射设备,包括:
阳极;
包括第一灯丝的第一阴极,被配置为发射电子束撞击所述阳极以产生放射线;
外壳,被配置为封闭所述第一阴极和所述阳极,
其特征在于,所述第一灯丝被配置为在加热电压下发射第一能量电子束,以加热所述阳极,以及在辐射电压下发射第二能量电子束,以产生用于成像的所述放射线。
26.根据权利要求24所述的辐射发射设备,其特征在于,所述第一能量电子束的强度低于所述第二能量电子束的强度。
27.一种辐射发射设备,包括:
阳极;
包括第一灯丝的第一阴极,被配置为发射电子束撞击所述阳极以产生放射线;
加热设备,被配置为加热所述阳极而不产生X射线辐射;以及
外壳,被配置为封闭所述第一阴极和所述阳极。
CN201780072589.8A 2017-12-31 2017-12-31 辐射发射设备 Pending CN110168694A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/120435 WO2019127599A1 (en) 2017-12-31 2017-12-31 Radiation emission device

Publications (1)

Publication Number Publication Date
CN110168694A true CN110168694A (zh) 2019-08-23

Family

ID=67059902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780072589.8A Pending CN110168694A (zh) 2017-12-31 2017-12-31 辐射发射设备

Country Status (4)

Country Link
US (1) US11075051B2 (zh)
EP (1) EP3539144A4 (zh)
CN (1) CN110168694A (zh)
WO (1) WO2019127599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729212A (zh) * 2020-07-27 2020-10-02 上海联影医疗科技有限公司 微波源的阴极加热器、阴极和放射治疗设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020206939B4 (de) * 2020-06-03 2022-01-20 Siemens Healthcare Gmbh Röntgenstrahler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191309449A (en) * 1913-04-22 1914-03-19 Charles Arthur Friedrich Improvements in or relating to X-Ray Tubes and the like and the Manufacture thereof.
US4631742A (en) * 1985-02-25 1986-12-23 General Electric Company Electronic control of rotating anode microfocus x-ray tubes for anode life extension
US20100142680A1 (en) * 2008-12-09 2010-06-10 Ryan Paul August System and method to maintain target material in ductile state
CN102224557A (zh) * 2008-11-25 2011-10-19 皇家飞利浦电子股份有限公司 具有靶标温度传感器的x射线管
US20120082299A1 (en) * 2010-10-05 2012-04-05 General Electric Company X-ray tube with improved vacuum processing
US20170092457A1 (en) * 2015-09-30 2017-03-30 Toshiba Medical Systems Corporation X-ray computed tomography imaging apparatus and x-ray tube apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846006A (en) * 1972-02-24 1974-11-05 Picker Corp Method of manufacturing of x-ray tube having thoriated tungsten filament
US4964148A (en) * 1987-11-30 1990-10-16 Meicor, Inc. Air cooled metal ceramic x-ray tube construction
US6125169A (en) * 1997-12-19 2000-09-26 Picker International, Inc. Target integral heat shield for x-ray tubes
US6456691B2 (en) * 2000-03-06 2002-09-24 Rigaku Corporation X-ray generator
JP5801161B2 (ja) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 X線管及びx線管の製造方法
JP2014067665A (ja) * 2012-09-27 2014-04-17 Hitachi Medical Corp X線管装置及びこれを用いたx線診断装置
US9818569B2 (en) * 2014-12-31 2017-11-14 Rad Source Technologies, Inc High dose output, through transmission target X-ray system and methods of use
JP6772289B2 (ja) * 2016-03-24 2020-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. X線発生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191309449A (en) * 1913-04-22 1914-03-19 Charles Arthur Friedrich Improvements in or relating to X-Ray Tubes and the like and the Manufacture thereof.
US4631742A (en) * 1985-02-25 1986-12-23 General Electric Company Electronic control of rotating anode microfocus x-ray tubes for anode life extension
CN102224557A (zh) * 2008-11-25 2011-10-19 皇家飞利浦电子股份有限公司 具有靶标温度传感器的x射线管
US20100142680A1 (en) * 2008-12-09 2010-06-10 Ryan Paul August System and method to maintain target material in ductile state
US20120082299A1 (en) * 2010-10-05 2012-04-05 General Electric Company X-ray tube with improved vacuum processing
US20170092457A1 (en) * 2015-09-30 2017-03-30 Toshiba Medical Systems Corporation X-ray computed tomography imaging apparatus and x-ray tube apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周怀武: "建材机械电气设备", 武汉工业大学出版社, pages: 132 - 133 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729212A (zh) * 2020-07-27 2020-10-02 上海联影医疗科技有限公司 微波源的阴极加热器、阴极和放射治疗设备

Also Published As

Publication number Publication date
EP3539144A4 (en) 2020-01-22
US11075051B2 (en) 2021-07-27
US20190206653A1 (en) 2019-07-04
EP3539144A1 (en) 2019-09-18
WO2019127599A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US9991085B2 (en) Apparatuses and methods for generating distributed x-rays in a scanning manner
TWI307110B (en) Method and apparatus for controlling electron beam current
EP2420112B1 (en) Monochromatic x-ray apparatus
Kamino et al. Development of an ultrasmall‐band linear accelerator guide for a four‐dimensional image‐guided radiotherapy system with a gimbaled x‐ray head
CN101927065A (zh) 用于癌症治疗和研究的紧凑型微束放疗系统及方法
CN110168694A (zh) 辐射发射设备
US11361931B2 (en) Target assembly, apparatus incorporating same, and method for manufacturing same
CN104037042B (zh) X射线产生管、x射线产生装置和x射线成像系统
US10290460B2 (en) X-ray tube with gridding electrode
CN107110794A (zh) 放射成像装置及其控制方法
CN103765548A (zh) 多能量x射线辐射的生成
KR20160042572A (ko) 방사선 촬영 장치, 방사선 촬영 장치의 제어 방법 및 컴퓨터 단층 촬영 장치
US9214311B2 (en) Method and apparatus for transmission of fluorescence X-ray radiation using a multilayer X-ray target
KR101837593B1 (ko) 탄소나노튜브 기반의 x-선 튜브를 이용한 켈로이드 및 피부암 치료용 x-선 근접 치료 시스템
CN101720492A (zh) 用于生成x-射线辐射并且具有根据需要调节的大的实焦点和虚焦点的装置
JP2011504647A (ja) 管端部に近接した焦点位置を有するx線管
Belikhin et al. X-ray System of the Proton Therapy Complex “Prometheus”
CN111729212A (zh) 微波源的阴极加热器、阴极和放射治疗设备
CN105748094A (zh) X射线产生装置、计算机化断层扫描设备及其扫描方法
JP6777526B2 (ja) X線管装置及びx線ct装置
KR101708116B1 (ko) 이동식 엑스선 이미지 촬영 장치 및 엑스선 이미지 획득 방법
CN208838900U (zh) 一种放射治疗中的原位ct装置
JP4573803B2 (ja) 電磁波発生装置およびx線撮像システム
CN104434163A (zh) 一种碳纳米ct成像系统及成像方法
WO2009027904A2 (en) X ray imaging system with cylindrical arrangement of source and detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 Shanghai City, north of the city of Jiading District Road No. 2258

Applicant before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CB02 Change of applicant information