CN110164968B - Semiconductor device and method of forming the same - Google Patents
Semiconductor device and method of forming the same Download PDFInfo
- Publication number
- CN110164968B CN110164968B CN201810141390.2A CN201810141390A CN110164968B CN 110164968 B CN110164968 B CN 110164968B CN 201810141390 A CN201810141390 A CN 201810141390A CN 110164968 B CN110164968 B CN 110164968B
- Authority
- CN
- China
- Prior art keywords
- trench
- layer
- fin
- source
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000002955 isolation Methods 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims description 32
- 239000002019 doping agent Substances 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 266
- 230000003071 parasitic effect Effects 0.000 description 33
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000000137 annealing Methods 0.000 description 15
- 239000011241 protective layer Substances 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- 125000006850 spacer group Chemical group 0.000 description 10
- 238000005530 etching Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000005224 laser annealing Methods 0.000 description 3
- 238000004380 ashing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- -1 phosphorus ions Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体器件及其形成方法,其中半导体器件包括:基底;位于基底内的隔离结构;位于基底上的栅极结构,且所述栅极结构延伸至隔离结构上;位于栅极结构两侧基底内的源漏掺杂层;分别位于栅极结构两侧的导电结构,所述导电结构自源漏掺杂层延伸至隔离结构上,所述导电结构包括:覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,第一插塞部的宽度大于第二插塞部的宽度。所述半导体器件的性能得到了提高。
A semiconductor device and a method for forming the same, wherein the semiconductor device comprises: a substrate; an isolation structure located in the substrate; a gate structure located on the substrate, and the gate structure extends to the isolation structure; a substrate located on both sides of the gate structure source and drain doped layers inside; conductive structures respectively located on both sides of the gate structure, the conductive structures extend from the source and drain doped layers to the isolation structure, and the conductive structures include: a first layer covering the source and drain doped layers A plug portion and a second plug portion covering the isolation structure, the side wall of the first plug portion has a first distance from the side wall of the adjacent gate structure, and the side wall of the second plug portion is adjacent to the gate structure. The gate structure sidewall has a second distance, the first distance is smaller than the second distance, and the width of the first plug portion is greater than the width of the second plug portion. The performance of the semiconductor device is improved.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a method for forming the same.
背景技术Background technique
MOS(金属-氧化物-半导体)晶体管,是现代集成电路中最重要的元件之 一。MOS晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极 结构,所述栅极结构包括:位于半导体衬底表面的栅介质层以及位于栅介质 层表面的栅电极层;位于栅极结构两侧半导体衬底中的源漏掺杂层。MOS (Metal-Oxide-Semiconductor) transistors are one of the most important components in modern integrated circuits. The basic structure of a MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, the gate structure including: a gate dielectric layer located on the surface of the semiconductor substrate and a gate electrode layer located on the surface of the gate dielectric layer; The source and drain doped layers in the semiconductor substrate on both sides of the pole structure.
随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制 能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的 多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的 顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂层。With the development of semiconductor technology, the control ability of traditional planar MOS transistors on channel current becomes weak, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of a semiconductor substrate, a gate structure covering part of the top surface and sidewalls of the fin, Source and drain doped layers in the fins on both sides of the gate structure.
然而,现有技术中鳍式场效应晶体管构成的半导体器件的性能仍有待提 高。However, the performance of the semiconductor device formed by the fin field effect transistor in the prior art still needs to be improved.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种半导体器件及其形成方法,以提高半 导体器件的性能。The technical problem solved by the present invention is to provide a semiconductor device and a method for forming the same, so as to improve the performance of the semiconductor device.
为解决上述技术问题,本发明提供一种半导体器件,包括:基底;位于 基底内的隔离结构;位于基底上的栅极结构,且所述栅极结构延伸至隔离结 构上;位于栅极结构两侧基底内的源漏掺杂层;分别位于栅极结构两侧的导 电结构,所述导电结构自源漏掺杂层延伸至隔离结构上,所述导电结构包括: 覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述第一插 塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第二插塞部的侧壁到相 邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,第一插塞部的宽度大于第二插塞部的宽度。In order to solve the above technical problems, the present invention provides a semiconductor device, comprising: a substrate; an isolation structure located in the substrate; a gate structure located on the substrate, and the gate structure extends to the isolation structure; source and drain doping layers in the side substrate; conductive structures respectively located on both sides of the gate structure, the conductive structures extending from the source and drain doping layers to the isolation structure, the conductive structures comprising: covering the source and drain doping layers a first plug portion and a second plug portion covering the isolation structure, the sidewall of the first plug portion has a first distance from the sidewall of the adjacent gate structure, and the sidewall of the second plug portion is The sidewalls of adjacent gate structures have a second distance, the first distance is smaller than the second distance, and the width of the first plug portion is greater than the width of the second plug portion.
可选的,所述第一插塞部的宽度为17nm~62nm。Optionally, the width of the first plug portion is 17 nm to 62 nm.
可选的,所述第二插塞部的宽度为15nm~50nm。Optionally, the width of the second plug portion is 15 nm˜50 nm.
可选的,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。 可选的,所述第一距离为20nm~100nm。Optionally, the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm. Optionally, the first distance is 20 nm to 100 nm.
可选的,所述第二距离为22nm~112nm。Optionally, the second distance is 22 nm to 112 nm.
可选的,所述第二距离与第一距离的差为2nm~12nm。Optionally, the difference between the second distance and the first distance is 2 nm˜12 nm.
本发明还提供一种半导体器件的形成方法,包括:提供基底,所述基底 具有隔离结构;在基底是形成栅极结构,所述栅极结构延伸至隔离结构上; 在栅极结构两侧的基底内形成源漏掺杂层;在栅极结构两侧形成导电结构, 所述导电结构横跨源漏掺杂层且延伸至隔离结构上,所述导电结构覆盖源漏 掺杂层部分顶部表面和部分侧壁表面以及隔离结构部分表面,所述导线结构 包括:覆盖源漏掺杂层的第一插塞部以及覆盖隔离结构的第二插塞部,所述 第一插塞部的侧壁到相邻栅极结构侧壁具有第一距离,所述第一插塞部的侧壁到相邻栅极结构侧壁具有第二距离,所述第一距离小于第二距离,且在自 栅极结构一侧的源漏掺杂层至另一侧的源漏掺杂层的方向上,第一插塞部的 尺寸大于第二插塞部的尺寸。The present invention also provides a method for forming a semiconductor device, comprising: providing a substrate with an isolation structure; forming a gate structure on the substrate, the gate structure extending to the isolation structure; A source-drain doped layer is formed in the substrate; a conductive structure is formed on both sides of the gate structure, the conductive structure spans the source-drain doped layer and extends to the isolation structure, and the conductive structure covers part of the top surface of the source-drain doped layer and part of the sidewall surface and part of the surface of the isolation structure, the wire structure includes: a first plug part covering the source and drain doped layers and a second plug part covering the isolation structure, the sidewall of the first plug part There is a first distance from the sidewall of the adjacent gate structure, the sidewall of the first plug portion has a second distance from the sidewall of the adjacent gate structure, the first distance is smaller than the second distance, and the self-gate In the direction from the source-drain doped layer on one side of the pole structure to the source-drain doped layer on the other side, the size of the first plug portion is larger than the size of the second plug portion.
可选的,所述第一插塞部的宽度与第二插塞部的宽度的差为2nm~12nm。Optionally, the difference between the width of the first plug portion and the width of the second plug portion is 2 nm˜12 nm.
可选的,形成导电结构之前,在所述隔离结构、栅极结构和源漏掺杂层 上形成介质层,所述介质层覆盖栅极结构顶部表面;所述导电结构位于所述 介质层内。Optionally, before forming the conductive structure, a dielectric layer is formed on the isolation structure, the gate structure and the source-drain doping layer, the dielectric layer covers the top surface of the gate structure; the conductive structure is located in the dielectric layer .
可选的,所述导电结构的形成方法包括:在栅极结构两侧的介质层中形 成横跨源漏掺杂层的沟槽,所述沟槽延伸方向与栅极结构延伸方向平行,所 述沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面以及隔离结构的部分 表面,所述沟槽包括第一沟槽区和第二沟槽区,所述第一沟槽区暴露出源漏 掺杂层部分顶部表面和部分侧壁表面,所述第二沟槽区暴露出隔离结构的部 分表面,第二沟槽侧壁相对于第一沟槽侧壁凹陷;在第一沟槽内形成第一插 塞部,在第二沟槽内形成第二插塞部。Optionally, the method for forming the conductive structure includes: forming a trench across the source-drain doped layer in the dielectric layer on both sides of the gate structure, and the extension direction of the trench is parallel to the extension direction of the gate structure. The trench exposes part of the top surface and part of the sidewall surface of the source-drain doped layer and part of the surface of the isolation structure, the trench includes a first trench region and a second trench region, and the first trench region exposes Part of the top surface and part of the sidewall surface of the source-drain doped layer, the second trench region exposes part of the surface of the isolation structure, and the second trench sidewall is recessed relative to the first trench sidewall; A first plug portion is formed in the groove, and a second plug portion is formed in the second groove.
可选的,所述沟槽的形成方法包括:介质层上形成第一图形化掩膜层, 所述第一图形化掩膜层暴露出沟槽的位置和形状,以所述第一图形化掩膜层 为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分表面和隔离结构的部分表 面,在栅极结构两侧的介质层中形成沿栅极结构延伸方向横跨源漏掺杂层的 沟槽。Optionally, the method for forming the trench includes: forming a first patterned mask layer on the dielectric layer, and the first patterned mask layer exposes the position and shape of the trench, and the first patterned mask layer exposes the position and shape of the trench. The mask layer is a mask, and the dielectric layer is etched to expose part of the surface of the source and drain doped layers and part of the surface of the isolation structure, and the dielectric layers on both sides of the gate structure are formed to cross the source along the extension direction of the gate structure. Drain doped trenches.
可选的,所述沟槽的形成方法包括:在介质层内形成初始沟槽,所述初 始沟槽暴露出源漏掺杂层部分顶部表面和部分侧壁表面的部分为初始第一沟 槽,所述初始沟槽暴露出隔离结构部分表面的部分为第二沟槽,初始第一沟 槽与第二沟槽相邻,初始第一沟槽侧壁与第二沟槽侧壁齐平;形成初始沟槽 后,对初始第一沟槽进行处理,使得初始第一沟槽侧壁相对第二沟槽的侧壁 沿垂直于栅极结构延伸方向和垂直于基底表面方向的宽度拓宽,从而形成所 述沟槽。Optionally, the method for forming the trench includes: forming an initial trench in the dielectric layer, and the portion of the initial trench exposing part of the top surface and part of the sidewall surface of the source-drain doped layer is the initial first trench , the part of the initial trench exposing the surface of the part of the isolation structure is the second trench, the initial first trench is adjacent to the second trench, and the sidewall of the initial first trench is flush with the sidewall of the second trench; After the initial trenches are formed, the initial first trenches are processed so that the sidewalls of the initial first trenches are widened relative to the sidewalls of the second trenches along the widths perpendicular to the extension direction of the gate structure and the direction perpendicular to the substrate surface, thereby The trenches are formed.
可选的,所述初始沟槽的形成方法包括:在介质层上第二图形化掩膜层, 以所述第二图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层部分 表面和隔离结构的部分表面,在栅极结构两侧的介质层中形成沿栅极结构延 伸方向横跨源漏掺杂层的初始沟槽,所述初始沟槽暴露出源漏掺杂层部分顶 部表面和部分侧壁表面的部分为初始第一沟槽,所述沟槽暴露出隔离结构部 分表面的部分为第二沟槽,初始第一沟槽与第二沟槽相邻,初始第一沟槽侧 壁与第二沟槽侧壁齐平。Optionally, the method for forming the initial trench includes: forming a second patterned mask layer on the dielectric layer, and using the second patterned mask layer as a mask, etching the dielectric layer to expose the source Part of the surface of the drain doped layer and part of the surface of the isolation structure, an initial trench is formed in the dielectric layer on both sides of the gate structure across the source and drain doped layer along the extension direction of the gate structure, and the initial trench exposes the source The part of the top surface and part of the sidewall surface of the drain doped layer is the initial first trench, the part of the trench that exposes the part of the surface of the isolation structure is the second trench, and the initial first trench is the same as the second trench. Adjacent, initially the first trench sidewall is flush with the second trench sidewall.
可选的,所述沟槽的形成方法包括:在介质层上形成第三图形化掩膜层, 所述第三图形化掩膜层定于出第一沟槽的位置,以所述第三图形化掩膜层为 掩膜,刻蚀所述介质层,直至暴露出源漏掺杂层部分表面和隔离结构的部分 表面,形成第一沟槽;形成第一沟槽后,在第一沟槽、第三图形化掩膜层上 形成第四图形化掩膜层,所述第四图形化掩膜层定于出第二沟槽的位置,以 所述第四图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出隔离结构的部 分表面,形成第二沟槽,从而形成所述沟槽。Optionally, the method for forming the trench includes: forming a third patterned mask layer on the dielectric layer, and the third patterned mask layer is positioned at the position of the first trench, so that the third patterned mask layer The patterned mask layer is a mask, and the dielectric layer is etched until a part of the surface of the source-drain doped layer and part of the surface of the isolation structure is exposed, and a first trench is formed; A fourth patterned mask layer is formed on the groove and the third patterned mask layer, the fourth patterned mask layer is positioned at the position of the second trench, and the fourth patterned mask layer is used as a mask film, and etching the dielectric layer until a part of the surface of the isolation structure is exposed to form a second trench, thereby forming the trench.
可选的,在第一沟槽内形成第一插塞部,在第二沟槽内形成第二插塞部 的方法包括:在第一沟槽和第二沟槽内形成插塞材料层;形成插塞材料层后, 平坦化所述插塞材料层,暴露出介质层表面,在第一沟槽内形成第一插塞部, 在第二沟槽内形成第二插塞部。Optionally, the method for forming the first plug portion in the first trench, and forming the second plug portion in the second trench includes: forming a plug material layer in the first trench and the second trench; After the plug material layer is formed, the plug material layer is planarized to expose the surface of the dielectric layer, a first plug portion is formed in the first trench, and a second plug portion is formed in the second trench.
可选的,所述第一距离为20nm~100nm。Optionally, the first distance is 20 nm to 100 nm.
可选的,所述第二距离为22nm~112nm。Optionally, the second distance is 22 nm to 112 nm.
可选的,所述第二距离与第一距离的差为2nm~12nm。Optionally, the difference between the second distance and the first distance is 2 nm˜12 nm.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明提供的半导体器件中,覆盖源漏掺杂层的第一插塞部以及覆盖隔 离结构的第二插塞部,第二插塞部距离相邻栅极结构距离较远,第二插塞部 与栅极结构之间的第二寄生电容较小。第一插塞部的尺寸较大,第一插塞部 与源漏掺杂层的接触面积较大,第一插塞部与源漏掺杂层的接触电阻较小。 半导体器件的寄生电容由第一寄生电容和第二寄生电容组成,通过控制第一 插塞部和第二插塞部的尺寸,能够得到较小的寄生电容和较小的接触电阻, 从而提高器件的性能。In the semiconductor device provided by the present invention, a first plug portion covering the source-drain doped layer and a second plug portion covering the isolation structure, the second plug portion is far away from the adjacent gate structure, and the second plug portion is far away from the adjacent gate structure. The second parasitic capacitance between the portion and the gate structure is small. The size of the first plug portion is larger, the contact area between the first plug portion and the source-drain doped layer is larger, and the contact resistance between the first plug portion and the source-drain doped layer is smaller. The parasitic capacitance of the semiconductor device is composed of a first parasitic capacitance and a second parasitic capacitance. By controlling the size of the first plug portion and the second plug portion, a smaller parasitic capacitance and a smaller contact resistance can be obtained, thereby improving the device. performance.
附图说明Description of drawings
图1是一种半导体器件形成过程的结构示意图;1 is a schematic structural diagram of a semiconductor device formation process;
图2至图12是本发明一实施例中半导体器件形成过程的结构示意图。2 to 12 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术形成的半导体器件的性能较差。As mentioned in the background, semiconductor devices formed by the prior art have poor performance.
图1是一种半导体器件形成过程的结构示意图。FIG. 1 is a schematic structural diagram of a semiconductor device forming process.
参考图1,提供基底100,所述基底100具有鳍部110和隔离结构,隔离 结构覆盖部分鳍部110侧壁;形成栅极结构120、源漏掺杂层和介质层,栅极 结构110位于基底100上横跨所述鳍部110,源漏掺杂层位于栅极结构120两 侧的鳍部110中,介质层位于源漏掺杂层和栅极结构120上;在栅极结构120 两侧的介质层中形成自源漏掺杂层延伸至隔离结构且暴露出部分源漏掺杂层 表面和隔离结构部分表面的通孔;在所述通孔内形成插塞130。Referring to FIG. 1, a
所述栅极结构和插塞之间通过介质层隔离,二者之间形成寄生电容,所 述寄生电容由两部分组成,位于源漏掺杂层上方的插塞与栅极结构之间的寄 生电容和位于隔离结构上方的插塞与栅极结构之间的寄生电容。所述源漏掺 杂层与插塞之间的电阻为接触电阻。The gate structure and the plug are isolated by a dielectric layer, and a parasitic capacitance is formed between the two. The parasitic capacitance consists of two parts, the parasitic capacitance between the plug located above the source and drain doped layers and the gate structure Capacitance and parasitic capacitance between the plug and gate structures above the isolation structures. The resistance between the source-drain doped layer and the plug is the contact resistance.
所述插塞具有沿鳍部延伸方向和垂直于基底表面方向的宽度,所述插塞 位于源漏掺杂层表面和位于隔离结构表面的宽度一致。位于源漏掺杂层上的 插塞的宽度越大,源漏掺杂层与插塞之间的接触电阻越小,插塞与栅极结构 之间的距离越近,插塞和栅极结构之间的寄生电容越大。因此,为平衡半导 体器件的接触电阻和寄生电容,插塞的宽度一定,此时源漏掺杂层与插塞之 间的接触电阻较大,插塞和栅极结构之间的寄生电容也较大,半导体性能不 佳。The plug has a width along the extending direction of the fin and a direction perpendicular to the surface of the substrate, and the width of the plug on the surface of the source-drain doped layer is the same as that on the surface of the isolation structure. The greater the width of the plug located on the source-drain doped layer, the smaller the contact resistance between the source-drain doped layer and the plug, the closer the distance between the plug and the gate structure, the closer the plug and the gate structure are. the larger the parasitic capacitance between them. Therefore, in order to balance the contact resistance and parasitic capacitance of the semiconductor device, the width of the plug is constant. At this time, the contact resistance between the source-drain doped layer and the plug is relatively large, and the parasitic capacitance between the plug and the gate structure is also relatively large. large, poor semiconductor performance.
本发明通过对位于源漏掺层区上的插塞的尺寸和隔离结构上的插塞的尺 寸的不同设计,来降低半导体器件的寄生电容和寄生电阻。The present invention reduces the parasitic capacitance and parasitic resistance of the semiconductor device through different designs of the size of the plug on the source and drain doped regions and the size of the plug on the isolation structure.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合 附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图2至图12是本发明一实施例中半导体器件形成过程的结构示意图。2 to 12 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.
参考图2,提供基底。Referring to Figure 2, a substrate is provided.
本实施例中,以所述半导体器件为鳍式场效应晶体管为示例进行说明, 在其它实施例中,半导体器件为平面式的MOS晶体管。In this embodiment, the semiconductor device is an example of a fin field effect transistor for description. In other embodiments, the semiconductor device is a planar MOS transistor.
本实施例中,所述基底包括半导体衬底200和位于半导体衬底200上的 鳍部210。在其它实施例中,当半导体器件为平面式的MOS晶体管时,基底 为平面式的半导体衬底。In this embodiment, the base includes a
本实施例中,所述半导体衬底200上还具有隔离结构201,隔离结构201 覆盖鳍部210的部分侧壁,所述隔离结构201的顶部表面低于鳍部210的顶 部表面。所述隔离结构201的材料包括氧化硅。In this embodiment, the
继续参考图2,形成栅极结构220、源漏掺杂层250和介质层,栅极结构 220位于基底上,源漏掺杂层250位于栅极结构220两侧的基底中,介质层位 于源漏掺杂层250和栅极结构220上,所述源漏掺杂层250中具有源漏离子。Continuing to refer to FIG. 2, a
本实施例中,所述栅极结构220包括位于基底上的界面层,位于界面层 上的栅介质层和位于栅介质层上的栅电极层。所述界面层的材料为氧化硅, 栅介质层的材料为高K(K大于3.9)介质材料,所述栅电极层的材料为金属, 如钨。在其它实施例中,栅极结构220还包括位于栅极结构220本体顶部的 栅极保护层。In this embodiment, the
本实施例中,栅极结构220横跨鳍部210且覆盖鳍部210的部分顶部表 面和部分侧壁表面。所述栅介质层位于隔离结构201的部分表面、覆盖鳍部 210的部分顶部表面和部分侧壁表面。In this embodiment, the
本实施例中,所述基底还包括位于栅极结构220侧壁的第一侧墙221和 位于第一侧墙221侧壁的第二侧墙222。In this embodiment, the substrate further includes a
所述介质层包括底层介质层240和顶层介质层241,底层介质层240位于 基底上且覆盖栅极结构220侧壁,顶层介质层241位于底层介质层240和栅 极结构220上。The dielectric layer includes a
具体的,在基底上形成伪栅极结构220;在伪栅极结构220的侧壁依次形 成第一侧墙221和第二侧墙222;在伪栅极结构220和第二侧墙222两侧的基 底中形成源漏掺杂层250;形成源漏掺杂层250后,在源漏掺杂层250和基底 上形成初始保护层,所述初始保护层覆盖第二侧墙222的侧壁和顶部表面以 及伪栅极结构220的顶部表面;形成保护层后,在源漏掺杂层250和基底表 面的保护层表面形成初始底层介质层;形成初始底层介质层后,平坦化所述 初始底层介质层直至暴露出伪栅极结构220顶部表面,形成底层介质层240 和保护层230,所述底层介质层240覆盖第二侧墙222的侧壁且暴露出第二侧 墙22的顶部表面和伪栅极结构220的顶部表面;形成底层介质层240后,去 除伪栅极结构220,在底层介质层240中形成栅开口;在栅开口中形成栅极结 构220;在栅极结构220、底层介质层240、第一侧墙221和第二侧墙222上 形成顶层介质层241。Specifically, the
所述底层介质层240和顶层介质层241的材料为氧化硅。The material of the
所述保护层230后续形成第二沟槽时保护源漏掺杂层。The
所述保护层230的材料与介质层的材料不同。所述保护层的材料包括: 氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the
本实施例中,所述保护层230的材料为氮化硅。介质层的材料为氧化硅, 氮化硅相对于氧化硅具有很好的刻蚀选择比,在后续刻蚀介质层时,能够保 证去除氧化硅的同时,对氮化硅的刻蚀较少,能很好的保护源漏掺杂层。In this embodiment, the material of the
所述源漏掺杂层250位于栅极结构220两侧的基底中,具体的,源漏掺 杂层250位于栅极结构220两侧的鳍部210中。The source and drain
所述源漏掺杂层250具有源漏离子。The source-drain doped
当所述半导体器件的类型为N型时,源漏离子的导电类型为N型,如磷 离子;当所述半导体器件的类型为P型时,源漏离子的导电类型为P型,如 硼离子。When the type of the semiconductor device is N type, the conductivity type of the source and drain ions is N type, such as phosphorus ions; when the type of the semiconductor device is P type, the conductivity type of the source and drain ions is P type, such as boron ion.
本实施例中,源漏掺杂层250采用外延生长工艺形成。相应的,当所述 半导体器件的类型为N型时,源漏掺杂层250的材料为具有源漏离子的硅; 当所述半导体器件的类型为P型时,源漏掺杂层250的材料为具有源漏离子 的锗硅。在其它实施例中,源漏掺杂层250采用离子注入工艺而形成。In this embodiment, the source-
在栅极结构两侧的介质层中形成横跨源漏掺杂层的沟槽,所述沟槽延伸 方向与栅极结构延伸方向一致,所述沟槽暴露出源漏掺杂层部分顶部表面和 部分侧壁表面以及隔离结构的部分表面。A trench across the source and drain doped layers is formed in the dielectric layers on both sides of the gate structure, the trench extends in the same direction as the gate structure, and the trench exposes part of the top surface of the source and drain doped layers and part of the sidewall surface and part of the surface of the isolation structure.
所述沟槽的形成方法,请参考图3至图6。For the formation method of the trench, please refer to FIG. 3 to FIG. 6 .
参考图3,在介质层上形成第一图形化掩膜层231,所述第一图形化掩膜 层231暴露出后续需要形成的沟槽260的位置和形状。Referring to FIG. 3, a first patterned
本实施例中,形成所述第一图形化掩膜层231的步骤包括:在介质层上 形成第一掩膜层(未图示);形成第一掩膜层后,对所述第一掩膜层进行曝光 处理,所述曝光模板为图形化模板,所述图形化模板暴露出后续需要形成的 沟槽的位置和形状,对所述第一掩膜层进行显影处理,暴露出后续需要形成 的沟槽的位置和形状,形成第一图形化掩膜层231。In this embodiment, the step of forming the first patterned
所述第一图形化掩膜层231的材料包括光刻胶。The material of the first patterned
在一实施例中,所述第一图形化掩膜层231的材料为氮化硅。形成所述 第一图形化掩膜层231的步骤包括:在介质层上形成初始掩膜层(未图示); 形成初始掩膜层后,在初始掩膜层上形成图形化层,所述图形化层暴露出后 续需要形成的沟槽的位置和形状,以所述图形化层为掩膜,刻蚀所述初始掩 膜层,形成第一图形化掩膜层231。所述图像化层的材料包括光刻胶。In one embodiment, the material of the first patterned
所述第一图形化掩膜层231决定了后续形成的沟槽的形状和尺寸,所述 沟槽内后续会形成导电结构,即第一图形化掩膜层231决定了后续导电结构 的形状和尺寸。The first
参考图4与图5,图5为所述半导体器件的俯视图,图4为图5沿切线 A-A1方向的截面图,形成第一图形化掩膜层231后,以所述第一图形化掩膜 层231为掩膜,刻蚀所述介质层,暴露出源漏掺杂层250部分表面和隔离结 构201的部分表面,在栅极结构220两侧的介质层中形成沟槽260。Referring to FIGS. 4 and 5 , FIG. 5 is a top view of the semiconductor device, and FIG. 4 is a cross-sectional view taken along the tangent line A-A1 in FIG. 5 . After the first patterned
所述沟槽260延伸方向与栅极结构220延伸方向一致,所述沟槽260暴 露出源漏掺杂层250部分顶部表面和部分侧壁表面以及隔离结构201的部分 表面。The extending direction of the
所述沟槽260暴露出源漏掺杂层250部分顶部表面和部分侧壁表面的部 分为第一沟槽区261,所述沟槽260暴露出隔离结构部分表面的部分为第二沟 槽区262,第一沟槽区261与第二沟槽区262相邻,第二沟槽区262侧壁相对 于第一沟槽区261侧壁凹陷。The part of the
所述第一沟槽区261自栅极结构220一侧的源漏掺杂层250至另一侧的 源漏掺杂层250的方向上的宽度为第一宽度,所述第二沟槽区262自栅极结 构220一侧的源漏掺杂层250至另一侧的源漏掺杂层250的方向上的宽度为 第二宽度,第二宽度小于第一宽度。The width of the
所述第一沟槽区261内后续形成第一插塞部301,第二沟槽区262内后续 形成第二插塞部302。第一沟槽区261和第二沟槽区262的位置和宽度决定了 后续形成的第一插塞部301和第二插塞部302的位置和宽度。A
沟槽260中心距离栅极结构220中心的距离固定,位于隔离结构201上 的第二沟槽区262宽度较窄,后续形成的第二插塞部302距离栅极结构220 较远,第二插塞部302与栅极结构220之间的第二寄生电容较小,同时源漏 掺杂层250上的第一沟槽区261宽度较宽,后续形成的第一插塞部301与源 漏掺杂层250的接触面积较大,接触电阻较小。半导体器件的寄生电容由第 一寄生电容和第二寄生电容组成,通过控制第一插塞部301和第二插塞部302 的尺寸,能够得到小的寄生电容和小的接触电阻,从而提高半导体器件的性 能。The distance between the center of the
具体的,形成所述沟槽260的方法中刻蚀所述介质层为刻蚀栅极结构220 两侧的介质层,在栅极结构220两侧的介质层中形成沟槽260。Specifically, in the method for forming the
刻蚀栅极结构220两侧的介质层的工艺包括各向异性干刻工艺。The process of etching the dielectric layers on both sides of the
本实施例中,采用各向异性干刻工艺刻蚀栅极结构220两侧的介质层的 参数包括:采用的气体包括CF4气体、CH3F气体和O2,CF4气体的流量为 5sccm~100sccm,CH3F气体的流量为8sccm~50sccm,O2的流量为 10sccm~100sccm,腔室压强为10mtorr~2000mtorr,射频功率为50W~300W, 电压为30V~100V,时间为4秒~50秒。In this embodiment, the parameters of using the anisotropic dry etching process to etch the dielectric layers on both sides of the
其他实施例中,所述沟槽260的形成方法还可以为两次掩膜形成。In other embodiments, the method for forming the
在一实施例中,所述沟槽260的形成方法包括:在介质层内形成初始沟 槽,所述初始沟槽暴露出源漏掺杂层250部分顶部表面和部分侧壁表面的部 分为初始第一沟槽,所述初始沟槽暴露出隔离结构201部分表面的部分为第 二沟槽区262,初始第一沟槽与第二沟槽区262相邻,初始第一沟槽侧壁与第 二沟槽区262侧壁齐平;形成初始沟槽后,对初始第一沟槽进行处理,使得 初始第一沟槽侧壁相对第二沟槽区262的侧壁自栅极结构220一侧的源漏掺 杂层250至另一侧的源漏掺杂层250的方向上的宽度拓宽,形成第一沟槽区 261,从而形成所述沟槽260。In one embodiment, the method for forming the
所述初始沟槽的形成方法包括:在介质层上第二图形化掩膜层,以所述 第二图形化掩膜层为掩膜,刻蚀所述介质层,暴露出源漏掺杂层250部分表 面和隔离结构的部分表面,在栅极结构220两侧的介质层中形成沿栅极结构 220本体220构延伸方向横跨源漏掺杂层250的初始沟槽,所述初始沟槽暴露 出源漏掺杂层250部分顶部表面和部分侧壁表面的部分为初始第一沟槽,所 述沟槽暴露出隔离结构201部分表面的部分为第二沟槽区262,初始第一沟槽 与第二沟槽区262相邻,初始第一沟槽侧壁与第二沟槽区262侧壁齐平。The method for forming the initial trench includes: forming a second patterned mask layer on the dielectric layer, and using the second patterned mask layer as a mask, etching the dielectric layer to expose the source and drain doped layers Part of the surface of 250 and part of the surface of the isolation structure, in the dielectric layer on both sides of the
所述第二图形化掩膜层中的图形形状为长方形。The shape of the pattern in the second patterned mask layer is a rectangle.
另一实施例中,所述沟槽260的形成方法包括:在介质层上形成第三图 形化掩膜层,所述第三图形化掩膜层定于出第一沟槽区261的位置,以所述 第三图形化掩膜层为掩膜,刻蚀所述介质层,直至暴露出源漏掺杂层部分表 面和隔离结构的部分表面,形成第一沟槽区261;形成第一沟槽区261后,在 第一沟槽区261和第三图形化掩膜层上形成第四图形化掩膜层,所述第四图 形化掩膜层定于出第二沟槽的位置,以所述第四图形化掩膜层为掩膜,刻蚀 所述介质层,直至暴露出隔离结构201的部分表面,形成第二沟槽区262,从 而形成所述沟槽260。In another embodiment, the method for forming the
参考图6,形成沟槽260后,去除第一图形化掩膜层231。Referring to FIG. 6 , after the
去除第一图形化掩膜层231的工艺包括灰化工艺。The process of removing the first patterned
本实施例中,所述沟槽260的形成工艺还包括:去除第一图形化掩膜层 231后,刻蚀去除第一沟槽区261暴露出的源漏掺杂层250表面的保护层230, 暴露出源漏掺杂层250的表面。其他实施例中,源漏掺杂层250表面不形成 保护层230,不需要去除保护层230。In this embodiment, the formation process of the
去除第一图形化掩膜层231后再去除保护层230能够避免灰化工艺对源 漏掺杂层250的影响。Removing the
刻蚀去除第一沟槽区261暴露出的源漏掺杂层250表面的保护层230的 工艺为各向同性的干法刻蚀工艺,所述工艺参数包括:采用的气体包括CF4气体、CH2F2气体和O2,CF4气体的流量为30sccm~200sccm,CH2F2气体的流 量为8sccm~50sccm,O2的流量为2sccm~30sccm,腔室压强为 10mtorr~2000mtorr,射频功率为100W~1000W,直流电流为30V~500V,时间 为4秒~50秒。The process of etching and removing the
参考图7,形成沟槽260后,在沟槽260底部表面和侧壁表面形成金属层 270。Referring to FIG. 7 , after the
所述金属层270的材料包括Ti、Co或Ni。The material of the
所述金属层270还位于介质层上。The
形成金属层270的工艺为沉积工艺,如溅射工艺。The process of forming the
参考图8,形成金属层270后,对所述金属层270和源漏掺杂层250进行 退火处理,在第一沟槽区261暴露出的源漏掺杂层250表面形成金属硅化物 层280。Referring to FIG. 8 , after the
本实施例中,进行退火处理时,金属层270的原子扩散至源漏掺杂层250 而与源漏掺杂层250材料反应形成金属硅化物层280。In this embodiment, during the annealing process, the atoms of the
所述退火处理的作用还包括:激活源漏掺杂层250中的第二离子。The effect of the annealing treatment further includes: activating the second ions in the source-
本实施例中,由于源漏掺杂层250的表面材料中掺杂有源漏离子,因此 金属硅化物层280中掺杂有源漏离子,降低了金属硅化物层280的电阻。In this embodiment, since the surface material of the source-drain doped
所述退火处理包括激光退火或尖峰退火。The annealing treatment includes laser annealing or spike annealing.
所述退火处理采用激光退火或尖峰退火的好处包括:激光退火和尖峰退 火升温过程较快,避免升温过程引起半导体器件的掺杂区域的离子有较大的 扩散,提高了掺杂区域的稳定性。The advantages of using laser annealing or spike annealing for the annealing treatment include: laser annealing and spike annealing have a faster heating process, avoid greater diffusion of ions in the doped region of the semiconductor device caused by the heating process, and improve the stability of the doped region .
本实施例中,在进行后续的退火处理之前,还在金属层270表面形成阻 挡层(未图示)。所述阻挡层的材料包括氮化钛或氮化钽。形成所述阻挡层的 工艺为沉积工艺,如溅射工艺。In this embodiment, before the subsequent annealing treatment, a barrier layer (not shown) is also formed on the surface of the
本实施例中,阻挡层在退火处理之前形成,在进行退火处理的过程中, 阻挡层能够保护金属层270,阻挡退火处理对金属层270造成氧化。In this embodiment, the barrier layer is formed before the annealing treatment. During the annealing treatment, the barrier layer can protect the
在一个实施例中,为了防止退火的温度下,阻挡层的材料重新结晶而导 致阻挡层性能稳定性较差的问题,选择退火处理的温度在900摄氏度以下。In one embodiment, in order to prevent the material of the barrier layer from recrystallizing at the annealing temperature, which leads to the problem of poor performance stability of the barrier layer, the temperature of the annealing treatment is selected to be below 900 degrees Celsius.
在其它实施例中,阻挡层在退火之后形成。In other embodiments, the barrier layer is formed after annealing.
在其它实施例中,不形成阻挡层。In other embodiments, no barrier layer is formed.
参考图9,进行退火处理之后,在沟槽260(参考图8)内和介质层上形 成导电结构材料层290。Referring to Figure 9, after the annealing process, a
本实施例中,导电结构材料层290位于阻挡层表面。In this embodiment, the conductive
所述导电结构材料层290的材料为金属,如钨。The material of the conductive
形成导电结构材料层290的工艺为沉积工艺,如化学气相沉积工艺、物 理气相沉积工艺或原子层沉积工艺。The process for forming the conductive
请参考图10至图12,图10为所述器件的俯视图,图11为图10沿切线 A-A1方向的截面图,图12为图10沿切线A2-A3方向的截面图。平坦化所述 导电结构材料层290暴露出介质层顶部表面,形成导电结构300。10 to 12, FIG. 10 is a top view of the device, FIG. 11 is a cross-sectional view of FIG. 10 along the tangent line A-A1, and FIG. 12 is a cross-sectional view of FIG. 10 along the tangent line A2-A3. The conductive
所述导电结构300延伸方向与栅极结构220延伸方向一致,所述导电结 构300覆盖源漏掺杂层250部分顶部表面和部分侧壁表面以及隔离结构201 的部分表面;所述导电结构300覆盖源漏掺杂层250部分顶部表面和部分侧 壁表面的部分为第一插塞部301,所述导电结构300覆盖隔离结构201表面的 部分为第二插塞部302,第一插塞部301与第二插塞部302相邻,第二插塞部 302侧壁相对于第一插塞部301侧壁凹陷。The extension direction of the
本实施例中,平坦化导电结构材料层290和金属层270,直至暴露出介质 层顶部表面,使第一沟槽区261中的导电结构材料层290形成第一插塞部301, 使第二沟槽区262中的导电结构材料层290形成第二插塞部302。In this embodiment, the conductive
所述第一插塞部301的侧壁到相邻栅极结构220侧壁的距离为第一距离, 所述第二插塞部302的侧壁到相邻栅极结构220侧壁的距离为第二距离,所 述第一距离小于第二距离。The distance from the sidewall of the
所述第一插塞部301的侧壁到相邻栅极结构220侧壁具有第一距离L3, L3为20nm~100nmThere is a first distance L3 between the sidewall of the
所述第二插塞部302的侧壁到相邻栅极结构220侧壁具有第二距离L4, L4为22nm~112nm。There is a second distance L4 between the sidewall of the
所述第一距离L3与第二距离L4的差为2nm~12nm。The difference between the first distance L3 and the second distance L4 is 2 nm˜12 nm.
导电结构300与栅极结构220之间的距离影响二者之间寄生电容的大小, 第二插塞部302距离相邻栅极结构220距离较远,第二插塞部302与栅极结 构220之间的第二寄生电容较小;第一插塞部301距离相邻栅极结构220距 离较近,与栅极结构220之间的第一寄生电容较大;半导体器件的寄生电容 由第一寄生电容和第二寄生电容组成,通过控制第一插塞部301和第二插塞 部302的尺寸,能够使得半导体器件得到较小的寄生电容,从而提高半导体 器件的性能。The distance between the
所述第一距离L3与第二距离L4的差由第一插塞部301和第二插塞部302 自栅极结构220一侧的源漏掺杂层至另一侧的源漏掺杂层的方向上的宽度差 决定。The difference between the first distance L3 and the second distance L4 is determined by the
所述第一插塞部301自栅极结构220一侧的源漏掺杂层至另一侧的源漏 掺杂层的方向上的宽度与第一沟槽区261的宽度相同为第一宽度L1,L1为 17nm~62nm。The width of the
所述第二插塞部302自栅极结构220一侧的源漏掺杂层至另一侧的源漏 掺杂层的方向上的宽度与第二沟槽区262的宽度相同为第二宽度L2,L2为 15nm~50nm。The width of the
第二宽度小于第一宽度,自栅极结构220一侧的源漏掺杂层至另一侧的 源漏掺杂层的方向上第二插塞部的宽度小于第一插塞部的宽度。The second width is smaller than the first width, and the width of the second plug portion in the direction from the source-drain doped layer on one side of the
第一宽度与第二宽度的差为2nm~12nm。The difference between the first width and the second width is 2 nm˜12 nm.
第一宽度与第二宽度的差大于12nm时,第二插塞部292的寄生电阻过大, 不利于器件的性能,第一宽度与第二宽度之差小于2nm时,第二插塞部292 与栅极结构220之间的寄生电容改善不明显,器件性能没有显著提高。When the difference between the first width and the second width is greater than 12 nm, the parasitic resistance of the second plug portion 292 is too large, which is not conducive to the performance of the device. When the difference between the first width and the second width is less than 2 nm, the second plug portion 292 The parasitic capacitance with the
导电结构300中心距离栅极结构220中心的距离固定,位于隔离结构上 的第二插塞部302宽度较窄,距离栅极结构220较远,第二插塞部302与栅 极结构220之间的第二寄生电容较小,同时源漏掺杂层250上的第一插塞部 301宽度较宽,第一插塞部301与源漏掺杂层250的接触面积较大,接触电阻 较小。半导体器件的寄生电容由第一寄生电容和第二寄生电容组成,通过控 制第一插塞部301和第二插塞部302的尺寸,能够得到较小的寄生电容和较 小的接触电阻,从而提高器件的性能。The distance between the center of the
相应的,本实施例还提供一种半导体器件的结构,请参考图10至图12, 包括:提供基底;位于基底内的隔离结构201;位于基底上的栅极结构220, 且所述栅极结构220延伸至隔离结构201上;位于栅极结构220两侧基底内 的源漏掺杂层250;分别位于栅极结构220两侧的导电结构300,所述导电结 构300自源漏掺杂层250延伸至隔离结构201上,所述导电结构300包括: 覆盖源漏掺杂层250的第一插塞部301以及覆盖隔离结构201的第二插塞部302,所述第一插塞部301的侧壁到相邻栅极结构220侧壁具有第一距离,所 述第二插塞部302的侧壁到相邻栅极结构220侧壁具有第二距离,所述第一 距离小于第二距离,且在自栅极结构220一侧的源漏掺杂层250至另一侧的 源漏掺杂层250的方向上,第一插塞部301的尺寸大于第二插塞部302的尺 寸。Correspondingly, the present embodiment also provides a structure of a semiconductor device, please refer to FIG. 10 to FIG. 12 , including: providing a substrate; an
所述第一插塞部301在自栅极结构220一侧的源漏掺杂层至另一侧的源 漏掺杂层的方向上的宽度与第一沟槽相同为第一宽度L1,L1为17nm~62nm。The width of the
所述第二插塞部302在自栅极结构220一侧的源漏掺杂层至另一侧的源 漏掺杂层的方向上的宽度与第二沟槽相同为第二宽度L2,L2为15nm~50nm。The width of the
第二宽度小于第一宽度,第二插塞部在自栅极结构220一侧的源漏掺杂 层至另一侧的源漏掺杂层的方向上的宽度小于第一插塞部。The second width is smaller than the first width, and the width of the second plug portion in the direction from the source-drain doped layer on one side of the
第一宽度L1与第二宽度L2的差为2nm~12nm。The difference between the first width L1 and the second width L2 is 2 nm˜12 nm.
所述第一距离L3为20nm~100nm。The first distance L3 is 20 nm˜100 nm.
所述第二距离L4为22nm~112nm。The second distance L4 is 22 nm˜112 nm.
所述第二距离L4与第一距离L3的差为2nm~12nm。The difference between the second distance L4 and the first distance L3 is 2 nm˜12 nm.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员, 在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保 护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined by the claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810141390.2A CN110164968B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810141390.2A CN110164968B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110164968A CN110164968A (en) | 2019-08-23 |
CN110164968B true CN110164968B (en) | 2022-08-26 |
Family
ID=67635042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810141390.2A Active CN110164968B (en) | 2018-02-11 | 2018-02-11 | Semiconductor device and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110164968B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113540019B (en) * | 2020-04-20 | 2023-07-21 | 中芯国际集成电路制造(上海)有限公司 | Variable capacitor and method for forming variable capacitor |
CN119255594A (en) * | 2023-06-25 | 2025-01-03 | 长鑫存储技术有限公司 | Semiconductor structure and method for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037226A (en) * | 2013-03-08 | 2014-09-10 | 台湾积体电路制造股份有限公司 | Finfet With An Asymmetric Source/drain Structure And Method Of Making Same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3048823B2 (en) * | 1994-02-28 | 2000-06-05 | 日本電気株式会社 | Semiconductor integrated circuit device |
US9431492B2 (en) * | 2014-02-21 | 2016-08-30 | Samsung Electronics Co., Ltd. | Integrated circuit devices including contacts and methods of forming the same |
CN104979201B (en) * | 2014-04-03 | 2018-03-06 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor devices |
KR102238951B1 (en) * | 2014-07-25 | 2021-04-12 | 에스케이하이닉스 주식회사 | Semiconductor device with air gap and method for fabricating the same |
KR102399023B1 (en) * | 2015-06-22 | 2022-05-16 | 삼성전자주식회사 | Semiconductor device |
US10366989B2 (en) * | 2016-02-10 | 2019-07-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device having a contact bar over an S/D structure |
-
2018
- 2018-02-11 CN CN201810141390.2A patent/CN110164968B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104037226A (en) * | 2013-03-08 | 2014-09-10 | 台湾积体电路制造股份有限公司 | Finfet With An Asymmetric Source/drain Structure And Method Of Making Same |
Also Published As
Publication number | Publication date |
---|---|
CN110164968A (en) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410666B2 (en) | Semiconductor device | |
KR101263648B1 (en) | Fin field effect transistor and method of manufacturing the same | |
JP5017795B2 (en) | Method for manufacturing field effect transistor | |
US8936986B2 (en) | Methods of forming finfet devices with a shared gate structure | |
CN111180513B (en) | Semiconductor device and method of forming the same | |
CN109979986B (en) | Semiconductor device and method of forming the same | |
CN110797262B (en) | Semiconductor device and method of forming the same | |
CN110364483B (en) | Semiconductor structure and method of forming the same | |
CN111354641B (en) | Semiconductor device and method of forming the same | |
CN110648915A (en) | Semiconductor device and method of forming the same | |
CN109980003A (en) | Semiconductor devices and forming method thereof | |
CN110164968B (en) | Semiconductor device and method of forming the same | |
CN104183500A (en) | Method for forming ion-implantation side wall protection layer on FinFET device | |
CN109841507B (en) | Semiconductor device and method of forming the same | |
CN107591327B (en) | Method for forming fin field effect transistor | |
CN111128731A (en) | Semiconductor device and method of forming the same | |
CN109599366B (en) | Semiconductor device and method of forming the same | |
CN111276442B (en) | Semiconductor structure and forming method thereof | |
CN110957219B (en) | Semiconductor device and method of forming the same | |
CN109285811A (en) | Semiconductor structure and method of forming the same | |
CN109285876B (en) | Semiconductor structure and method of forming the same | |
CN109273407B (en) | Semiconductor device and method of forming the same | |
CN109285889B (en) | Semiconductor structure and method of forming the same | |
CN109148576B (en) | Semiconductor device and method of forming the same | |
CN107994065B (en) | Semiconductor device and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |