CN110168316B - 基于步频的足部计步数方法、装置及设备 - Google Patents

基于步频的足部计步数方法、装置及设备 Download PDF

Info

Publication number
CN110168316B
CN110168316B CN201780082882.2A CN201780082882A CN110168316B CN 110168316 B CN110168316 B CN 110168316B CN 201780082882 A CN201780082882 A CN 201780082882A CN 110168316 B CN110168316 B CN 110168316B
Authority
CN
China
Prior art keywords
value
feature
time interval
feature groups
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780082882.2A
Other languages
English (en)
Other versions
CN110168316A (zh
Inventor
陈宜欣
董辰
陈霄汉
王宇
杨帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN110168316A publication Critical patent/CN110168316A/zh
Application granted granted Critical
Publication of CN110168316B publication Critical patent/CN110168316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • G06F2218/10Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Human Computer Interaction (AREA)
  • Animal Behavior & Ethology (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Dentistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)

Abstract

本申请实施例公开了一种基于步频的足部计步数方法、装置及系统,所述方法包括如下步骤:采集设定时间区间的原始信号,对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值中值,依据所述中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。本申请具有实现足部计步的优点。

Description

基于步频的足部计步数方法、装置及设备
技术领域
本申请涉及通信领域,尤其涉及一种基于步频的足部计步数方法、装置及设备。
背景技术
在全民健身国家战略指引下,跑步运动深受广大群众喜爱,可穿戴运动设备存在巨大的市场契机。健身记录是可穿戴运动设备中基础的运动健身功能,主要实现:计步、距离记录、运动时间记录、能耗计算等,大部分用户对此功能都有需求。其中计步是健身记录中最直观的一项运动指标,不仅使得用户可以直接对自身运动量进行评估,也与相关社交APP结合,成为运动社交的重要组成部分。
现有的可穿戴运动设备是基于手腕以及腰部佩戴部位的计步的实现,如用户的佩戴部位为脚部,则无法实现计步,所以现有的技术方案无法实现对足部实现计步。
发明内容
本申请实施例所要解决的技术问题在于,提供一种基于步频的足部计步数方法,可解决现有技术中无法实现足部计步的问题。
第一方面,提供基于步频的足部计步数方法,所述方法包括如下步骤:采集设定时间区间的原始信号,对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。
上述技术方案能够通过对足部合加速信息进行处理后得到多个特征组,从多个特征组中提取第一特征组的中值得到步频,通过步频计算得到步数,从而实现基于步频实现计步。
在第一方面的一种可选方案中,步数=设定时间区间长度*运动时间占比/步频;
或步数=运动时间区间长度/步频。
在第一方面的另一种可选方案中,所述对所述合加速信号进行状态处理得到运动时间区间,包括:
合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间。
在第一方面的又一种可选方案中,所述将该合加速信号按预设的运动规律提取多个特征组,包括:
对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成二次差分处理和信号;
查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;
获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组。
在第一方面的下一种可选方案中,所述对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频,包括:
提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;
计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数;
提取所述第一特征组的X轴的值的中值,步频=中值中值/采样频率。
第二方面,提供一种基于步频的足部计步数装置,所述装置包括:
采集单元,用于采集设定时间区间的原始信号;处理单元,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。
第三方面,提供一种便携式设备,所述设备包括:传感器、处理器、存储器和收发器,所述处理器与所述传感器、所述存储器和所述收发器连接,其中,所述传感器,用于采集设定时间区间的原始信号;所述处理器,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。
第四方面,提供一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行第一方面提供的方法。
第五方面,提供一种计算机程序产品,其特征在于,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行第一方面提供的方法。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是一种手部走路信号的波形图。
图1b是一种脚踝走路信号的波形图。
图2是本申请实施例提供的一种基于步频的足部计步数方法的流程示意图。
图2a是本申请实施例提供的采集设定时间区间脚踝的原始信号。
图2b是本申请实施例提供的合加速信号示意图。
图2c是静止的典型信号示意图。
图2d是震荡的典型型号示意图。
图2e为n=6时的二次差分处理和信号示意图。
图2f为配置多条阈值线的二次差分处理和信号示意图。
图2g为4个区域的划分示意图。
图3a为典型情况的波形示意图。
图3b为非典型情况一的合加速信号波形示意图。
图3c为非典型情况一的二次差分处理和信号波形示意图。
图3d为非典型情况二的二次差分处理和信号示意图。
图4a为本申请提供的一种脚部计步示意图。
图4b为本申请提供的另一种脚部计步示意图。
图4c为本申请提供的又一种脚部计步示意图。
图4d为本申请提供的再一种脚部计步示意图。
图5a为本申请另一实施例的原始信号示意图。
图5b为本申请另一实施例的原始信号截取5s窗口示意图。
图5c为本申请另一实施例的二次差分处理和信号示意图。
图6为本申请提供的一种基于步频的足部计步数装置的结构示意图。
图7为本申请提供的一种便携式设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1a,图1a为设定时间范围手部走路信号的波形图,参阅图1b,图1b为设定时间范围脚踝走路信号的波形图。参阅图1a,手部走路信号包含了4个周期,三轴的加速幅度较小,与地面垂直的轴在每个周期可以看到一个主要的波峰(包含一定震荡),且幅度一直在变化。参阅图1b,足部走路信号包含了2个周期,三轴的加速幅度较大,与地面垂直的轴在每个周期有两个波峰,且在一段时间内幅度没有明显变化。这些差异导致手部计步方法不适用足部计步。
参阅图2,图2提供了一种基于步频的足部计步数方法,该方法由穿戴式设备执行,该方法如图2所示,包括如下步骤:
步骤S201、采集设定时间区间的原始信号,对该原始信号执行合加速处理得到合加速信号。
如图2a所示为采集设定时间区间的原始信号,该设定时间区间以5s为例,对该原始信号执行合加速处理得到合加速信号如图2b所示。该如图2a所示的原始信号可以为三轴加速信号。
步骤S202、对该合加速信号的状态进行处理得到运动时间区间。
判断设定时间区间内信号的状态,具体来说,通过计算合加速,根据合加速的性质确定状态,该状态具体可以分为:静止、震荡、走、跑、其他。静止的典型信号如图2c所示,震荡的典型信号如图2d所示,对于设定幅值(即Y轴值)范围内除静止和震荡以外的信号确定为走或跑的状态,设定幅值范围外的信号确定为其他,将静止、震荡、其他剔除后即得到该运动时间区间,即走、跑的时间之和。
具体的,可以对如图2b所示的合加速信号划分成设定间隔(例如1s)的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据最大值、最小值、平均值以及极值点的个数的范围确定该范围对应的状态,即静止、震荡、走、跑、其他,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间。上述平均值具体可以为子窗口内所有信号的平均值。
步骤S203、将该合加速信号按预设的运动规律提取多个特征组。
特征提取的目的是找到原信号波形中每一步的关键特征,对其进行量化,作为步数计算的主要输入。完成从视觉上对波形形态的观察到提供数字化描述的过程。具体来看,如图2g所示,可以将脚踝走路信号的合加速人为区分为4个区域,区域4的波动最为剧烈,其他区域相对平缓,区域1基本无波动。
实现步骤S203的方法具体可以为:
对该合加速信号执行多次(以二次为例)差分处理得到二次差分处理后的信号,对该二次差分处理后的信号中相邻n个数值可以为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成二次差分处理和信号。
可选的,上述n的值为整数,且n可以取【3,10】中的值,具体的取值可以依据采集设定时间区间的原始信号的频率来确定,确定n的取值的原则可以为,如原始信号的采样频率越高,n的取值越高,反之,原始信号的采样频率越低,n的取值越低。
如图2e所示,其为n=6时的二次差分处理和信号示意图。
上述差分处理以二次差分处理为例,当然在实际应用中,还可以采用多次差分处理,例如三次差分处理,四次差分处理等等。本申请具体实施方式并不限制该差分处理的具体次数。
查找该二次差分处理和信号的最大幅值Mmax;为该二次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值(设定值),如图2f为例,C的取值为20,即相邻两条阈值线之间的差值为20%*Xmax。当然在实际应用中,上述C值也可以为10或5等等取值。
获取每条阈值线与二次差分处理和信号的上升沿交点个数m以及每个交点对应X轴(位置)的值,将该交点个数m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为多个特征组。如表1所示,为多个特征组中部分特征组的值列表。
表1:
序号 比例 个数(m) 位置(X轴的值)
1 0.7 4 240,312,380,446
2 0.6 4 239,331,378,445
3 0.5 4 239,310,378,445
4 0.4 6 106,166,238,309,378,000
步骤S204、对该多个特征组进行筛选得到第一特征组,对第一特征组提取中值,依据中值以及采集的频率得到设定时间区间的步频。
上述步骤S204的实现方法具体可以为:
提取该多个特征组中交点个数在设定范围的p个特征组,计算p个特征组中每个特征组的X轴的值的归一化标准差值,归一化标准差值=X轴的相邻差值的标准差/X轴的相邻差值平均值,该X轴的相邻平均值可以为相邻两个X轴的差值的平均值。这里以4个值为例,为了描述的方便,这里以x1、x2、x3、x4;
X轴的相邻平均值=【(x2-x1)+(x3-x2)+(x4-x3)】/3。
X轴的相邻差值标准差=对数组[x2-x1,x3-x2,x4-x3]求标准差。
计算p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组。上述加权运算具体可以为:ax+by,其中x可以为第一差值组的第i个值,y可以为第二差值组的第i个值,i取大于等于1的整数。其中a,b为预设的权值,均为常数。
以表2为例,归一化标准差的差值组(即第一差值组)为[-0.09,-0.39,0.04,0.02,0.01,0.50],个数的差值组(即第二差值组)为[1,0,2,1,1,7]。对这两个差值组进行加权运算ax+by,即[a*(-0.09)+b*1,....,a*0.5+b*7],我们得到6个加权和,从前到后寻找,当找到大于加权阈值时,比如说我们找到第6个加权和符合条件,第6个加权和是由特征组7的相应特征减去特征组6的相应特征,那么第6个加权和的前向特征组(即被减数)是特征组6,那么我们认为特征组6是我们想要的特征组,特征组6对应的阈值为最优阈值。
提取第一特征组的X轴的差值的中值,步频=中值/采样频率。
上述中值具体为,如多个数值为奇数,例如1、3、7,该中值为中间一个值3,如该多个数值为偶数,该中值为中间2个值的平均值,例如,1、3、5、9,该中值=(3+5)/2=4。
对于第一特征组的确定,有典型情况和非典型情况,具体可以包括:
典型情况
在最优阈值的情况下,找到了所有的落地冲击位置;当阈值再次下降时,找到了所有落地冲击位置和抬腿位置。一般发生在各步较为相似,抬腿幅度比冲击幅度小的时候。
采取的判断方式是,阈值下降时,交点个数大幅上升,周期(每两个交点位置差)的归一化标准差大幅上升。
确定最优阈值的方法是,通过线性和的方式,同时考虑这两个变化,选取符合条件的阈值。如图3a所示,得到的p个特征组的值的列表如表2所示。
表2:
序号 归一化标准差 个数(m)
1 0.51 3
2 0.42 4
3 0.03 4
4 0.07 6
5 0.09 7
6 0.1 7
7 0.61 14
如表2所示的数据,确定第一特征组为序号为6个特征组。
非典型情况一:随着阈值不断下降,逐渐找到各个冲击位置,并且包含了部分抬腿位置。一般发生在各步幅度有一定差异,抬腿幅度与冲击幅度不易区分的时候。参阅图3b为非典型情况一的合加速信号示意图,如图3c为非典型情况一的二次差分处理和信号示意图。其对应的数据如表3所示。
表3:
序号 归一化标准差 个数(m) 位置(X)
1 0.02 3 109,220,328
2 0.76 4 108,220,328,337
3 0.99 5 108,213,220,328,337
4 0.88 7
5 0.89 9
6 0.98 12
7 0.62 9
如表3所示的数据,确定第一特征组的序号为1。
非典型情况二
随着阈值不断下降,每次都找到所有的冲击位置。一般发生在各步较为相似,抬腿幅度远小于冲击幅度的时候。如图3d为非典型情况二的二次差分处理和信号示意图。其对应的数据如表4所示。
表4
序号 归一化标准差 个数(m) 位置(X)
1 0.02 4 83,201,318,435
2 0.03 4 82,200,317,433
如表4所示的数据,确定第一特征组的序号为2。
步骤S205、依据运动时间以及步频计算得到步数。
上述步骤S205的实现方法具体可以包括:
步数=设定时间区间长度*运动时间占比/步频;
或步数=运动时间区间长度/步频。
该运动时间占比=运动时间区间长度//设定时间区间长度。
本申请提供的技术方案实现了对脚部步数进行计步处理。本申请提供的技术方案具有高精度:实现足部计步,阈值自适应,准确度比较高;鲁棒性强:通过寻找数据二次差分求和来处理,适用于各种周期性数据,只需要周期内信号强弱有一定差异,对于信号形态没有特殊要求;低复杂度:不求各步的具体位置,只求步频,计算次数少,易于实现。
应用本申请技术方案,根据预先采集的三轴加速度传感器信号,计步结果如下图4a所示:
如图4a所示,在x轴时间为1.88-1.93(单位10^4ms)内,测试者行走约4.4步,计步4.3478步。在x轴时间为1.93-1.98内,测试者行走约4.4步,计步4.386步。
如图4b所示,在时间3.73-3.78内,测试者跑步约6.8步,计步6.7568步。在时间3.78-3.83内,测试者跑步约6.5步,计步6.5789步。
经初步验证,本申请对走路/跑步信号的计步准确率约为97%。准确率计算方式为准确率=1-abs(计步方法统计步数-真实步数)/真实步数,abs表示取绝对值。
如图4c所示,在时间0.95-1内,测试者下楼约5.5步,计步5.291步。在时间1-1.05内,测试者下楼约5步,计步5.0761步。
如图4d所示,在时间6-6.05内,测试者上楼约4.7步,计步4.6729步。在时间6.05-6.1内,测试者上楼约4.5步,计步4.5455步。
经初步验证,本申请对上楼/下楼的计步准确率约为95%。
本申请还提供另一实施例,以一段测试者的足部信号为例,说明本申请如何计步。如图5a所示,测试者走路200步,静止一段时间后,跑步210步(双脚各迈1步记为2步)。输入一段5s的窗口信号如图5b。
状态判断,首先,判断窗口内信号的状态,具体来说,通过计算合加速度,根据合加速度的性质确定状态,本段信号状态为走路。
然后,分段计算运动所占时间比例,具体来说,将窗口内信号以1s为单位分段,根据合加速度性质确定每段状态,并得到走路和跑步占总窗口时间的比例。本段信号走路(运动)时间占比100%。
特征提取对合加速度进行二次差分,以6个点为1个小窗口,对差分后的信号求和,得到变换后的二次差分求和信号(如图5c)。
找到每一个周期的初始位置。具体步骤如下:
找到当前窗口的二次差分求和信号的最大值,以最大值的0.1,0.2,...,0.9倍为阈值划线,找到信号上升沿与各阈值交点,为一组步子的初始位置;
根据基本运动规律,5s内交点个数应在3-50之间,只保留符合此条件的各组初始位置;
计算各组交点个数、周期(每两个交点位置差)的平均值和归一化标准差。
各组初始位置如下表5所示:
表5:
序号 个数(m) 位置(X)
1 4 83,201,318,435
2 4 82,200,317,433
步频计算,在找到多组阈值对应的初始位置之后,需要确定最优阈值。根据上文介绍的判断方式,我们可以确定此窗口信号属于第2种非典型情况。对所有非典型情况,我们直接选取周期的归一化标准差最小时对应的阈值和初始位置,对此窗口信号我们选择第1组初始位置,即[83,201,318,435]。
步数计算,首先,判断步频合理性,根据基本运动规律,走路每步时间在0.5-2s之间,跑步每步时间在0.3-1.5s之间,且步频相对固定(归一化标准差较小),判断当前计算出来的步频是否合理。对此窗口信号,归一化标准差值为0.1443,步频为117,符合合理性要求,以此次计算出来的步频为准。之后,根据步频计算步数,步数=窗口时间长度*运动时间占比/步频。此窗口步数为4.2735步。最终,此次运动计步方法统计步数为198.9571步,实际测试者走路与跑步共计205步(佩戴脚运动1步计为1步),准确率为97.05%。
参阅图6,图6提供一种基于步频的足部计步数装置,所述装置包括:
采集单元601,用于采集设定时间区间的原始信号;
处理单元602,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。
可选的,处理单元602,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=设定时间区间长度*运动时间占比/步频;
或处理单元602,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=运动时间区间长度/步频。
可选的,处理单元602,具体用于合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间。
可选的,处理单元602,具体用于对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成二次差分处理和信号;查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组。
可选的,处理单元602,具体用于提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数;提取所述第一特征组的X轴的值的中值,步频=中值/采样频率。
参阅图7,图7还提供一种便携式设备,所述设备包括:传感器701、处理器702、存储器703和收发器704,处理器702与传感器701、存储器703和收发器704连接,其中,
传感器701,用于采集设定时间区间的原始信号;
处理器702,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数。
可选的,处理器702,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=设定时间区间长度*运动时间占比/步频;
或处理器702,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=运动时间区间长度/步频。
可选的,处理器702,具体用于合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间。
可选的,处理器702,具体用于对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成二次差分处理和信号;查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组。
可选的,处理器702,具体用于提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数;提取所述第一特征组的X轴的值的中值,步频=中值/采样频率。
本申请还提供一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如图2所示的方法以及细化方案。
本申请还一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如图2所示的方法以及细化方案。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所揭露的仅为本申请一种较佳实施例而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (10)

1.一种基于步频的足部计步数方法,其特征在于,所述方法包括如下步骤:
采集设定时间区间的原始信号,对所述原始信号执行合加速处理得到合加速信号;
对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;
对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数;
其中,所述对所述合加速信号进行状态处理得到运动时间区间,包括:
合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间;
所述将所述合加速信号按预设的运动规律提取多个特征组,包括:
对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成多次差分处理和信号;
查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;
获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组;
所述对所述多个特征组进行筛选得到第一特征组,包括:
提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;
计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数。
2.根据权利要求1所述的方法,其特征在于,所述依据所述运动时间区间以及所述步频计算得到步数,包括:
步数=设定时间区间长度*运动时间占比/步频;
或步数=运动时间区间长度/步频。
3.根据权利要求1所述的方法,其特征在于,所述对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频,包括:
提取所述第一特征组的X轴的值的中值,步频=中值/采样频率。
4.一种基于步频的足部计步数装置,其特征在于,所述装置包括:
采集单元,用于采集设定时间区间的原始信号;
处理单元,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数;
其中,在所述对所述合加速信号进行状态处理得到运动时间区间的方面,所述处理单元,具体用于合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间;
其中,在所述将所述合加速信号按预设的运动规律提取多个特征组的方面,所述处理单元具体用于:
对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成多次差分处理和信号;查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组;
在所述对所述多个特征组进行筛选得到第一特征组的方面,所述处理单元具体用于:
提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数。
5.根据权利要求4所述的装置,其特征在于,
所述处理单元,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=设定时间区间长度*运动时间占比/步频;
或所述处理单元,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=运动时间区间长度/步频。
6.根据权利要求4所述的装置,其特征在于,
对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频,包括:提取所述第一特征组的X轴的值的中值,步频=中值/采样频率。
7.一种便携式设备,其特征在于,所述设备包括:传感器、处理器、存储器和收发器,所述处理器与所述传感器、所述存储器和所述收发器连接,其中,
所述传感器,用于采集设定时间区间的原始信号;
所述处理器,用于对所述原始信号执行合加速处理得到合加速信号;对所述合加速信号进行状态处理得到运动时间区间,将所述合加速信号按预设的运动规律提取多个特征组;对所述多个特征组进行筛选得到第一特征组,对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频;依据所述运动时间区间以及所述步频计算得到步数;
其中,在所述对所述合加速信号进行状态处理得到运动时间区间的方面,所述处理器,具体用于合加速信号划分成设定间隔的子窗口,提取每个子窗口内信号的最大值、最小值、平均值以及极值点个数,依据所述最大值、最小值、平均值以及所述极值点的个数的范围确定每个子窗口对应状态,将走状态和跑状态对应的子窗口的时间区间的和即为运动时间区间;
其中,在所述将所述合加速信号按预设的运动规律提取多个特征组的方面,所述处理器具体用于:
对所述合加速信号执行多次差分处理得到多次差分处理后的信号,对所述多次差分处理后的信号中相邻n个数值设置为一个小窗口,求每个小窗口的n个数值的和,将每个小窗口的n个数值的和变换成多次差分处理和信号;查找所述多次差分处理和信号的最大幅值Mmax;为所述多次差分处理和信号配置多条阈值线,相邻两条阈值线之间的差值为Mmax*C%,其中C为定值;获取每条阈值线与多次差分处理和信号的上升沿交点个数m以及每个交点对应X轴的值,将所述m以及每个交点对应X轴的值作为该条阈值线对应的特征组,所有阈值线对应的特征组即为所述多个特征组;
在所述对所述多个特征组进行筛选得到第一特征组的方面,所述处理器具体用于:
提取所述多个特征组中m在设定范围的p个特征组,计算所述p个特征组中每个特征组的X轴的值的归一化标准差值;计算所述p个特征组中相邻两个特征组的交点个数的差值得到第一差值组,计算p个特征组中相邻两个特征组的X轴的值的归一化标准差值的差值得到第二差值组,提取第一差值组的第i个值与第二差值组的第i个值进行加权运算得到多个加权运算的结果,从多个加权运算的结果从前到后寻找第一个大于加权阈值的第j加权运算结果,将第j加权运算结果的前向特征组确定为第一特征组;所述i,j均为大于等于1的整数。
8.根据权利要求7所述的设备,其特征在于,
所述处理器,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=设定时间区间长度*运动时间占比/步频;
或所述处理器,具体用于依据所述运动时间区间以及所述步频计算得到步数,步数=运动时间区间长度/步频。
9.根据权利要求7所述的设备,其特征在于,
对所述第一特征组提取中值,依据所述中值以及采集的频率得到所述设定时间区间的步频,包括:提取所述第一特征组的X轴的值的中值,步频=中值/采样频率。
10.一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-3任一项所述的方法。
CN201780082882.2A 2017-08-23 2017-08-23 基于步频的足部计步数方法、装置及设备 Active CN110168316B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/098591 WO2019036927A1 (zh) 2017-08-23 2017-08-23 基于步频的足部计步数方法、装置及设备

Publications (2)

Publication Number Publication Date
CN110168316A CN110168316A (zh) 2019-08-23
CN110168316B true CN110168316B (zh) 2021-07-16

Family

ID=65439686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780082882.2A Active CN110168316B (zh) 2017-08-23 2017-08-23 基于步频的足部计步数方法、装置及设备

Country Status (3)

Country Link
US (1) US11487965B2 (zh)
CN (1) CN110168316B (zh)
WO (1) WO2019036927A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111639711B (zh) * 2020-05-29 2023-04-18 中国地质大学(武汉) 一种基于压力监测时序数据的输油管线泄漏监测方法
CN113823378A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 运动次数的确定方法和终端
CN113723544A (zh) * 2021-09-02 2021-11-30 北京卡路里信息技术有限公司 运动步数的处理方法、装置和系统,及存储介质和处理器
CN113551687B (zh) * 2021-09-23 2021-12-17 珠海市杰理科技股份有限公司 计步方法、装置、计步设备、计算机存储介质和芯片
CN117135582B (zh) * 2023-04-06 2024-07-05 荣耀终端有限公司 一种运动数据同步方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145389A (en) * 1996-11-12 2000-11-14 Ebeling; W. H. Carl Pedometer effective for both walking and running
KR100601981B1 (ko) * 2005-01-14 2006-07-18 삼성전자주식회사 활동패턴 감시 방법 및 장치
WO2012119126A2 (en) 2011-03-02 2012-09-07 The Regents Of The University Of California Apparatus, system, and method for automatic identification of sensor placement
CN103175540B (zh) * 2013-03-10 2015-08-05 南京中科盟联信息科技有限公司 一种高精度步行速度和距离的计算方法
CN103792386B (zh) * 2013-11-21 2016-01-20 清华大学 一种步行方向检测方法和装置
CN103712632B (zh) 2013-12-31 2016-08-24 英华达(上海)科技有限公司 一种基于3轴加速计的计步方法和计步器
CN103983273B (zh) * 2014-04-29 2017-06-06 华南理工大学 一种基于加速度传感器的实时步长估计方法
KR20170019347A (ko) * 2014-05-30 2017-02-21 닛토덴코 가부시키가이샤 사용자의 움직임 분류 및/또는 사용자의 걸음 카운트를 수행하는 장치 및 방법
CN103997572B (zh) 2014-06-03 2016-01-20 深圳市爱康伟达智能医疗科技有限公司 一种基于手机加速度传感器数据的计步方法和装置
CN104197952B (zh) * 2014-09-02 2017-06-30 百度在线网络技术(北京)有限公司 一种用户步行计步方法、装置及移动终端
CN104406604B (zh) 2014-11-21 2018-04-03 中国科学院计算技术研究所 一种计步方法
US10197416B2 (en) * 2015-01-21 2019-02-05 Quicklogic Corporation Multiple axis wrist worn pedometer
CN105496416B (zh) 2015-12-28 2019-04-30 歌尔股份有限公司 一种人体运动状态的识别方法和装置
CN106289309B (zh) 2016-10-26 2019-08-16 深圳大学 基于三轴加速度传感器的计步方法及装置
CN106931990A (zh) * 2017-03-24 2017-07-07 杭州菲特牛科技有限公司 一种基于模糊逻辑的跑步状态识别方法

Also Published As

Publication number Publication date
CN110168316A (zh) 2019-08-23
US11487965B2 (en) 2022-11-01
US20210042121A1 (en) 2021-02-11
WO2019036927A1 (zh) 2019-02-28

Similar Documents

Publication Publication Date Title
CN110168316B (zh) 基于步频的足部计步数方法、装置及设备
CN106289309B (zh) 基于三轴加速度传感器的计步方法及装置
CN105167761B (zh) 智能穿戴设备佩戴状态检测方法及装置
US20160296144A1 (en) Time and frequency domain based activity tracking system
CN104574441B (zh) 一种基于gmm和时序模型的跌倒实时检测方法
CN103927851B (zh) 一种个人化多阈值跌倒检测方法及系统
CN106705989B (zh) 记步方法、设备及终端
CN103699795A (zh) 一种运动行为识别方法、装置及运动强度监测系统
CN108022248A (zh) 一种基于视觉采集设备的下肢步态康复评估系统
CN110169774B (zh) 一种基于区块链的运动状态识别系统及方法
CN104567912A (zh) 一种在Android手机上实现计步器的方法
SE1350894A1 (sv) Metod och system för bestämning av utförandeindikatorer förperiodiska rörelser
CN104020845A (zh) 基于shapelet特征的加速度传感器放置无关化运动识别方法
Das et al. Strength training: A fitness application for indoor based exercise recognition and comfort analysis
CN115844415A (zh) 一种基于心电数据的运动稳定性评估方法及系统
CN110262855A (zh) 车联网中基于背景信息的成员推测攻击原型系统
CN114100103A (zh) 一种基于关键点识别的跳绳计数检测系统及方法
EP4119204A1 (en) Motion recognition method and apparatus, terminal device, and sport monitoring system
CN111984544A (zh) 设备性能测试方法、装置、电子设备及存储介质
CN110168315B (zh) 基于加速信息的足部计步方法、装置及设备
CN114341947A (zh) 用于使用可穿戴设备的锻炼类型辨识的系统和方法
CN111973191A (zh) 一种运动状态识别方法、装置、系统及存储介质
CN106407706A (zh) 基于boruta算法的多层次老年人体能状态量化等级计算方法
CN116784852A (zh) 一种疲劳状态确定方法、装置、智能床垫及介质
CN105973266A (zh) 一种应用于移动终端的节能计步方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant