CN110164968B - Semiconductor device and method of forming the same - Google Patents

Semiconductor device and method of forming the same Download PDF

Info

Publication number
CN110164968B
CN110164968B CN201810141390.2A CN201810141390A CN110164968B CN 110164968 B CN110164968 B CN 110164968B CN 201810141390 A CN201810141390 A CN 201810141390A CN 110164968 B CN110164968 B CN 110164968B
Authority
CN
China
Prior art keywords
trench
layer
fin
source
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810141390.2A
Other languages
Chinese (zh)
Other versions
CN110164968A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
SMIC Advanced Technology R&D Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
SMIC Advanced Technology R&D Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, SMIC Advanced Technology R&D Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201810141390.2A priority Critical patent/CN110164968B/en
Publication of CN110164968A publication Critical patent/CN110164968A/en
Application granted granted Critical
Publication of CN110164968B publication Critical patent/CN110164968B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件及其形成方法,其中半导体器件包括:基底;位于基底内的隔离结构;位于基底上的栅极结构,且所述栅极结构延伸至隔离结构上;位于栅极结构两侧基底内的源漏掺杂层;分别位于栅极结构两侧的导电结构,所述导电结构自源漏掺杂层延伸至隔离结构上,所述导电结构包括:覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,第一插塞部的宽度大于第二插塞部的宽度。所述半导体器件的性能得到了提高。

Figure 201810141390

A semiconductor device and a method for forming the same, wherein the semiconductor device comprises: a substrate; an isolation structure located in the substrate; a gate structure located on the substrate, and the gate structure extends to the isolation structure; a substrate located on both sides of the gate structure source and drain doped layers inside; conductive structures respectively located on both sides of the gate structure, the conductive structures extend from the source and drain doped layers to the isolation structure, and the conductive structures include: a first layer covering the source and drain doped layers A plug portion and a second plug portion covering the isolation structure, the side wall of the first plug portion has a first distance from the side wall of the adjacent gate structure, and the side wall of the second plug portion is adjacent to the gate structure. The gate structure sidewall has a second distance, the first distance is smaller than the second distance, and the width of the first plug portion is greater than the width of the second plug portion. The performance of the semiconductor device is improved.

Figure 201810141390

Description

半导体器件及其形成方法Semiconductor device and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a method for forming the same.

背景技术Background technique

MOS(金属-氧化物-半导体)晶体管,是现代集成电路中最重要的元件之 一。MOS晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极 结构,所述栅极结构包括:位于半导体衬底表面的栅介质层以及位于栅介质 层表面的栅电极层;位于栅极结构两侧半导体衬底中的源漏掺杂层。MOS (Metal-Oxide-Semiconductor) transistors are one of the most important components in modern integrated circuits. The basic structure of a MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, the gate structure including: a gate dielectric layer located on the surface of the semiconductor substrate and a gate electrode layer located on the surface of the gate dielectric layer; The source and drain doped layers in the semiconductor substrate on both sides of the pole structure.

随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制 能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的 多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的 顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂层。With the development of semiconductor technology, the control ability of traditional planar MOS transistors on channel current becomes weak, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of a semiconductor substrate, a gate structure covering part of the top surface and sidewalls of the fin, Source and drain doped layers in the fins on both sides of the gate structure.

然而,现有技术中鳍式场效应晶体管构成的半导体器件的性能仍有待提 高。However, the performance of the semiconductor device formed by the fin field effect transistor in the prior art still needs to be improved.

发明内容SUMMARY OF THE INVENTION

本发明解决的技术问题是提供一种半导体器件及其形成方法,以提高半 导体器件的性能。The technical problem solved by the present invention is to provide a semiconductor device and a method for forming the same, so as to improve the performance of the semiconductor device.

为解决上述技术问题,本发明提供一种半导体器件,包括:基底;位于 基底内的隔离结构;位于基底上的栅极结构,且所述栅极结构延伸至隔离结 构上;位于栅极结构两侧基底内的源漏掺杂层;分别位于栅极结构两侧的导 电结构,所述导电结构自源漏掺杂层延伸至隔离结构上,所述导电结构包括: 覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第一插 塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相 邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,第一插塞部的宽度大于第二插塞部的宽度。In order to solve the above technical problems, the present invention provides a semiconductor device, comprising: a substrate; an isolation structure located in the substrate; a gate structure located on the substrate, and the gate structure extends to the isolation structure; source and drain doping layers in the side substrate; conductive structures respectively located on both sides of the gate structure, the conductive structures extending from the source and drain doping layers to the isolation structure, the conductive structures comprising: covering the source and drain doping layers a first plug portion and a second plug portion covering the isolation structure, the sidewall of the first plug portion has a first distance from the sidewall of the adjacent gate structure, and the sidewall of the second plug portion is The sidewalls of adjacent gate structures have a second distance, the first distance is smaller than the second distance, and the width of the first plug portion is greater than the width of the second plug portion.

可选的,所述第一插塞部的宽度为17nm~62nm。Optionally, the width of the first plug portion is 17 nm to 62 nm.

可选的,所述第二插塞部的宽度为15nm~50nm。Optionally, the width of the second plug portion is 15 nm˜50 nm.

可选的,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。 可选的,所述第一距离为20nm~100nm。Optionally, the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm. Optionally, the first distance is 20 nm to 100 nm.

可选的,所述第二距离为22nm~112nm。Optionally, the second distance is 22 nm to 112 nm.

可选的,所述第二距离与第一距离的差为2nm~12nm。Optionally, the difference between the second distance and the first distance is 2 nm˜12 nm.

本发明还提供一种半导体器件的形成方法,包括:提供基底,所述基底 具有隔离结构;在基底是形成栅极结构,所述栅极结构延伸至隔离结构上; 在栅极结构两侧的基底内形成源漏掺杂层;在栅极结构两侧形成导电结构, 所述导电结构横跨源漏掺杂层且延伸至隔离结构上,所述导电结构覆盖源漏 掺杂层部分顶部表面和部分侧壁表面以及隔离结构部分表面,所述导线结构 包括:覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述 第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,且在自 栅极结构一侧的源漏掺杂层至另一侧的源漏掺杂层的方向上,第一插塞部的 尺寸大于第二插塞部的尺寸。The present invention also provides a method for forming a semiconductor device, comprising: providing a substrate with an isolation structure; forming a gate structure on the substrate, the gate structure extending to the isolation structure; A source-drain doped layer is formed in the substrate; a conductive structure is formed on both sides of the gate structure, the conductive structure spans the source-drain doped layer and extends to the isolation structure, and the conductive structure covers part of the top surface of the source-drain doped layer and part of the sidewall surface and part of the surface of the isolation structure, the wire structure includes: a first plug part covering the source and drain doped layers and a second plug part covering the isolation structure, the sidewall of the first plug part There is a first distance from the sidewall of the adjacent gate structure, the sidewall of the first plug portion has a second distance from the sidewall of the adjacent gate structure, the first distance is smaller than the second distance, and the self-gate In the direction from the source-drain doped layer on one side of the pole structure to the source-drain doped layer on the other side, the size of the first plug portion is larger than the size of the second plug portion.

可选的,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。Optionally, the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm.

可选的,形成导电结构之前,在所述隔离结构、栅极结构和源漏掺杂层 上形成介质层,所述介质层覆盖栅极结构顶部表面;所述导电结构位于所述 介质层内。Optionally, before forming the conductive structure, a dielectric layer is formed on the isolation structure, the gate structure and the source-drain doping layer, the dielectric layer covers the top surface of the gate structure; the conductive structure is located in the dielectric layer .

可选的,所述导电结构的形成方法包括:在栅极结构两侧的介质层中形 成横跨源漏掺杂层的沟槽,所述沟槽延伸方向与栅极结构延伸方向平行,所 述沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面以及隔离结构的部分 表面,所述沟槽包括第一沟槽区和第二沟槽区,所述第一沟槽区暴露出源漏 掺杂层部分顶部表面和部分侧壁表面,所述第二沟槽区暴露出隔离结构的部 分表面,第二沟槽侧壁相对于第一沟槽侧壁凹陷;在第一沟槽内形成第一插 塞部,在第二沟槽内形成第二插塞部。Optionally, the method for forming the conductive structure includes: forming a trench across the source-drain doped layer in the dielectric layer on both sides of the gate structure, and the extension direction of the trench is parallel to the extension direction of the gate structure. The trench exposes part of the top surface and part of the sidewall surface of the source-drain doped layer and part of the surface of the isolation structure, the trench includes a first trench region and a second trench region, and the first trench region exposes Part of the top surface and part of the sidewall surface of the source-drain doped layer, the second trench region exposes part of the surface of the isolation structure, and the second trench sidewall is recessed relative to the first trench sidewall; A first plug portion is formed in the groove, and a second plug portion is formed in the second groove.

可选的,所述沟槽的形成方法包括:介质层上形成第一图形化掩膜层, 所述第一图形化掩膜层暴露出沟槽的位置和形状,以所述第一图形化掩膜层 为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分表面和隔离结构的部分表 面,在栅极结构两侧的介质层中形成沿栅极结构延伸方向横跨源漏掺杂层的 沟槽。Optionally, the method for forming the trench includes: forming a first patterned mask layer on the dielectric layer, and the first patterned mask layer exposes the position and shape of the trench, and the first patterned mask layer exposes the position and shape of the trench. The mask layer is a mask, and the dielectric layer is etched to expose part of the surface of the source and drain doped layers and part of the surface of the isolation structure, and the dielectric layers on both sides of the gate structure are formed to cross the source along the extension direction of the gate structure. Drain doped trenches.

可选的,所述沟槽的形成方法包括:在介质层内形成初始沟槽,所述初 始沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面的部分为初始第一沟 槽,所述初始沟槽暴露出隔离结构部分表面的部分为第二沟槽,初始第一沟 槽与第二沟槽相邻,初始第一沟槽侧壁与第二沟槽侧壁齐平;形成初始沟槽 后,对初始第一沟槽进行处理,使得初始第一沟槽侧壁相对第二沟槽的侧壁 沿垂直于栅极结构延伸方向和垂直于基底表面方向的宽度拓宽,从而形成所 述沟槽。Optionally, the method for forming the trench includes: forming an initial trench in the dielectric layer, and the portion of the initial trench exposing part of the top surface and part of the sidewall surface of the source-drain doped layer is the initial first trench , the part of the initial trench exposing the surface of the part of the isolation structure is the second trench, the initial first trench is adjacent to the second trench, and the sidewall of the initial first trench is flush with the sidewall of the second trench; After the initial trenches are formed, the initial first trenches are processed so that the sidewalls of the initial first trenches are widened relative to the sidewalls of the second trenches along the widths perpendicular to the extension direction of the gate structure and the direction perpendicular to the substrate surface, thereby The trenches are formed.

可选的,所述初始沟槽的形成方法包括:在介质层上第二图形化掩膜层, 以所述第二图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分 表面和隔离结构的部分表面,在栅极结构两侧的介质层中形成沿栅极结构延 伸方向横跨源漏掺杂层的初始沟槽,所述初始沟槽暴露出源漏掺杂层部分顶 部表面和部分侧壁表面的部分为初始第一沟槽,所述沟槽暴露出隔离结构部 分表面的部分为第二沟槽,初始第一沟槽与第二沟槽相邻,初始第一沟槽侧 壁与第二沟槽侧壁齐平。Optionally, the method for forming the initial trench includes: forming a second patterned mask layer on the dielectric layer, and using the second patterned mask layer as a mask, etching the dielectric layer to expose the source Part of the surface of the drain doped layer and part of the surface of the isolation structure, an initial trench is formed in the dielectric layer on both sides of the gate structure across the source and drain doped layer along the extension direction of the gate structure, and the initial trench exposes the source The part of the top surface and part of the sidewall surface of the drain doped layer is the initial first trench, the part of the trench that exposes the part of the surface of the isolation structure is the second trench, and the initial first trench is the same as the second trench. Adjacent, initially the first trench sidewall is flush with the second trench sidewall.

可选的,所述沟槽的形成方法包括:在介质层上形成第三图形化掩膜层, 所述第三图形化掩膜层定于出第一沟槽的位置,以所述第三图形化掩膜层为 掩膜,刻蚀所述介质层,直至暴露出源漏掺杂层部分表面和隔离结构的部分 表面,形成第一沟槽;形成第一沟槽后,在第一沟槽、第三图形化掩膜层上 形成第四图形化掩膜层,所述第四图形化掩膜层定于出第二沟槽的位置,以 所述第四图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出隔离结构的部 分表面,形成第二沟槽,从而形成所述沟槽。Optionally, the method for forming the trench includes: forming a third patterned mask layer on the dielectric layer, and the third patterned mask layer is positioned at the position of the first trench, so that the third patterned mask layer The patterned mask layer is a mask, and the dielectric layer is etched until a part of the surface of the source-drain doped layer and part of the surface of the isolation structure is exposed, and a first trench is formed; A fourth patterned mask layer is formed on the groove and the third patterned mask layer, the fourth patterned mask layer is positioned at the position of the second trench, and the fourth patterned mask layer is used as a mask film, and etching the dielectric layer until a part of the surface of the isolation structure is exposed to form a second trench, thereby forming the trench.

可选的,在第一沟槽内形成第一插塞部,在第二沟槽内形成第二插塞部 的方法包括:在第一沟槽和第二沟槽内形成插塞材料层;形成插塞材料层后, 平坦化所述插塞材料层,暴露出介质层表面,在第一沟槽内形成第一插塞部, 在第二沟槽内形成第二插塞部。Optionally, the method for forming the first plug portion in the first trench, and forming the second plug portion in the second trench includes: forming a plug material layer in the first trench and the second trench; After the plug material layer is formed, the plug material layer is planarized to expose the surface of the dielectric layer, a first plug portion is formed in the first trench, and a second plug portion is formed in the second trench.

可选的,所述第一距离为20nm~100nm。Optionally, the first distance is 20 nm to 100 nm.

可选的,所述第二距离为22nm~112nm。Optionally, the second distance is 22 nm to 112 nm.

可选的,所述第二距离与第一距离的差为2nm~12nm。Optionally, the difference between the second distance and the first distance is 2 nm˜12 nm.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

本发明提供的半导体器件中,覆盖源漏掺杂层的第一插塞部以及覆盖隔 离结构的第二插塞部,第二插塞部距离相邻栅极结构距离较远,第二插塞部 与栅极结构之间的第二寄生电容较小。第一插塞部的尺寸较大,第一插塞部 与源漏掺杂层的接触面积较大,第一插塞部与源漏掺杂层的接触电阻较小。 半导体器件的寄生电容由第一寄生电容和第二寄生电容组成,通过控制第一 插塞部和第二插塞部的尺寸,能够得到较小的寄生电容和较小的接触电阻, 从而提高器件的性能。In the semiconductor device provided by the present invention, a first plug portion covering the source-drain doped layer and a second plug portion covering the isolation structure, the second plug portion is far away from the adjacent gate structure, and the second plug portion is far away from the adjacent gate structure. The second parasitic capacitance between the portion and the gate structure is small. The size of the first plug portion is larger, the contact area between the first plug portion and the source-drain doped layer is larger, and the contact resistance between the first plug portion and the source-drain doped layer is smaller. The parasitic capacitance of the semiconductor device is composed of a first parasitic capacitance and a second parasitic capacitance. By controlling the size of the first plug portion and the second plug portion, a smaller parasitic capacitance and a smaller contact resistance can be obtained, thereby improving the device. performance.

附图说明Description of drawings

图1是一种半导体器件形成过程的结构示意图;1 is a schematic structural diagram of a semiconductor device formation process;

图2至图12是本发明一实施例中半导体器件形成过程的结构示意图。2 to 12 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.

具体实施方式Detailed ways

正如背景技术所述,现有技术形成的半导体器件的性能较差。As mentioned in the background, semiconductor devices formed by the prior art have poor performance.

图1是一种半导体器件形成过程的结构示意图。FIG. 1 is a schematic structural diagram of a semiconductor device forming process.

参考图1,提供基底100,所述基底100具有鳍部110和隔离结构,隔离 结构覆盖部分鳍部110侧壁;形成栅极结构120、源漏掺杂层和介质层,栅极 结构110位于基底100上横跨所述鳍部110,源漏掺杂层位于栅极结构120两 侧的鳍部110中,介质层位于源漏掺杂层和栅极结构120上;在栅极结构120 两侧的介质层中形成自源漏掺杂层延伸至隔离结构且暴露出部分源漏掺杂层 表面和隔离结构部分表面的通孔;在所述通孔内形成插塞130。Referring to FIG. 1, a substrate 100 is provided, the substrate 100 has a fin 110 and an isolation structure, and the isolation structure covers part of the sidewall of the fin 110; a gate structure 120, a source-drain doped layer and a dielectric layer are formed, and the gate structure 110 is located at The substrate 100 spans the fins 110 , the source and drain doped layers are located in the fins 110 on both sides of the gate structure 120 , the dielectric layer is located on the source and drain doped layers and the gate structure 120 ; A through hole extending from the source and drain doped layer to the isolation structure and exposing part of the surface of the source and drain doped layer and a part of the surface of the isolation structure is formed in the dielectric layer on the side; a plug 130 is formed in the through hole.

所述栅极结构和插塞之间通过介质层隔离,二者之间形成寄生电容,所 述寄生电容由两部分组成,位于源漏掺杂层上方的插塞与栅极结构之间的寄 生电容和位于隔离结构上方的插塞与栅极结构之间的寄生电容。所述源漏掺 杂层与插塞之间的电阻为接触电阻。The gate structure and the plug are isolated by a dielectric layer, and a parasitic capacitance is formed between the two. The parasitic capacitance consists of two parts, the parasitic capacitance between the plug located above the source and drain doped layers and the gate structure Capacitance and parasitic capacitance between the plug and gate structures above the isolation structures. The resistance between the source-drain doped layer and the plug is the contact resistance.

所述插塞具有沿鳍部延伸方向和垂直于基底表面方向的宽度,所述插塞 位于源漏掺杂层表面和位于隔离结构表面的宽度一致。位于源漏掺杂层上的 插塞的宽度越大,源漏掺杂层与插塞之间的接触电阻越小,插塞与栅极结构 之间的距离越近,插塞和栅极结构之间的寄生电容越大。因此,为平衡半导 体器件的接触电阻和寄生电容,插塞的宽度一定,此时源漏掺杂层与插塞之 间的接触电阻较大,插塞和栅极结构之间的寄生电容也较大,半导体性能不 佳。The plug has a width along the extending direction of the fin and a direction perpendicular to the surface of the substrate, and the width of the plug on the surface of the source-drain doped layer is the same as that on the surface of the isolation structure. The greater the width of the plug located on the source-drain doped layer, the smaller the contact resistance between the source-drain doped layer and the plug, the closer the distance between the plug and the gate structure, the closer the plug and the gate structure are. the larger the parasitic capacitance between them. Therefore, in order to balance the contact resistance and parasitic capacitance of the semiconductor device, the width of the plug is constant. At this time, the contact resistance between the source-drain doped layer and the plug is relatively large, and the parasitic capacitance between the plug and the gate structure is also relatively large. large, poor semiconductor performance.

本发明通过对位于源漏掺层区上的插塞的尺寸和隔离结构上的插塞的尺 寸的不同设计,来降低半导体器件的寄生电容和寄生电阻。The present invention reduces the parasitic capacitance and parasitic resistance of the semiconductor device through different designs of the size of the plug on the source and drain doped regions and the size of the plug on the isolation structure.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合 附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图2至图12是本发明一实施例中半导体器件形成过程的结构示意图。2 to 12 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.

参考图2,提供基底。Referring to Figure 2, a substrate is provided.

本实施例中,以所述半导体器件为鳍式场效应晶体管为示例进行说明, 在其它实施例中,半导体器件为平面式的MOS晶体管。In this embodiment, the semiconductor device is an example of a fin field effect transistor for description. In other embodiments, the semiconductor device is a planar MOS transistor.

本实施例中,所述基底包括半导体衬底200和位于半导体衬底200上的 鳍部210。在其它实施例中,当半导体器件为平面式的MOS晶体管时,基底 为平面式的半导体衬底。In this embodiment, the base includes a semiconductor substrate 200 and fins 210 on the semiconductor substrate 200. In other embodiments, when the semiconductor device is a planar MOS transistor, the substrate is a planar semiconductor substrate.

本实施例中,所述半导体衬底200上还具有隔离结构201,隔离结构201 覆盖鳍部210的部分侧壁,所述隔离结构201的顶部表面低于鳍部210的顶 部表面。所述隔离结构201的材料包括氧化硅。In this embodiment, the semiconductor substrate 200 further has an isolation structure 201 , the isolation structure 201 covers part of the sidewalls of the fins 210 , and the top surface of the isolation structure 201 is lower than the top surface of the fins 210 . The material of the isolation structure 201 includes silicon oxide.

继续参考图2,形成栅极结构220、源漏掺杂层250和介质层,栅极结构 220位于基底上,源漏掺杂层250位于栅极结构220两侧的基底中,介质层位 于源漏掺杂层250和栅极结构220上,所述源漏掺杂层250中具有源漏离子。Continuing to refer to FIG. 2, a gate structure 220, a source-drain doped layer 250 and a dielectric layer are formed, the gate structure 220 is located on the substrate, the source-drain doped layer 250 is located in the substrate on both sides of the gate structure 220, and the dielectric layer is located on the source On the drain doped layer 250 and the gate structure 220 , the source and drain doped layers 250 have source and drain ions.

本实施例中,所述栅极结构220包括位于基底上的界面层,位于界面层 上的栅介质层和位于栅介质层上的栅电极层。所述界面层的材料为氧化硅, 栅介质层的材料为高K(K大于3.9)介质材料,所述栅电极层的材料为金属, 如钨。在其它实施例中,栅极结构220还包括位于栅极结构220本体顶部的 栅极保护层。In this embodiment, the gate structure 220 includes an interface layer on the substrate, a gate dielectric layer on the interface layer, and a gate electrode layer on the gate dielectric layer. The interface layer is made of silicon oxide, the gate dielectric layer is made of high-K (K is greater than 3.9) dielectric material, and the gate electrode layer is made of metal, such as tungsten. In other embodiments, the gate structure 220 further includes a gate protection layer on top of the gate structure 220 body.

本实施例中,栅极结构220横跨鳍部210且覆盖鳍部210的部分顶部表 面和部分侧壁表面。所述栅介质层位于隔离结构201的部分表面、覆盖鳍部 210的部分顶部表面和部分侧壁表面。In this embodiment, the gate structure 220 spans the fin 210 and covers part of the top surface and part of the sidewall surface of the fin 210. The gate dielectric layer is located on a part of the surface of the isolation structure 201, and covers part of the top surface and part of the sidewall surface of the fin part 210.

本实施例中,所述基底还包括位于栅极结构220侧壁的第一侧墙221和 位于第一侧墙221侧壁的第二侧墙222。In this embodiment, the substrate further includes a first spacer 221 located on the sidewall of the gate structure 220 and a second spacer 222 located on the sidewall of the first spacer 221.

所述介质层包括底层介质层240和顶层介质层241,底层介质层240位于 基底上且覆盖栅极结构220侧壁,顶层介质层241位于底层介质层240和栅 极结构220上。The dielectric layer includes a bottom dielectric layer 240 and a top dielectric layer 241, the bottom dielectric layer 240 is located on the substrate and covers the sidewall of the gate structure 220, and the top dielectric layer 241 is located on the bottom dielectric layer 240 and the gate structure 220.

具体的,在基底上形成伪栅极结构220;在伪栅极结构220的侧壁依次形 成第一侧墙221和第二侧墙222;在伪栅极结构220和第二侧墙222两侧的基 底中形成源漏掺杂层250;形成源漏掺杂层250后,在源漏掺杂层250和基底 上形成初始保护层,所述初始保护层覆盖第二侧墙222的侧壁和顶部表面以 及伪栅极结构220的顶部表面;形成保护层后,在源漏掺杂层250和基底表 面的保护层表面形成初始底层介质层;形成初始底层介质层后,平坦化所述 初始底层介质层直至暴露出伪栅极结构220顶部表面,形成底层介质层240 和保护层230,所述底层介质层240覆盖第二侧墙222的侧壁且暴露出第二侧 墙22的顶部表面和伪栅极结构220的顶部表面;形成底层介质层240后,去 除伪栅极结构220,在底层介质层240中形成栅开口;在栅开口中形成栅极结 构220;在栅极结构220、底层介质层240、第一侧墙221和第二侧墙222上 形成顶层介质层241。Specifically, the dummy gate structure 220 is formed on the substrate; the first sidewall spacer 221 and the second sidewall spacer 222 are sequentially formed on the sidewall of the dummy gate structure 220 ; The source-drain doped layer 250 is formed in the base of the doped source and drain; after the source-drain doped layer 250 is formed, an initial protective layer is formed on the source-drain doped layer 250 and the substrate, and the initial protective layer covers the sidewalls of the second spacers 222 and the base. the top surface and the top surface of the dummy gate structure 220; after the protective layer is formed, an initial underlying dielectric layer is formed on the surface of the source-drain doping layer 250 and the protective layer on the substrate surface; after the initial underlying dielectric layer is formed, the initial underlying layer is planarized The dielectric layer is until the top surface of the dummy gate structure 220 is exposed to form an underlying dielectric layer 240 and a protective layer 230 , the underlying dielectric layer 240 covers the sidewalls of the second spacer 222 and exposes the top surface of the second spacer 22 and the protective layer 230 . The top surface of the dummy gate structure 220; after forming the underlying dielectric layer 240, the dummy gate structure 220 is removed, and a gate opening is formed in the underlying dielectric layer 240; the gate structure 220 is formed in the gate opening; A top dielectric layer 241 is formed on the dielectric layer 240 , the first spacer 221 and the second spacer 222 .

所述底层介质层240和顶层介质层241的材料为氧化硅。The material of the bottom dielectric layer 240 and the top dielectric layer 241 is silicon oxide.

所述保护层230后续形成第二沟槽时保护源漏掺杂层。The protective layer 230 protects the source and drain doped layers when the second trench is subsequently formed.

所述保护层230的材料与介质层的材料不同。所述保护层的材料包括: 氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the protective layer 230 is different from that of the dielectric layer. The material of the protective layer includes: silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

本实施例中,所述保护层230的材料为氮化硅。介质层的材料为氧化硅, 氮化硅相对于氧化硅具有很好的刻蚀选择比,在后续刻蚀介质层时,能够保 证去除氧化硅的同时,对氮化硅的刻蚀较少,能很好的保护源漏掺杂层。In this embodiment, the material of the protective layer 230 is silicon nitride. The material of the dielectric layer is silicon oxide. Compared with silicon oxide, silicon nitride has a good etching selectivity ratio. When the dielectric layer is subsequently etched, it can ensure that the silicon oxide is removed and the silicon nitride is etched less. The source and drain doped layers can be well protected.

所述源漏掺杂层250位于栅极结构220两侧的基底中,具体的,源漏掺 杂层250位于栅极结构220两侧的鳍部210中。The source and drain doped layers 250 are located in the substrates on both sides of the gate structure 220 . Specifically, the source and drain doped layers 250 are located in the fins 210 on both sides of the gate structure 220 .

所述源漏掺杂层250具有源漏离子。The source-drain doped layer 250 has source-drain ions.

当所述半导体器件的类型为N型时,源漏离子的导电类型为N型,如磷 离子;当所述半导体器件的类型为P型时,源漏离子的导电类型为P型,如 硼离子。When the type of the semiconductor device is N type, the conductivity type of the source and drain ions is N type, such as phosphorus ions; when the type of the semiconductor device is P type, the conductivity type of the source and drain ions is P type, such as boron ion.

本实施例中,源漏掺杂层250采用外延生长工艺形成。相应的,当所述 半导体器件的类型为N型时,源漏掺杂层250的材料为具有源漏离子的硅; 当所述半导体器件的类型为P型时,源漏掺杂层250的材料为具有源漏离子 的锗硅。在其它实施例中,源漏掺杂层250采用离子注入工艺而形成。In this embodiment, the source-drain doping layer 250 is formed by an epitaxial growth process. Correspondingly, when the type of the semiconductor device is N-type, the material of the source-drain doped layer 250 is silicon with source and drain ions; when the type of the semiconductor device is P-type, the material of the source-drain doped layer 250 is The material is germanium silicon with source and drain ions. In other embodiments, the source-drain doping layer 250 is formed by an ion implantation process.

在栅极结构两侧的介质层中形成横跨源漏掺杂层的沟槽,所述沟槽延伸 方向与栅极结构延伸方向一致,所述沟槽暴露出源漏掺杂层部分顶部表面和 部分侧壁表面以及隔离结构的部分表面。A trench across the source and drain doped layers is formed in the dielectric layers on both sides of the gate structure, the trench extends in the same direction as the gate structure, and the trench exposes part of the top surface of the source and drain doped layers and part of the sidewall surface and part of the surface of the isolation structure.

所述沟槽的形成方法,请参考图3至图6。For the formation method of the trench, please refer to FIG. 3 to FIG. 6 .

参考图3,在介质层上形成第一图形化掩膜层231,所述第一图形化掩膜 层231暴露出后续需要形成的沟槽260的位置和形状。Referring to FIG. 3, a first patterned mask layer 231 is formed on the dielectric layer, and the first patterned mask layer 231 exposes the position and shape of the trench 260 to be formed subsequently.

本实施例中,形成所述第一图形化掩膜层231的步骤包括:在介质层上 形成第一掩膜层(未图示);形成第一掩膜层后,对所述第一掩膜层进行曝光 处理,所述曝光模板为图形化模板,所述图形化模板暴露出后续需要形成的 沟槽的位置和形状,对所述第一掩膜层进行显影处理,暴露出后续需要形成 的沟槽的位置和形状,形成第一图形化掩膜层231。In this embodiment, the step of forming the first patterned mask layer 231 includes: forming a first mask layer (not shown) on the dielectric layer; The film layer is subjected to exposure treatment, the exposure template is a patterned template, and the patterned template exposes the position and shape of the grooves that need to be formed later, and the first mask layer is developed to expose the subsequent needs to be formed. According to the position and shape of the trench, the first patterned mask layer 231 is formed.

所述第一图形化掩膜层231的材料包括光刻胶。The material of the first patterned mask layer 231 includes photoresist.

在一实施例中,所述第一图形化掩膜层231的材料为氮化硅。形成所述 第一图形化掩膜层231的步骤包括:在介质层上形成初始掩膜层(未图示); 形成初始掩膜层后,在初始掩膜层上形成图形化层,所述图形化层暴露出后 续需要形成的沟槽的位置和形状,以所述图形化层为掩膜,刻蚀所述初始掩 膜层,形成第一图形化掩膜层231。所述图像化层的材料包括光刻胶。In one embodiment, the material of the first patterned mask layer 231 is silicon nitride. The step of forming the first patterned mask layer 231 includes: forming an initial mask layer (not shown) on the dielectric layer; after forming the initial mask layer, forming a patterned layer on the initial mask layer, the The patterned layer exposes the position and shape of the trench to be formed later, and the initial mask layer is etched using the patterned layer as a mask to form a first patterned mask layer 231 . The material of the imaged layer includes photoresist.

所述第一图形化掩膜层231决定了后续形成的沟槽的形状和尺寸,所述 沟槽内后续会形成导电结构,即第一图形化掩膜层231决定了后续导电结构 的形状和尺寸。The first patterned mask layer 231 determines the shape and size of the subsequently formed trench, and a conductive structure is subsequently formed in the trench, that is, the first patterned mask layer 231 determines the shape and size of the subsequent conductive structure. size.

参考图4与图5,图5为所述半导体器件的俯视图,图4为图5沿切线 A-A1方向的截面图,形成第一图形化掩膜层231后,以所述第一图形化掩膜 层231为掩膜,刻蚀所述介质层,暴露出源漏掺杂层250部分表面和隔离结 构201的部分表面,在栅极结构220两侧的介质层中形成沟槽260。Referring to FIGS. 4 and 5 , FIG. 5 is a top view of the semiconductor device, and FIG. 4 is a cross-sectional view taken along the tangent line A-A1 in FIG. 5 . After the first patterned mask layer 231 is formed, the first patterned The mask layer 231 is a mask, and the dielectric layer is etched to expose part of the surface of the source-drain doped layer 250 and part of the surface of the isolation structure 201 , and trenches 260 are formed in the dielectric layer on both sides of the gate structure 220 .

所述沟槽260延伸方向与栅极结构220延伸方向一致,所述沟槽260暴 露出源漏掺杂层250部分顶部表面和部分侧壁表面以及隔离结构201的部分 表面。The extending direction of the trench 260 is consistent with the extending direction of the gate structure 220, and the trench 260 exposes part of the top surface and part of the sidewall surface of the source-drain doped layer 250 and part of the surface of the isolation structure 201.

所述沟槽260暴露出源漏掺杂层250部分顶部表面和部分侧壁表面的部 分为第一沟槽区261,所述沟槽260暴露出隔离结构部分表面的部分为第二沟 槽区262,第一沟槽区261与第二沟槽区262相邻,第二沟槽区262侧壁相对 于第一沟槽区261侧壁凹陷。The part of the trench 260 exposing part of the top surface and part of the sidewall surface of the source-drain doping layer 250 is the first trench region 261 , and the part of the trench 260 exposing the part of the surface of the isolation structure is the second trench region 262 , the first trench region 261 is adjacent to the second trench region 262 , and the sidewall of the second trench region 262 is recessed relative to the sidewall of the first trench region 261 .

所述第一沟槽区261自栅极结构220一侧的源漏掺杂层250至另一侧的 源漏掺杂层250的方向上的宽度为第一宽度,所述第二沟槽区262自栅极结 构220一侧的源漏掺杂层250至另一侧的源漏掺杂层250的方向上的宽度为 第二宽度,第二宽度小于第一宽度。The width of the first trench region 261 in the direction from the source-drain doped layer 250 on one side of the gate structure 220 to the source-drain doped layer 250 on the other side is the first width, and the second trench region The width of 262 in the direction from the source-drain doped layer 250 on one side of the gate structure 220 to the source-drain doped layer 250 on the other side is the second width, and the second width is smaller than the first width.

所述第一沟槽区261内后续形成第一插塞部301,第二沟槽区262内后续 形成第二插塞部302。第一沟槽区261和第二沟槽区262的位置和宽度决定了 后续形成的第一插塞部301和第二插塞部302的位置和宽度。A first plug portion 301 is subsequently formed in the first trench region 261, and a second plug portion 302 is subsequently formed in the second trench region 262. The positions and widths of the first trench region 261 and the second trench region 262 determine the positions and widths of the first plug portion 301 and the second plug portion 302 to be formed subsequently.

沟槽260中心距离栅极结构220中心的距离固定,位于隔离结构201上 的第二沟槽区262宽度较窄,后续形成的第二插塞部302距离栅极结构220 较远,第二插塞部302与栅极结构220之间的第二寄生电容较小,同时源漏 掺杂层250上的第一沟槽区261宽度较宽,后续形成的第一插塞部301与源 漏掺杂层250的接触面积较大,接触电阻较小。半导体器件的寄生电容由第 一寄生电容和第二寄生电容组成,通过控制第一插塞部301和第二插塞部302 的尺寸,能够得到小的寄生电容和小的接触电阻,从而提高半导体器件的性 能。The distance between the center of the trench 260 and the center of the gate structure 220 is fixed, the width of the second trench region 262 on the isolation structure 201 is narrow, the second plug portion 302 formed subsequently is farther from the gate structure 220, The second parasitic capacitance between the plug portion 302 and the gate structure 220 is relatively small, and the width of the first trench region 261 on the source-drain doped layer 250 is wider, and the first plug portion 301 and the source-drain dopant are formed later. The contact area of the impurity layer 250 is larger, and the contact resistance is smaller. The parasitic capacitance of the semiconductor device is composed of a first parasitic capacitance and a second parasitic capacitance. By controlling the size of the first plug portion 301 and the second plug portion 302, small parasitic capacitance and small contact resistance can be obtained, thereby improving the semiconductor performance. device performance.

具体的,形成所述沟槽260的方法中刻蚀所述介质层为刻蚀栅极结构220 两侧的介质层,在栅极结构220两侧的介质层中形成沟槽260。Specifically, in the method for forming the trench 260 , etching the dielectric layer is to etch the dielectric layers on both sides of the gate structure 220 , and the trench 260 is formed in the dielectric layers on both sides of the gate structure 220 .

刻蚀栅极结构220两侧的介质层的工艺包括各向异性干刻工艺。The process of etching the dielectric layers on both sides of the gate structure 220 includes an anisotropic dry etching process.

本实施例中,采用各向异性干刻工艺刻蚀栅极结构220两侧的介质层的 参数包括:采用的气体包括CF4气体、CH3F气体和O2,CF4气体的流量为 5sccm~100sccm,CH3F气体的流量为8sccm~50sccm,O2的流量为 10sccm~100sccm,腔室压强为10mtorr~2000mtorr,射频功率为50W~300W, 电压为30V~100V,时间为4秒~50秒。In this embodiment, the parameters of using the anisotropic dry etching process to etch the dielectric layers on both sides of the gate structure 220 include: the gas used includes CF 4 gas, CH 3 F gas and O 2 , and the flow rate of the CF 4 gas is 5 sccm ~100sccm, the flow rate of CH3F gas is 8sccm~50sccm, the flow rate of O2 is 10sccm~100sccm, the chamber pressure is 10mtorr~2000mtorr, the radio frequency power is 50W~300W, the voltage is 30V~100V, and the time is 4 seconds~50 second.

其他实施例中,所述沟槽260的形成方法还可以为两次掩膜形成。In other embodiments, the method for forming the trench 260 may also be two mask formation.

在一实施例中,所述沟槽260的形成方法包括:在介质层内形成初始沟 槽,所述初始沟槽暴露出源漏掺杂层250部分顶部表面和部分侧壁表面的部 分为初始第一沟槽,所述初始沟槽暴露出隔离结构201部分表面的部分为第 二沟槽区262,初始第一沟槽与第二沟槽区262相邻,初始第一沟槽侧壁与第 二沟槽区262侧壁齐平;形成初始沟槽后,对初始第一沟槽进行处理,使得 初始第一沟槽侧壁相对第二沟槽区262的侧壁自栅极结构220一侧的源漏掺 杂层250至另一侧的源漏掺杂层250的方向上的宽度拓宽,形成第一沟槽区 261,从而形成所述沟槽260。In one embodiment, the method for forming the trench 260 includes: forming an initial trench in the dielectric layer, and the portion of the initial trench exposing part of the top surface and part of the sidewall surface of the source-drain doped layer 250 is the initial trench. The first trench, the part of the initial trench that exposes part of the surface of the isolation structure 201 is the second trench region 262, the initial first trench is adjacent to the second trench region 262, and the sidewall of the initial first trench is The sidewalls of the second trench region 262 are flush; after the initial trenches are formed, the initial first trenches are processed so that the sidewalls of the initial first trenches are opposite to the sidewalls of the second trench region 262 from the gate structure 220 The width in the direction from the source-drain doped layer 250 on one side to the source-drain doped layer 250 on the other side is widened to form a first trench region 261 , thereby forming the trench 260 .

所述初始沟槽的形成方法包括:在介质层上第二图形化掩膜层,以所述 第二图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层250部分表 面和隔离结构的部分表面,在栅极结构220两侧的介质层中形成沿栅极结构 220本体220构延伸方向横跨源漏掺杂层250的初始沟槽,所述初始沟槽暴露 出源漏掺杂层250部分顶部表面和部分侧壁表面的部分为初始第一沟槽,所 述沟槽暴露出隔离结构201部分表面的部分为第二沟槽区262,初始第一沟槽 与第二沟槽区262相邻,初始第一沟槽侧壁与第二沟槽区262侧壁齐平。The method for forming the initial trench includes: forming a second patterned mask layer on the dielectric layer, and using the second patterned mask layer as a mask, etching the dielectric layer to expose the source and drain doped layers Part of the surface of 250 and part of the surface of the isolation structure, in the dielectric layer on both sides of the gate structure 220, an initial trench is formed across the source and drain doped layer 250 along the extension direction of the gate structure 220 body 220 structure, the initial trench The part exposing part of the top surface and part of the sidewall surface of the source-drain doping layer 250 is the initial first trench, the part of the trench exposing part of the surface of the isolation structure 201 is the second trench region 262 , and the initial first trench The trench is adjacent to the second trench region 262 , and initially the sidewalls of the first trench are flush with the sidewalls of the second trench region 262 .

所述第二图形化掩膜层中的图形形状为长方形。The shape of the pattern in the second patterned mask layer is a rectangle.

另一实施例中,所述沟槽260的形成方法包括:在介质层上形成第三图 形化掩膜层,所述第三图形化掩膜层定于出第一沟槽区261的位置,以所述 第三图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出源漏掺杂层部分表 面和隔离结构的部分表面,形成第一沟槽区261;形成第一沟槽区261后,在 第一沟槽区261和第三图形化掩膜层上形成第四图形化掩膜层,所述第四图 形化掩膜层定于出第二沟槽的位置,以所述第四图形化掩膜层为掩膜,刻蚀 所述介质层,直至暴露出隔离结构201的部分表面,形成第二沟槽区262,从 而形成所述沟槽260。In another embodiment, the method for forming the trench 260 includes: forming a third patterned mask layer on the dielectric layer, and the third patterned mask layer is positioned at a position out of the first trench region 261 , Using the third patterned mask layer as a mask, the dielectric layer is etched until part of the surface of the source-drain doped layer and part of the surface of the isolation structure are exposed, forming a first trench region 261; forming a first trench After the trench area 261, a fourth patterned mask layer is formed on the first trench area 261 and the third patterned mask layer. The fourth patterned mask layer is a mask, and the dielectric layer is etched until a part of the surface of the isolation structure 201 is exposed to form a second trench region 262 , thereby forming the trench 260 .

参考图6,形成沟槽260后,去除第一图形化掩膜层231。Referring to FIG. 6 , after the trenches 260 are formed, the first patterned mask layer 231 is removed.

去除第一图形化掩膜层231的工艺包括灰化工艺。The process of removing the first patterned mask layer 231 includes an ashing process.

本实施例中,所述沟槽260的形成工艺还包括:去除第一图形化掩膜层 231后,刻蚀去除第一沟槽区261暴露出的源漏掺杂层250表面的保护层230, 暴露出源漏掺杂层250的表面。其他实施例中,源漏掺杂层250表面不形成 保护层230,不需要去除保护层230。In this embodiment, the formation process of the trench 260 further includes: after removing the first patterned mask layer 231 , etching and removing the protective layer 230 on the surface of the source-drain doped layer 250 exposed by the first trench region 261 , exposing the surface of the source-drain doping layer 250 . In other embodiments, the protective layer 230 is not formed on the surface of the source-drain doping layer 250, and the protective layer 230 does not need to be removed.

去除第一图形化掩膜层231后再去除保护层230能够避免灰化工艺对源 漏掺杂层250的影响。Removing the protective layer 230 after removing the first patterned mask layer 231 can avoid the influence of the ashing process on the source-drain doping layer 250.

刻蚀去除第一沟槽区261暴露出的源漏掺杂层250表面的保护层230的 工艺为各向同性的干法刻蚀工艺,所述工艺参数包括:采用的气体包括CF4气体、CH2F2气体和O2,CF4气体的流量为30sccm~200sccm,CH2F2气体的流 量为8sccm~50sccm,O2的流量为2sccm~30sccm,腔室压强为 10mtorr~2000mtorr,射频功率为100W~1000W,直流电流为30V~500V,时间 为4秒~50秒。The process of etching and removing the protective layer 230 on the surface of the source-drain doping layer 250 exposed by the first trench region 261 is an isotropic dry etching process, and the process parameters include: the gas used includes CF4 gas, The flow rate of CH 2 F 2 gas and O 2 , CF 4 gas is 30sccm~200sccm, the flow rate of CH 2 F 2 gas is 8sccm~50sccm, the flow rate of O 2 is 2sccm~30sccm, the chamber pressure is 10mtorr~2000mtorr, the RF power It is 100W~1000W, the DC current is 30V~500V, and the time is 4 seconds~50 seconds.

参考图7,形成沟槽260后,在沟槽260底部表面和侧壁表面形成金属层 270。Referring to FIG. 7 , after the trench 260 is formed, a metal layer 270 is formed on the bottom surface and sidewall surface of the trench 260 .

所述金属层270的材料包括Ti、Co或Ni。The material of the metal layer 270 includes Ti, Co or Ni.

所述金属层270还位于介质层上。The metal layer 270 is also located on the dielectric layer.

形成金属层270的工艺为沉积工艺,如溅射工艺。The process of forming the metal layer 270 is a deposition process, such as a sputtering process.

参考图8,形成金属层270后,对所述金属层270和源漏掺杂层250进行 退火处理,在第一沟槽区261暴露出的源漏掺杂层250表面形成金属硅化物 层280。Referring to FIG. 8 , after the metal layer 270 is formed, the metal layer 270 and the source-drain doped layer 250 are annealed, and a metal silicide layer 280 is formed on the surface of the source-drain doped layer 250 exposed in the first trench region 261 .

本实施例中,进行退火处理时,金属层270的原子扩散至源漏掺杂层250 而与源漏掺杂层250材料反应形成金属硅化物层280。In this embodiment, during the annealing process, the atoms of the metal layer 270 diffuse into the source-drain doped layer 250 and react with the material of the source-drain doped layer 250 to form the metal silicide layer 280 .

所述退火处理的作用还包括:激活源漏掺杂层250中的第二离子。The effect of the annealing treatment further includes: activating the second ions in the source-drain doping layer 250 .

本实施例中,由于源漏掺杂层250的表面材料中掺杂有源漏离子,因此 金属硅化物层280中掺杂有源漏离子,降低了金属硅化物层280的电阻。In this embodiment, since the surface material of the source-drain doped layer 250 is doped with source and drain ions, the metal silicide layer 280 is doped with source and drain ions, which reduces the resistance of the metal silicide layer 280 .

所述退火处理包括激光退火或尖峰退火。The annealing treatment includes laser annealing or spike annealing.

所述退火处理采用激光退火或尖峰退火的好处包括:激光退火和尖峰退 火升温过程较快,避免升温过程引起半导体器件的掺杂区域的离子有较大的 扩散,提高了掺杂区域的稳定性。The advantages of using laser annealing or spike annealing for the annealing treatment include: laser annealing and spike annealing have a faster heating process, avoid greater diffusion of ions in the doped region of the semiconductor device caused by the heating process, and improve the stability of the doped region .

本实施例中,在进行后续的退火处理之前,还在金属层270表面形成阻 挡层(未图示)。所述阻挡层的材料包括氮化钛或氮化钽。形成所述阻挡层的 工艺为沉积工艺,如溅射工艺。In this embodiment, before the subsequent annealing treatment, a barrier layer (not shown) is also formed on the surface of the metal layer 270 . The material of the barrier layer includes titanium nitride or tantalum nitride. The process of forming the barrier layer is a deposition process, such as a sputtering process.

本实施例中,阻挡层在退火处理之前形成,在进行退火处理的过程中, 阻挡层能够保护金属层270,阻挡退火处理对金属层270造成氧化。In this embodiment, the barrier layer is formed before the annealing treatment. During the annealing treatment, the barrier layer can protect the metal layer 270, and the barrier annealing treatment causes the metal layer 270 to be oxidized.

在一个实施例中,为了防止退火的温度下,阻挡层的材料重新结晶而导 致阻挡层性能稳定性较差的问题,选择退火处理的温度在900摄氏度以下。In one embodiment, in order to prevent the material of the barrier layer from recrystallizing at the annealing temperature, which leads to the problem of poor performance stability of the barrier layer, the temperature of the annealing treatment is selected to be below 900 degrees Celsius.

在其它实施例中,阻挡层在退火之后形成。In other embodiments, the barrier layer is formed after annealing.

在其它实施例中,不形成阻挡层。In other embodiments, no barrier layer is formed.

参考图9,进行退火处理之后,在沟槽260(参考图8)内和介质层上形 成导电结构材料层290。Referring to Figure 9, after the annealing process, a layer 290 of conductive structural material is formed within trench 260 (refer to Figure 8) and on the dielectric layer.

本实施例中,导电结构材料层290位于阻挡层表面。In this embodiment, the conductive structural material layer 290 is located on the surface of the barrier layer.

所述导电结构材料层290的材料为金属,如钨。The material of the conductive structural material layer 290 is metal, such as tungsten.

形成导电结构材料层290的工艺为沉积工艺,如化学气相沉积工艺、物 理气相沉积工艺或原子层沉积工艺。The process for forming the conductive structural material layer 290 is a deposition process, such as a chemical vapor deposition process, a physical vapor deposition process, or an atomic layer deposition process.

请参考图10至图12,图10为所述器件的俯视图,图11为图10沿切线 A-A1方向的截面图,图12为图10沿切线A2-A3方向的截面图。平坦化所述 导电结构材料层290暴露出介质层顶部表面,形成导电结构300。10 to 12, FIG. 10 is a top view of the device, FIG. 11 is a cross-sectional view of FIG. 10 along the tangent line A-A1, and FIG. 12 is a cross-sectional view of FIG. 10 along the tangent line A2-A3. The conductive structure material layer 290 is planarized to expose the top surface of the dielectric layer to form the conductive structure 300 .

所述导电结构300延伸方向与栅极结构220延伸方向一致,所述导电结 构300覆盖源漏掺杂层250部分顶部表面和部分侧壁表面以及隔离结构201 的部分表面;所述导电结构300覆盖源漏掺杂层250部分顶部表面和部分侧 壁表面的部分为第一插塞部301,所述导电结构300覆盖隔离结构201表面的 部分为第二插塞部302,第一插塞部301与第二插塞部302相邻,第二插塞部 302侧壁相对于第一插塞部301侧壁凹陷。The extension direction of the conductive structure 300 is consistent with the extension direction of the gate structure 220 , the conductive structure 300 covers part of the top surface and part of the sidewall surface of the source-drain doping layer 250 and part of the surface of the isolation structure 201 ; the conductive structure 300 covers Part of the top surface and part of the sidewall surface of the source-drain doped layer 250 is the first plug portion 301 , and the portion of the conductive structure 300 covering the surface of the isolation structure 201 is the second plug portion 302 , the first plug portion 301 Adjacent to the second plug portion 302 , the side wall of the second plug portion 302 is recessed relative to the side wall of the first plug portion 301 .

本实施例中,平坦化导电结构材料层290和金属层270,直至暴露出介质 层顶部表面,使第一沟槽区261中的导电结构材料层290形成第一插塞部301, 使第二沟槽区262中的导电结构材料层290形成第二插塞部302。In this embodiment, the conductive structure material layer 290 and the metal layer 270 are planarized until the top surface of the dielectric layer is exposed, so that the conductive structure material layer 290 in the first trench region 261 forms the first plug portion 301, and the second plug portion 301 is formed. The conductive structural material layer 290 in the trench region 262 forms the second plug portion 302 .

所述第一插塞部301的侧壁到相邻栅极结构220侧壁的距离为第一距离, 所述第二插塞部302的侧壁到相邻栅极结构220侧壁的距离为第二距离,所 述第一距离小于第二距离。The distance from the sidewall of the first plug portion 301 to the sidewall of the adjacent gate structure 220 is the first distance, and the distance from the sidewall of the second plug portion 302 to the sidewall of the adjacent gate structure 220 is The second distance, the first distance is smaller than the second distance.

所述第一插塞部301的侧壁到相邻栅极结构220侧壁具有第一距离L3, L3为20nm~100nmThere is a first distance L3 between the sidewall of the first plug portion 301 and the sidewall of the adjacent gate structure 220, and L3 is 20 nm˜100 nm

所述第二插塞部302的侧壁到相邻栅极结构220侧壁具有第二距离L4, L4为22nm~112nm。There is a second distance L4 between the sidewall of the second plug portion 302 and the sidewall of the adjacent gate structure 220 , and L4 is 22 nm˜112 nm.

所述第一距离L3与第二距离L4的差为2nm~12nm。The difference between the first distance L3 and the second distance L4 is 2 nm˜12 nm.

导电结构300与栅极结构220之间的距离影响二者之间寄生电容的大小, 第二插塞部302距离相邻栅极结构220距离较远,第二插塞部302与栅极结 构220之间的第二寄生电容较小;第一插塞部301距离相邻栅极结构220距 离较近,与栅极结构220之间的第一寄生电容较大;半导体器件的寄生电容 由第一寄生电容和第二寄生电容组成,通过控制第一插塞部301和第二插塞 部302的尺寸,能够使得半导体器件得到较小的寄生电容,从而提高半导体 器件的性能。The distance between the conductive structure 300 and the gate structure 220 affects the magnitude of the parasitic capacitance therebetween. The second plug portion 302 is farther away from the adjacent gate structure 220 , and the second plug portion 302 and the gate structure 220 are farther away. The second parasitic capacitance between them is relatively small; the distance between the first plug portion 301 and the adjacent gate structure 220 is relatively short, and the first parasitic capacitance between the first plug portion 301 and the gate structure 220 is relatively large; the parasitic capacitance of the semiconductor device is determined by the first The parasitic capacitance and the second parasitic capacitance are formed. By controlling the size of the first plug portion 301 and the second plug portion 302 , the semiconductor device can obtain smaller parasitic capacitance, thereby improving the performance of the semiconductor device.

所述第一距离L3与第二距离L4的差由第一插塞部301和第二插塞部302 自栅极结构220一侧的源漏掺杂层至另一侧的源漏掺杂层的方向上的宽度差 决定。The difference between the first distance L3 and the second distance L4 is determined by the first plug portion 301 and the second plug portion 302 from the source and drain doped layers on one side of the gate structure 220 to the source and drain doped layers on the other side of the gate structure 220 The width difference in the direction is determined.

所述第一插塞部301自栅极结构220一侧的源漏掺杂层至另一侧的源漏 掺杂层的方向上的宽度与第一沟槽区261的宽度相同为第一宽度L1,L1为 17nm~62nm。The width of the first plug portion 301 in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is the same as the width of the first trench region 261 , which is the first width. L1 and L1 are 17 nm to 62 nm.

所述第二插塞部302自栅极结构220一侧的源漏掺杂层至另一侧的源漏 掺杂层的方向上的宽度与第二沟槽区262的宽度相同为第二宽度L2,L2为 15nm~50nm。The width of the second plug portion 302 in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is the same as the width of the second trench region 262 and is the second width L2 and L2 are 15 nm to 50 nm.

第二宽度小于第一宽度,自栅极结构220一侧的源漏掺杂层至另一侧的 源漏掺杂层的方向上第二插塞部的宽度小于第一插塞部的宽度。The second width is smaller than the first width, and the width of the second plug portion in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is smaller than the width of the first plug portion.

第一宽度与第二宽度的差为2nm~12nm。The difference between the first width and the second width is 2 nm˜12 nm.

第一宽度与第二宽度的差大于12nm时,第二插塞部292的寄生电阻过大, 不利于器件的性能,第一宽度与第二宽度之差小于2nm时,第二插塞部292 与栅极结构220之间的寄生电容改善不明显,器件性能没有显著提高。When the difference between the first width and the second width is greater than 12 nm, the parasitic resistance of the second plug portion 292 is too large, which is not conducive to the performance of the device. When the difference between the first width and the second width is less than 2 nm, the second plug portion 292 The parasitic capacitance with the gate structure 220 is not significantly improved, and the device performance is not significantly improved.

导电结构300中心距离栅极结构220中心的距离固定,位于隔离结构上 的第二插塞部302宽度较窄,距离栅极结构220较远,第二插塞部302与栅 极结构220之间的第二寄生电容较小,同时源漏掺杂层250上的第一插塞部 301宽度较宽,第一插塞部301与源漏掺杂层250的接触面积较大,接触电阻 较小。半导体器件的寄生电容由第一寄生电容和第二寄生电容组成,通过控 制第一插塞部301和第二插塞部302的尺寸,能够得到较小的寄生电容和较 小的接触电阻,从而提高器件的性能。The distance between the center of the conductive structure 300 and the center of the gate structure 220 is fixed. The second parasitic capacitance is smaller, and the width of the first plug portion 301 on the source-drain doped layer 250 is wider, the contact area between the first plug portion 301 and the source-drain doped layer 250 is larger, and the contact resistance is smaller . The parasitic capacitance of the semiconductor device is composed of a first parasitic capacitance and a second parasitic capacitance. By controlling the size of the first plug portion 301 and the second plug portion 302, a smaller parasitic capacitance and a smaller contact resistance can be obtained, thereby Improve device performance.

相应的,本实施例还提供一种半导体器件的结构,请参考图10至图12, 包括:提供基底;位于基底内的隔离结构201;位于基底上的栅极结构220, 且所述栅极结构220延伸至隔离结构201上;位于栅极结构220两侧基底内 的源漏掺杂层250;分别位于栅极结构220两侧的导电结构300,所述导电结 构300自源漏掺杂层250延伸至隔离结构201上,所述导电结构300包括: 覆盖源漏掺杂层250的第一插塞部301以及覆盖隔离结构201的第二插塞部302,所述第一插塞部301的侧壁到相邻栅极结构220侧壁具有第一距离,所 述第二插塞部302的侧壁到相邻栅极结构220侧壁具有第二距离,所述第一 距离小于第二距离,且在自栅极结构220一侧的源漏掺杂层250至另一侧的 源漏掺杂层250的方向上,第一插塞部301的尺寸大于第二插塞部302的尺 寸。Correspondingly, the present embodiment also provides a structure of a semiconductor device, please refer to FIG. 10 to FIG. 12 , including: providing a substrate; an isolation structure 201 located in the substrate; a gate structure 220 located on the substrate, and the gate The structure 220 extends on the isolation structure 201; the source and drain doped layers 250 are located in the substrate on both sides of the gate structure 220; 250 extends to the isolation structure 201, and the conductive structure 300 includes: a first plug portion 301 covering the source-drain doping layer 250 and a second plug portion 302 covering the isolation structure 201, the first plug portion 301 The sidewall of the adjacent gate structure 220 has a first distance, and the sidewall of the second plug portion 302 has a second distance from the sidewall of the adjacent gate structure 220, and the first distance is smaller than the second distance distance, and in the direction from the source-drain doped layer 250 on one side of the gate structure 220 to the source-drain doped layer 250 on the other side, the size of the first plug portion 301 is larger than the size of the second plug portion 302 .

所述第一插塞部301在自栅极结构220一侧的源漏掺杂层至另一侧的源 漏掺杂层的方向上的宽度与第一沟槽相同为第一宽度L1,L1为17nm~62nm。The width of the first plug portion 301 in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is the same as that of the first trench, which is the first width L1, L1 It is 17nm~62nm.

所述第二插塞部302在自栅极结构220一侧的源漏掺杂层至另一侧的源 漏掺杂层的方向上的宽度与第二沟槽相同为第二宽度L2,L2为15nm~50nm。The width of the second plug portion 302 in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is the same as that of the second trench, which is the second width L2, L2 It is 15nm~50nm.

第二宽度小于第一宽度,第二插塞部在自栅极结构220一侧的源漏掺杂 层至另一侧的源漏掺杂层的方向上的宽度小于第一插塞部。The second width is smaller than the first width, and the width of the second plug portion in the direction from the source-drain doped layer on one side of the gate structure 220 to the source-drain doped layer on the other side is smaller than that of the first plug portion.

第一宽度L1与第二宽度L2的差为2nm~12nm。The difference between the first width L1 and the second width L2 is 2 nm˜12 nm.

所述第一距离L3为20nm~100nm。The first distance L3 is 20 nm˜100 nm.

所述第二距离L4为22nm~112nm。The second distance L4 is 22 nm˜112 nm.

所述第二距离L4与第一距离L3的差为2nm~12nm。The difference between the second distance L4 and the first distance L3 is 2 nm˜12 nm.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员, 在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保 护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined by the claims.

Claims (13)

1.一种半导体器件,其特征在于,包括:1. a semiconductor device, is characterized in that, comprises: 基底,所述基底具有鳍部,所述鳍部包括第一鳍部,以及与所述第一鳍部相邻的第二鳍部和第三鳍部;a base, the base has a fin, and the fin includes a first fin, and a second fin and a third fin adjacent to the first fin; 位于基底内的隔离结构,所述隔离结构覆盖所述第一鳍部、第二鳍部和第三鳍部的部分鳍部侧壁;an isolation structure located in the base, the isolation structure covers part of the sidewalls of the fins of the first fin, the second fin and the third fin; 位于基底上的栅极结构,且所述栅极结构延伸至隔离结构上,所述栅极结构横跨所述第一鳍部、第二鳍部和第三鳍部;a gate structure on the substrate, the gate structure extending onto the isolation structure, the gate structure spanning the first fin, the second fin and the third fin; 位于栅极结构两侧的第一鳍部、第二鳍部和第三鳍部内的源漏掺杂层;source and drain doped layers in the first fin, the second fin and the third fin on both sides of the gate structure; 分别位于栅极结构两侧的导电结构,所述导电结构自源漏掺杂层延伸至隔离结构上,所述导电结构包括:Conductive structures respectively located on both sides of the gate structure, the conductive structures extend from the source and drain doped layers to the isolation structure, and the conductive structures include: 覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第二插塞部包括位于所述第一鳍部和第二鳍部之间的部分,以及第一鳍部和第三鳍部之间的部分,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,第一插塞部的宽度大于第二插塞部的宽度;A first plug portion covering the source-drain doping layer and a second plug portion covering the isolation structure, the second plug portion including a portion between the first fin portion and the second fin portion, and a first plug portion A portion between a fin and a third fin, the sidewall of the first plug has a first distance from the sidewall of the adjacent gate structure, and the sidewall of the second plug is from the adjacent gate The pole structure sidewall has a second distance, the first distance is smaller than the second distance, and the width of the first plug portion is greater than the width of the second plug portion; 所述第一距离为20nm~100nm;the first distance is 20nm˜100nm; 所述第二距离为22nm~112nm;The second distance is 22nm~112nm; 所述第二距离与第一距离的差为2nm~12nm。The difference between the second distance and the first distance is 2 nm˜12 nm. 2.如权利要求1所述的半导体器件,其特征在于,所述第一插塞部的宽度为17nm~62nm。2 . The semiconductor device of claim 1 , wherein the width of the first plug portion is 17 nm˜62 nm. 3 . 3.如权利要求2所述的半导体器件,其特征在于,所述第二插塞部的宽度为15nm~50nm。3 . The semiconductor device of claim 2 , wherein the width of the second plug portion is 15 nm˜50 nm. 4 . 4.如权利要求1所述的半导体器件,其特征在于,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。4 . The semiconductor device of claim 1 , wherein the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm. 5 . 5.一种半导体器件的形成方法,其特征在于,包括:5. A method for forming a semiconductor device, comprising: 提供基底,所述基底具有鳍部,所述鳍部包括第一鳍部,以及与所述第一鳍部相邻的第二鳍部和第三鳍部,所述基底具有隔离结构,所述隔离结构覆盖所述第一鳍部、第二鳍部和第三鳍部的部分鳍部侧壁;A base is provided, the base has a fin, the fin includes a first fin, and a second fin and a third fin adjacent to the first fin, the base has an isolation structure, the The isolation structure covers part of the fin sidewalls of the first fin, the second fin and the third fin; 在基底上形成栅极结构,所述栅极结构延伸至隔离结构上;forming a gate structure on the substrate, the gate structure extending onto the isolation structure; 在栅极结构两侧的第一鳍部、第二鳍部和第三鳍部内形成源漏掺杂层;forming source-drain doping layers in the first fin portion, the second fin portion and the third fin portion on both sides of the gate structure; 在栅极结构两侧形成导电结构,所述导电结构横跨源漏掺杂层且延伸至隔离结构上,所述导电结构覆盖源漏掺杂层部分顶部表面和部分侧壁表面以及隔离结构部分表面,所述导电结构包括:Conductive structures are formed on both sides of the gate structure, the conductive structures span the source and drain doped layers and extend to the isolation structure, the conductive structures cover part of the top surface and part of the sidewall surfaces of the source and drain doped layers and part of the isolation structure surface, the conductive structure includes: 覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第二插塞部包括位于所述第一鳍部和第二鳍部之间的部分,以及第一鳍部和第三鳍部之间的部分,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,且在自栅极结构一侧的源漏掺杂层至另一侧的源漏掺杂层的方向上,第一插塞部的尺寸大于第二插塞部的尺寸;A first plug portion covering the source-drain doping layer and a second plug portion covering the isolation structure, the second plug portion including a portion between the first fin portion and the second fin portion, and a first plug portion A portion between a fin and a third fin, the sidewall of the first plug has a first distance from the sidewall of the adjacent gate structure, and the sidewall of the second plug is from the adjacent gate The sidewall of the gate structure has a second distance, the first distance is smaller than the second distance, and in the direction from the source and drain doped layers on one side of the gate structure to the source and drain doped layers on the other side, the first insertion The size of the plug portion is larger than the size of the second plug portion; 所述第一距离为20nm~100nm;the first distance is 20nm˜100nm; 所述第二距离为22nm~112nm;The second distance is 22nm~112nm; 所述第二距离与第一距离的差为2nm~12nm。The difference between the second distance and the first distance is 2 nm˜12 nm. 6.如权利要求5所述的半导体器件的形成方法,其特征在于,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。6 . The method for forming a semiconductor device according to claim 5 , wherein the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm. 7 . 7.如权利要求5所述的半导体器件的形成方法,其特征在于,形成导电结构之前,在所述隔离结构、栅极结构和源漏掺杂层上形成介质层,所述介质层覆盖栅极结构顶部表面;所述导电结构位于所述介质层内。7 . The method for forming a semiconductor device according to claim 5 , wherein, before forming the conductive structure, a dielectric layer is formed on the isolation structure, the gate structure and the source-drain doping layer, and the dielectric layer covers the gate. 8 . the top surface of the pole structure; the conductive structure is located within the dielectric layer. 8.如权利要求7所述的半导体器件的形成方法,其特征在于,所述导电结构的形成方法包括:在栅极结构两侧的介质层中形成横跨源漏掺杂层的沟槽,所述沟槽延伸方向与栅极结构延伸方向平行,所述沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面以及隔离结构的部分表面,所述沟槽包括第一沟槽区和第二沟槽区,所述第一沟槽区暴露出源漏掺杂层部分顶部表面和部分侧壁表面,所述第二沟槽区暴露出隔离结构的部分表面,第二沟槽侧壁相对于第一沟槽侧壁凹陷;在第一沟槽内形成第一插塞部,在第二沟槽内形成第二插塞部。8. The method for forming a semiconductor device according to claim 7, wherein the method for forming the conductive structure comprises: forming trenches across the source and drain doped layers in the dielectric layers on both sides of the gate structure, The extension direction of the trench is parallel to the extension direction of the gate structure, the trench exposes part of the top surface and part of the sidewall surface of the source-drain doped layer and part of the surface of the isolation structure, the trench includes a first trench region and a second trench region, the first trench region exposes part of the top surface and part of the sidewall surface of the source-drain doped layer, the second trench region exposes part of the surface of the isolation structure, the second trench side The wall is recessed relative to the sidewall of the first trench; a first plug portion is formed in the first trench, and a second plug portion is formed in the second trench. 9.如权利要求8所述的半导体器件的形成方法,其特征在于,所述沟槽的形成方法包括:介质层上形成第一图形化掩膜层,所述第一图形化掩膜层暴露出沟槽的位置和形状,以所述第一图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分表面和隔离结构的部分表面,在栅极结构两侧的介质层中形成沿栅极结构延伸方向横跨源漏掺杂层的沟槽。9 . The method for forming a semiconductor device according to claim 8 , wherein the method for forming the trench comprises: forming a first patterned mask layer on the dielectric layer, and the first patterned mask layer is exposed. 10 . The position and shape of the trench are etched using the first patterned mask layer as a mask to expose part of the surface of the source-drain doping layer and part of the surface of the isolation structure. A trench spanning the source and drain doped layers along the extension direction of the gate structure is formed in the dielectric layer on the side. 10.如权利要求8所述的半导体器件的形成方法,其特征在于,所述沟槽的形成方法包括:在介质层内形成初始沟槽,所述初始沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面的部分为初始第一沟槽,所述初始沟槽暴露出隔离结构部分表面的部分为第二沟槽,初始第一沟槽与第二沟槽相邻,初始第一沟槽侧壁与第二沟槽侧壁齐平;形成初始沟槽后,对初始第一沟槽进行处理,使得初始第一沟槽侧壁相对第二沟槽的侧壁沿垂直于栅极结构延伸方向和垂直于基底表面方向的宽度拓宽,形成第一沟槽。10 . The method for forming a semiconductor device according to claim 8 , wherein the method for forming the trench comprises: forming an initial trench in the dielectric layer, the initial trench exposing a portion of the source-drain doped layer. 11 . The part of the top surface and part of the sidewall surface is the initial first trench, the part of the initial trench that exposes part of the surface of the isolation structure is the second trench, the initial first trench is adjacent to the second trench, the initial first trench is The sidewall of a trench is flush with the sidewall of the second trench; after the initial trench is formed, the initial first trench is processed so that the sidewall of the initial first trench is perpendicular to the gate along the sidewall of the second trench relative to the sidewall of the second trench. The extension direction of the pole structure and the width of the direction perpendicular to the surface of the substrate are widened to form a first trench. 11.如权利要求10所述的半导体器件的形成方法,其特征在于,所述初始沟槽的形成方法包括:在介质层上第二图形化掩膜层,以所述第二图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分表面和隔离结构的部分表面,在栅极结构两侧的介质层中形成沿栅极结构延伸方向横跨源漏掺杂层的初始沟槽,所述初始沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面的部分为初始第一沟槽,所述沟槽暴露出隔离结构部分表面的部分为第二沟槽,初始第一沟槽与第二沟槽相邻,初始第一沟槽侧壁与第二沟槽侧壁齐平。11. The method for forming a semiconductor device according to claim 10, wherein the method for forming the initial trench comprises: forming a second patterned mask layer on the dielectric layer, using the second patterned mask The layer is a mask, and the dielectric layer is etched to expose part of the surface of the source-drain doping layer and part of the surface of the isolation structure, and the dielectric layer on both sides of the gate structure is formed to cross the source-drain dopant along the extension direction of the gate structure. The initial trench of the impurity layer, the part of the initial trench that exposes part of the top surface and part of the sidewall surface of the source-drain doping layer is the initial first trench, and the part of the trench that exposes the part of the surface of the isolation structure is the first trench. Two trenches, the initial first trench is adjacent to the second trench, and the sidewall of the initial first trench is flush with the sidewall of the second trench. 12.如权利要求8所述的半导体器件的形成方法,其特征在于,所述沟槽的形成方法包括:在介质层上形成第三图形化掩膜层,所述第三图形化掩膜层定于出第一沟槽的位置,以所述第三图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出源漏掺杂层部分表面和隔离结构的部分表面,形成第一沟槽;形成第一沟槽后,在第一沟槽、第三图形化掩膜层上形成第四图形化掩膜层,所述第四图形化掩膜层定于出第二沟槽的位置,以所述第四图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出隔离结构的部分表面,形成第二沟槽。12. The method for forming a semiconductor device according to claim 8, wherein the method for forming the trench comprises: forming a third patterned mask layer on the dielectric layer, the third patterned mask layer Determined at the position of the first trench, using the third patterned mask layer as a mask, the dielectric layer is etched until part of the surface of the source-drain doped layer and part of the surface of the isolation structure are exposed, forming the first step. a trench; after the first trench is formed, a fourth patterned mask layer is formed on the first trench and the third patterned mask layer, and the fourth patterned mask layer is positioned on the second trench At the position where the fourth patterned mask layer is used as a mask, the dielectric layer is etched until a part of the surface of the isolation structure is exposed to form a second trench. 13.如权利要求8所述的半导体器件的形成方法,其特征在于,在第一沟槽内形成第一插塞部,在第二沟槽内形成第二插塞部的方法包括:在第一沟槽和第二沟槽内形成插塞材料层;形成插塞材料层后,平坦化所述插塞材料层,暴露出介质层表面,在第一沟槽内形成第一插塞部,在第二沟槽内形成第二插塞部。13 . The method for forming a semiconductor device according to claim 8 , wherein the method for forming the first plug portion in the first trench, and the method for forming the second plug portion in the second trench comprises: A plug material layer is formed in a groove and a second groove; after the plug material layer is formed, the plug material layer is planarized to expose the surface of the dielectric layer, and a first plug portion is formed in the first groove, A second plug portion is formed in the second groove.
CN201810141390.2A 2018-02-11 2018-02-11 Semiconductor device and method of forming the same Active CN110164968B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810141390.2A CN110164968B (en) 2018-02-11 2018-02-11 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810141390.2A CN110164968B (en) 2018-02-11 2018-02-11 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
CN110164968A CN110164968A (en) 2019-08-23
CN110164968B true CN110164968B (en) 2022-08-26

Family

ID=67635042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810141390.2A Active CN110164968B (en) 2018-02-11 2018-02-11 Semiconductor device and method of forming the same

Country Status (1)

Country Link
CN (1) CN110164968B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540019B (en) * 2020-04-20 2023-07-21 中芯国际集成电路制造(上海)有限公司 Variable capacitor and method for forming variable capacitor
CN119255594A (en) * 2023-06-25 2025-01-03 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037226A (en) * 2013-03-08 2014-09-10 台湾积体电路制造股份有限公司 Finfet With An Asymmetric Source/drain Structure And Method Of Making Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3048823B2 (en) * 1994-02-28 2000-06-05 日本電気株式会社 Semiconductor integrated circuit device
US9431492B2 (en) * 2014-02-21 2016-08-30 Samsung Electronics Co., Ltd. Integrated circuit devices including contacts and methods of forming the same
CN104979201B (en) * 2014-04-03 2018-03-06 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor devices
KR102238951B1 (en) * 2014-07-25 2021-04-12 에스케이하이닉스 주식회사 Semiconductor device with air gap and method for fabricating the same
KR102399023B1 (en) * 2015-06-22 2022-05-16 삼성전자주식회사 Semiconductor device
US10366989B2 (en) * 2016-02-10 2019-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having a contact bar over an S/D structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037226A (en) * 2013-03-08 2014-09-10 台湾积体电路制造股份有限公司 Finfet With An Asymmetric Source/drain Structure And Method Of Making Same

Also Published As

Publication number Publication date
CN110164968A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
JP5410666B2 (en) Semiconductor device
KR101263648B1 (en) Fin field effect transistor and method of manufacturing the same
JP5017795B2 (en) Method for manufacturing field effect transistor
US8936986B2 (en) Methods of forming finfet devices with a shared gate structure
CN111180513B (en) Semiconductor device and method of forming the same
CN109979986B (en) Semiconductor device and method of forming the same
CN110797262B (en) Semiconductor device and method of forming the same
CN110364483B (en) Semiconductor structure and method of forming the same
CN111354641B (en) Semiconductor device and method of forming the same
CN110648915A (en) Semiconductor device and method of forming the same
CN109980003A (en) Semiconductor devices and forming method thereof
CN110164968B (en) Semiconductor device and method of forming the same
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
CN109841507B (en) Semiconductor device and method of forming the same
CN107591327B (en) Method for forming fin field effect transistor
CN111128731A (en) Semiconductor device and method of forming the same
CN109599366B (en) Semiconductor device and method of forming the same
CN111276442B (en) Semiconductor structure and forming method thereof
CN110957219B (en) Semiconductor device and method of forming the same
CN109285811A (en) Semiconductor structure and method of forming the same
CN109285876B (en) Semiconductor structure and method of forming the same
CN109273407B (en) Semiconductor device and method of forming the same
CN109285889B (en) Semiconductor structure and method of forming the same
CN109148576B (en) Semiconductor device and method of forming the same
CN107994065B (en) Semiconductor device and method of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant