CN110160964A - 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法 - Google Patents

基于Chirp调频激光辐照的半透明材料光热特性参数检测方法 Download PDF

Info

Publication number
CN110160964A
CN110160964A CN201910441867.3A CN201910441867A CN110160964A CN 110160964 A CN110160964 A CN 110160964A CN 201910441867 A CN201910441867 A CN 201910441867A CN 110160964 A CN110160964 A CN 110160964A
Authority
CN
China
Prior art keywords
indicate
boundary
chirp
indicates
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910441867.3A
Other languages
English (en)
Other versions
CN110160964B (zh
Inventor
齐宏
于晓滢
任亚涛
阮立明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910441867.3A priority Critical patent/CN110160964B/zh
Publication of CN110160964A publication Critical patent/CN110160964A/zh
Application granted granted Critical
Publication of CN110160964B publication Critical patent/CN110160964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/171Systems in which incident light is modified in accordance with the properties of the material investigated with calorimetric detection, e.g. with thermal lens detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明提供基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,属于光热物性测量技术领域。本发明首先使用基于Chirp调制激光的热波雷达成像技术对半透明材料中内含物位置进行锁定,设定内含物的物性参数;然后求解正问题计算模型得到边界真实的温度与辐射强度;采用SQP算法反演锁定的内含物位置,初步确定该内含物光热特性参数;最后通过SQP算法重复对整个计算场的光热特性参数进行重建,直到目标函数值达到指定的计算精度或者迭代步数达到最大值,最终得到材料最终的光热特性参数。本发明解决了现有半透明材料光热特性参数检测技术准确率不高的问题。本发明可用于半透明材料光热特性参数的精确检测。

Description

基于Chirp调频激光辐照的半透明材料光热特性参数检测 方法
技术领域
本发明涉及半透明材料光热特性参数检测方法,属于光热物性测量技术领域。
背景技术
半透明材料有广泛的应用背景,如日常生活中的水、玻璃、空气、生物组织、牙齿、树脂镜片等,都属于半透明材料的范畴。此外,半透明材料还广泛应用在各种航空航天、国防军工等领域,如航天器热防护材料、高超声速飞行器陶瓷热防护瓦、柴油发动机的陶瓷组件等。半透明材料光热辐射传输作为能量和信息传递的一种方式,其研究内容不断深入,应用范围不断拓宽,而且与其他学科的交叉也日益增多。
半透明介质的光热物理性质是描述光热辐射传输过程的最基本的特性单位,对半透明介质光热参数场重建研究对于高尖科技领域组件无损检测、生物组织医学成像、临床诊断治疗等都具有重要的应用价值。其中吸收系数、散射系数和导热系数是表征半透明材料辐射传输和导热特性的重要参数,因此对半透明材料内部辐射和导热参数分布进行重构对于半透明材料在各种工业和医疗领域的研究具有重要的意义。
现有半透明材料光热特性参数检测技术一般采用单纯的热波雷达成像或者基于SQP算法,但是采用这两种技术得到的光热特性参数检测准确率不高。
发明内容
本发明为解决现有半透明材料光热特性参数检测技术准确率不高的问题,提供了基于Chirp调频激光辐照的半透明材料光热特性参数检测方法。
本发明所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,通过以下技术方案实现:
步骤一、使用基于Chirp调制激光的热波雷达成像技术对半透明材料中内含物位置进行锁定;
步骤二、根据背景材料光热特性和步骤一的锁定位置设定内含物的物性参数,作为SQP算法的初始值;
步骤三、求解正问题计算模型得到边界真实的温度与辐射强度;然后采用SQP算法反演步骤一锁定的内含物位置,初步确定该内含物光热特性参数,即吸收系数、散射系数以及导热系数;
步骤四、读取步骤三中的结果,将得到的内含物光热特性的初始分布作为下一步计算的初始值;
步骤五、通过SQP算法对整个计算场的光热特性参数进行重建;
步骤六、重复步骤五中的计算过程,直到满足下列条件之一计算结束,得到材料最终的光热特性参数;
(1)目标函数值达到指定的计算精度;所述目标函数由SQP算法反演得到的数据以及正问题计算模型得到数据共同确定;
(2)迭代步数达到最大值。
作为对上述技术方案的进一步阐述:
进一步的,步骤一所述对半透明材料中内含物位置进行锁定具体包括:
采用Chirp调制的辐射源照射材料,在单个Chirp调制周期中,照射到材料表面的激光强度由下式表示:
qS=qam (2)
其中,qlaser表示入射激光的功率密度;
qam表示入射激光峰值;
qS表示入射激光静态分量;
qD表示入射激光动态分量;
f0表示Chirp调制信号的初始频率;
fe表示Chirp调制信号的终止频率;
Ts表示Chirp调制信号的扫描周期;t表示调制时间;
入射激光的动态分量引起材料表面产生热波雷达信号,热波雷达信号T(n′)的Chirp锁相相位与Chirp锁相幅值由下式计算得到:
其中,SChirp-cos表示Chirp同相相关函数;
SChirp-sin表示Chirp正交相关函数;
A表示热波雷达信号的Chrip锁相幅值;
表示热波雷达信号的Chrip锁相相位;
fs表示图像采样频率;
Ns表示热波雷达信号长度或图像采集数,Ns=Ts×fs;n′=1,…,Ns
进一步的,步骤三中所述正问题计算模型的求解过程如下:
用辐射导热耦合换热描述半透明材料传热过程,边界为漫反射灰体边界,同时为对流换热边界,环境温度为Ta,对流换热系数为hw,所述计算场的左部表面受红外激光照射,能量转换辐射导热耦合方程用下式描述:
其中,ρ、cp、λ以及T分别为材料的密度、比热容、导热系数以及温度,qr为由辐射传热引起的辐射源项,表示哈密顿算子;
能量方程的初始条件和边界条件分别为:
T|t=0=T0 (9)
τqlaser+qr,w+qc,w=hw(Tw-Ta) (10)
其中,τ为边界透射率,qlaser表示入射激光的功率密度,下标w表示半透明材料的边界,qr,w表示边界处辐射换热热流;qc,w表示边界处对流换热热流;Tw表示材料边界处温度;T0表示材料的初始温度;
辐射源项能够用下述辐射传输方程求解:
其中,I(r,Ω)表示r位置和Ω方向的辐射强度,βe、κa、κs分别表示材料的衰减系数、吸收系数、散射系数,βe=κas,Ib=σT4/π表示在温度T下的黑体辐射强度,σ为黑体辐射常数,Φ(Ω',Ω)为散射相函数,Ω'表示入射方向;
在直角坐标系(x,y)下,采用离散坐标法对辐射传递方程(11)进行离散,得到:
其中,ξm表示为x轴方向的方向余弦,ηm表示y轴方向的方向余弦,wl表示立体角l上的方向权重,上角标l,m表示空间方向离散的第l个和第m个立体角;l、m=1,2,3,…,NΩ;NΩ为4π空间方向离散的立体角总数,Il(x,y)表示第l个立体角(x,y)处的辐射强度;Φ(Ωml)为散射相函数;Ib(r)表示r位置处的黑体辐射强度;
用下标e、w、s、n表示控制体P的各边界,则上式(12)变为下式:
其中,表示控制体P内立体角m上的辐射强度;Δx、Δy分别表示控制体在x轴y轴的长度;表示边界w上立体角m内的辐射强度;表示边界s上立体角m内的辐射强度;Ωm表示第m个立体角内的入射方向;Ib,P表示控制体P内的黑体辐射强度;wm表示立体角m上的方向权重;
半透明材料表面的辐射传输方程边界条件能够用下式表示:
其中,n1和n0分别表示环境和材料的折射率,γ表示壁面反射率,nw表示壁面外法向单位向量,表示边界处立体角m内的辐射强度;
对能量方程式(8)进行离散:
采用全隐格式,上式(15)左侧非稳态项的积分能够表示为:
其中,TP表示t+Δt时刻的控制体P的温度值,表示t时刻该控制体P的温度值;
方程(15)右侧扩散项变为:
其中,TE、TW、TS、TN分别表示控制体e、w、s、n边界的温度值;λe、λw、λs、λn分别表示控制体e、w、s、n边界的导热系数;δxe、δxw、δys、δyn分别表示控制体e、w、s、n边界的长度值;
用S表示能量方程(15)中的源项,并将源项线性化得到下式:
其中,S0=κaG,G表示投射辐射;Δz表示控制体在z轴的长度;
整理得:
aPTP=aETE+aWTW+aNTN+aSTS+b (19)
其中:
(ρcp)P表示控制体P的密度和定压比热容的乘积;
求解式(19),得到t+Δt时刻的控制体P的温度值TP与SP
进一步的,步骤三中所述SQP算法过程具体包括以下过程:
考虑如下形式的非线性规划问题:
其中,F(x)是将要被优化的目标函数,ci(x)表示约束条件,m和me分别表示总约束和等式约束的数量;
方程(20)能够转化成如下形式:
其中,dk表示当前迭代中的搜索方向,xk表示当前的重建参数,Hk是如下拉格朗日方程的Hessian矩阵的近似:
式中ui为朗格朗日乘子;u表示表示拉格朗日乘子向量;
引入如下罚函数:
式中ψ表示罚因子;
重建参数能够更新为下式:
xk+1=xkkdk (24)
式中αk表示步长,k表示迭代次数。
进一步的,所述步长αk满足下式:
其中,ι表示一个正常数,跟据经验取0.1≤ι≤0.2;
式(25)中:
进一步的,步骤三SQP算法在更新重建参数xk时,为了避免马洛托斯效应,考虑下面二阶近似:
重建参数xk和搜索步长αk根据下式更新:
其中,表示搜索方向;
值得注意的是仅仅在同时满足下式的时候才会考虑公式(27)描述的子问题:
其中,ε表示给定的极小值;μ表示大于0小于1的正常数。
进一步的,所述目标函数用下式表示:
其中,Iest(i′,j)表示边界反演的辐射强度,Iexa(i′,j)=SP表示边界真实的辐射强度;j=1,…,Nt;Nt表示正问题计算模型中的采样时间;i′=1,…,Nd;Nd表示边界探测点的数量;对于材料导热系数的重建,目标函数能够用下式表示:
其中,Test(i′,j)表示边界反演的温度,Texa(i′,j)=TP表示边界真实的温度;
引入如下归一化均方误差NRMSE衡量重建结果精度:
其中,xj′表示材料真实的光热特性参数;表示材料反演的光热特性参数,j′=1,…,N;N表示重建参数的数量。
本发明最为突出的特点和显著的有益效果是:
本发明所涉及的基于Chirp(鸟声信号)调频激光辐照的半透明材料光热特性参数检测方法,结合了基于Chirp调制激光的热波雷达成像技术(TWRI)和序列二次规划算法(SQP),因此既有热波雷达成像技术快速定位内含物位置的优点,又有SQP算法准确重建材料光热特性的优点;本发明方法可以精确地对材料中的内含物的吸收系数、散射系数和导热系数进行同时重建,相比单纯的热波雷达成像技术和SQP算法更有效更准确,半透明材料光热特性参数检测准确率高达95%。
附图说明
图1为本发明中对半透明材料检测光热特性参数的物理模型示意图;
图2为本发明流程图。
具体实施方式
具体实施方式一:结合图2对本实施方式进行说明,本实施方式给出的基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,具体包括以下步骤:
步骤一、使用基于Chirp(鸟声信号)调制激光的热波雷达成像技术对半透明材料中内含物位置进行锁定;
步骤二、根据背景材料光热特性和步骤一的锁定位置设定内含物的相关物性参数,作为SQP算法的初始值;
步骤三、求解正问题计算模型得到边界真实的温度与辐射强度;然后采用SQP算法反演步骤一锁定的内含物位置,初步确定该内含物光热特性参数,即吸收系数、散射系数以及导热系数;
步骤四、读取步骤三中的结果,将得到的内含物光热特性的初始分布作为下一步计算的初始值;
步骤五、通过SQP算法对整个计算场的光热特性参数进行重建;
步骤六、重复步骤五中的计算过程,直到满足下列条件之一计算结束,得到材料最终的光热特性参数;
(1)目标函数值达到指定的计算精度;所述目标函数由SQP算法反演得到的数据以及正问题计算模型得到数据(边界真实的温度与辐射强度)共同确定;
(2)迭代步数达到最大值。
本发明方法进行光热特性参数检测时,能够采用如图1所示物理模型;其中的实线箭头表示入射激光,虚线箭头表示测量信号,测量信号包括光信号与热信号。
具体实施方式二:本实施方式与具体实施方式一不同的是,步骤一所述对半透明材料中内含物位置进行锁定具体包括:
采用Chirp调制的辐射源照射材料,可以在材料表面获得同样具有Chirp调制信号特征的热响应信号,并可以通过改变Chirp的初始频率和终止频率来获得更多的测量信号,根据测量信号可以确定材料的热物理性质和光学特性。在单个Chirp调制周期中,照射到材料表面的激光强度可由下式表示:
qS=qam (2)
其中,qlaser表示入射激光的功率密度,W/m2
qam表示入射激光峰值,W/m2
qS表示入射激光静态分量,W/m2
qD表示入射激光动态分量,W/m2
f0表示Chirp调制信号的初始频率,Hz;
fe表示Chirp调制信号的终止频率,Hz;
Ts表示Chirp调制信号的扫描周期,秒;t表示调制时间;
入射激光的静态分量引起材料表面温度的持续上升,入射激光的动态分量引起材料表面温度的振荡变化,其产生的表面温度信号又可称为热波雷达信号,采用Chirp锁相算法来提取热波雷达信号的幅值和相位信息,这是一种采用双路Chirp信号(同相/正交Chirp信号)作为参考信号的热波雷达信号特征信息提取算法,热波雷达信号T(k)的Chirp锁相相位与Chirp锁相幅值由下式计算得到:
其中,SChirp-cos表示Chirp同相相关函数;
SChirp-sin表示Chirp正交相关函数;
A表示热波雷达信号的Chrip锁相幅值;
表示热波雷达信号的Chrip锁相相位;
fs表示图像采样频率;
Ns表示热波雷达信号长度或图像采集数,Ns=Ts×fs;n′=1,…,Ns
其他步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式二不同的是,步骤三中所述正问题计算模型的求解过程如下:
用辐射导热耦合换热描述半透明材料传热过程,边界为漫反射灰体边界,同时为对流换热边界,环境温度为Ta,对流换热系数为hw,如图1所示,包括内含物与背景材料的所述计算场的左部表面受红外激光照射,能量转换辐射导热耦合方程可以用下式描述:
其中,ρ、cp、λ以及T分别为材料的密度、比热容、导热系数以及温度,qr为由辐射传热引起的辐射源项,表示哈密顿算子;
能量方程的初始条件和边界条件分别为:
T|t=0=T0 (9)
τqlaser+qr,w+qc,w=hw(Tw-Ta) (10)
其中,τ为边界透射率,qlaser表示入射激光的功率密度,下标w表示半透明材料的边界,qr,w表示边界处辐射换热热流;qc,w表示边界处对流换热热流;Tw表示材料边界处温度;T0表示材料的初始温度;
辐射源项能够用下述辐射传输方程求解:
其中,I(r,Ω)表示r位置和Ω方向的辐射强度,βe、κa、κs分别表示材料的衰减系数、吸收系数、散射系数,βe=κas,Ib=σT4/π表示在温度T下的黑体辐射强度,σ为黑体辐射常数,Φ(Ω',Ω)为散射相函数,Ω'表示入射方向;
在直角坐标系(x,y)下,采用离散坐标法对辐射传递方程(11)进行离散,得到:
其中,ξm表示为x轴方向(辐射传输方向)的方向余弦,ηm表示y轴方向的方向余弦,wl表示立体角l上的方向权重,上角标l,m表示空间方向离散的第l个和第m个立体角;l、m=1,2,3,…,NΩ;NΩ为4π空间方向离散的立体角总数,Il(x,y)表示第l个立体角(x,y)处的辐射强度;Φ(Ωml)为散射相函数;Ib(r)表示r位置处的黑体辐射强度;
用下标e、w、s、n表示控制体P的各边界,则上式(12)变为下式:
其中,表示控制体P内立体角m上的辐射强度;Δx、Δy分别表示控制体在x轴y轴的长度;表示边界w上立体角m内的辐射强度;表示边界s上立体角m内的辐射强度;Ωm表示第m个立体角内的入射方向;Ib,P表示控制体P内的黑体辐射强度;wm表示立体角m上的方向权重;
半透明材料表面的辐射传输方程边界条件能够用下式表示:
其中,n1和n0分别表示环境和材料的折射率,γ表示壁面反射率,nw表示壁面外法向单位向量,表示边界处立体角m内的辐射强度;
对能量方程式(8)进行离散:
采用全隐格式,上式(15)左侧非稳态项的积分能够表示为:
其中,TP表示t+Δt时刻的控制体P的温度值,表示t时刻该控制体P的温度值;
方程(15)右侧扩散项变为:
其中,TE、TW、TS、TN分别表示控制体e、w、s、n边界的温度值;λe、λw、λs、λn分别表示控制体e、w、s、n边界的导热系数;δxe、δxw、δys、δyn分别表示控制体e、w、s、n边界的长度值;
用S表示能量方程(15)中的源项,并将源项线性化得到下式:
其中,S0=κaG,G表示投射辐射;Δz表示控制体在z轴的长度;
整理以上结果得:
aPTP=aETE+aWTW+aNTN+aSTS+b (19)
其中:
(ρcp)P表示控制体P的密度和定压比热容的乘积;
求解式(19),得到t+Δt时刻的控制体P的温度值TP与SP
其他步骤及参数与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式一、二或三不同的是,步骤三中所述SQP算法过程具体包括以下过程:
考虑如下形式的非线性规划问题:
其中,F(x)是将要被优化的目标函数,ci(x)表示约束条件,m和me分别表示总约束和等式约束的数量;
在SQP算法优化过程中,优化任务转化成一系列二次规划(QP)子问题,SQP算法通过求解这些QP子问题超线性地收敛到最优。方程(20)能够转化成如下形式:
其中,dk表示当前迭代中的搜索方向,xk表示当前的重建参数,Hk是如下拉格朗日方程的Hessian矩阵的近似:
式中ui为朗格朗日乘子;u表示表示拉格朗日乘子向量;
为了提高SQP算法的全局收敛能力,引入如下罚函数:
式中ψ表示罚因子;
重建参数能够更新为下式:
xk+1=xkkdk (24)
式中αk表示步长,k表示迭代次数。
其他步骤及参数与具体实施方式一、二或三相同。
具体实施方式五:本实施方式与具体实施方式四不同的是,所述步长αk满足下式:
其中,ι表示一个正常数,跟据经验取0.1≤ι≤0.2;
式(25)中:
其他步骤及参数与具体实施方式四相同。
具体实施方式六:本实施方式与具体实施方式五不同的是,步骤三SQP算法在更新重建参数xk时,为了避免马洛托斯(Maratos)效应,考虑下面二阶近似:
重建参数xk和搜索步长αk根据下式更新:
其中,表示式(27)的搜索方向;
值得注意的是仅仅在同时满足下式的时候才会考虑公式(27)描述的子问题:
其中,ε表示给定的极小值;μ表示大于0小于1的正常数,0<μ<1。
其他步骤及参数与具体实施方式五相同。
具体实施方式七:本实施方式与具体实施方式六不同的是,步骤六中在优化过程提出多阶段重建技术,根据不同的目标函数对半透明材料的光学参数和热物性参数进行分阶段重建,对于材料吸收系数和散射系数的重建,所述目标函数可用下式表示:
其中,Iest(i′,j)表示边界反演的辐射强度,Iexa(i′,j)=SP表示边界真实的辐射强度;j=1,…,Nt;Nt表示正问题计算模型中的采样时间;i′=1,…,Nd;Nd表示边界探测点的数量;对于材料导热系数的重建,目标函数能够用下式表示:
其中,Test(i′,j)表示边界反演的温度,Texa(i′,j)=TP表示边界真实的温度;
引入如下归一化均方误差NRMSE衡量重建结果精度:
其中,xj′表示材料真实的光热特性参数;表示材料反演的光热特性参数,j′=1,…,N;N表示重建参数的数量。
其他步骤及参数与具体实施方式六相同。
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (7)

1.基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,具体包括以下步骤:
步骤一、使用基于Chirp调制激光的热波雷达成像技术对半透明材料中内含物位置进行锁定;
步骤二、根据背景材料光热特性和步骤一的锁定位置设定内含物的物性参数,作为SQP算法的初始值;
步骤三、求解正问题计算模型得到边界真实的温度与辐射强度;然后采用SQP算法反演步骤一锁定的内含物位置,初步确定该内含物光热特性参数,即吸收系数、散射系数以及导热系数;
步骤四、读取步骤三中的结果,将得到的内含物光热特性的初始分布作为下一步计算的初始值;
步骤五、通过SQP算法对整个计算场的光热特性参数进行重建;
步骤六、重复步骤五中的计算过程,直到满足下列条件之一计算结束,得到材料最终的光热特性参数;
(1)目标函数值达到指定的计算精度;所述目标函数由SQP算法反演得到的数据以及正问题计算模型得到数据共同确定;
(2)迭代步数达到最大值。
2.根据权利要求1所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,步骤一所述对半透明材料中内含物位置进行锁定具体包括:
采用Chirp调制的辐射源照射材料,在单个Chirp调制周期中,照射到材料表面的激光强度由下式表示:
qS=qam (2)
其中,qlaser表示入射激光的功率密度;
qam表示入射激光峰值;
qS表示入射激光静态分量;
qD表示入射激光动态分量;
f0表示Chirp调制信号的初始频率;
fe表示Chirp调制信号的终止频率;
Ts表示Chirp调制信号的扫描周期;t表示调制时间;
入射激光的动态分量引起材料表面产生热波雷达信号,热波雷达信号T(n′)的Chirp锁相相位与Chirp锁相幅值由下式计算得到:
其中,SChirp-cos表示Chirp同相相关函数;
SChirp-sin表示Chirp正交相关函数;
A表示热波雷达信号的Chrip锁相幅值;
表示热波雷达信号的Chrip锁相相位;
fs表示图像采样频率;
Ns表示热波雷达信号长度或图像采集数,Ns=Ts×fs;n′=1,…,Ns
3.根据权利要求2所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,步骤三中所述正问题计算模型的求解过程如下:
用辐射导热耦合换热描述半透明材料传热过程,边界为漫反射灰体边界,同时为对流换热边界,环境温度为Ta,对流换热系数为hw,所述计算场的左部表面受红外激光照射,能量转换辐射导热耦合方程用下式描述:
其中,ρ、cp、λ以及T分别为材料的密度、比热容、导热系数以及温度,qr为由辐射传热引起的辐射源项,表示哈密顿算子;
能量方程的初始条件和边界条件分别为:
T|t=0=T0 (9)
τqlaser+qr,w+qc,w=hw(Tw-Ta) (10)
其中,τ为边界透射率,qlaser表示入射激光的功率密度,下标w表示半透明材料的边界,qr,w表示边界处辐射换热热流;qc,w表示边界处对流换热热流;Tw表示材料边界处温度;T0表示材料的初始温度;
辐射源项能够用下述辐射传输方程求解:
其中,I(r,Ω)表示r位置和Ω方向的辐射强度,βe、κa、κs分别表示材料的衰减系数、吸收系数、散射系数,βe=κas,Ib=σT4/π表示在温度T下的黑体辐射强度,σ为黑体辐射常数,Φ(Ω',Ω)为散射相函数,Ω'表示入射方向;
在直角坐标系(x,y)下,采用离散坐标法对辐射传递方程(11)进行离散,得到:
其中,ξm表示为x轴方向的方向余弦,ηm表示y轴方向的方向余弦,wl表示立体角l上的方向权重,上角标l,m表示空间方向离散的第l个和第m个立体角;l、m=1,2,3,…,NΩ;NΩ为4π空间方向离散的立体角总数,Il(x,y)表示第l个立体角(x,y)处的辐射强度;Φ(Ωml)为散射相函数;Ib(r)表示r位置处的黑体辐射强度;
用下标e、w、s、n表示控制体P的各边界,则上式(12)变为下式:
其中,表示控制体P内立体角m上的辐射强度;Δx、Δy分别表示控制体在x轴y轴的长度;表示边界w上立体角m内的辐射强度;表示边界s上立体角m内的辐射强度;Ωm表示第m个立体角内的入射方向;Ib,P表示控制体P内的黑体辐射强度;wm表示立体角m上的方向权重;
半透明材料表面的辐射传输方程边界条件能够用下式表示:
其中,n1和n0分别表示环境和材料的折射率,γ表示壁面反射率,nw表示壁面外法向单位向量,表示边界处立体角m内的辐射强度;
对能量方程式(8)进行离散:
采用全隐格式,上式(15)左侧非稳态项的积分能够表示为:
其中,TP表示t+Δt时刻的控制体P的温度值,表示t时刻该控制体P的温度值;
方程(15)右侧扩散项变为:
其中,TE、TW、TS、TN分别表示控制体e、w、s、n边界的温度值;λe、λw、λs、λn分别表示控制体e、w、s、n边界的导热系数;δxe、δxw、δys、δyn分别表示控制体e、w、s、n边界的长度值;
用S表示能量方程(15)中的源项,并将源项线性化得到下式:
其中,S0=κaG,G表示投射辐射;Δz表示控制体在z轴的长度;
整理得:
aPTP=aETE+aWTW+aNTN+aSTS+b (19)
其中:
(ρcp)P表示控制体P的密度和定压比热容的乘积;
求解式(19),得到t+Δt时刻的控制体P的温度值TP与SP
4.根据权利要求1、2或3所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,步骤三中所述SQP算法过程具体包括以下过程:
考虑如下形式的非线性规划问题:
其中,F(x)是将要被优化的目标函数,ci(x)表示约束条件,m和me分别表示总约束和等式约束的数量;
方程(20)能够转化成如下形式:
其中,dk表示当前迭代中的搜索方向,xk表示当前的重建参数,Hk是如下拉格朗日方程的Hessian矩阵的近似:
式中ui为朗格朗日乘子;u表示表示拉格朗日乘子向量;
引入如下罚函数:
式中ψ表示罚因子;
重建参数能够更新为下式:
xk+1=xkkdk (24)
式中αk表示步长,k表示迭代次数。
5.根据权利要求4所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,所述步长αk满足下式:
其中,ι表示一个正常数,跟据经验取0.1≤ι≤0.2;
式(25)中:
6.根据权利要求5所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,步骤三SQP算法在更新重建参数xk时,为了避免马洛托斯效应,考虑下面二阶近似:
重建参数xk和搜索步长αk根据下式更新:
其中,表示搜索方向;
值得注意的是仅仅在同时满足下式的时候才会考虑公式(27)描述的子问题:
其中,ε表示给定的极小值;μ表示大于0小于1的正常数。
7.根据权利要求6所述基于Chirp调频激光辐照的半透明材料光热特性参数检测方法,其特征在于,所述目标函数用下式表示:
其中,Iest(i′,j)表示边界反演的辐射强度,Iexa(i′,j)=SP表示边界真实的辐射强度;j=1,…,Nt;Nt表示正问题计算模型中的采样时间;i′=1,…,Nd;Nd表示边界探测点的数量;对于材料导热系数的重建,目标函数能够用下式表示:
其中,Test(i′,j)表示边界反演的温度,Texa(i′,j)=TP表示边界真实的温度;
引入如下归一化均方误差NRMSE衡量重建结果精度:
其中,xj′表示材料真实的光热特性参数;表示材料反演的光热特性参数,j′=1,…,N;N表示重建参数的数量。
CN201910441867.3A 2019-05-24 2019-05-24 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法 Active CN110160964B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910441867.3A CN110160964B (zh) 2019-05-24 2019-05-24 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910441867.3A CN110160964B (zh) 2019-05-24 2019-05-24 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法

Publications (2)

Publication Number Publication Date
CN110160964A true CN110160964A (zh) 2019-08-23
CN110160964B CN110160964B (zh) 2021-11-19

Family

ID=67632855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910441867.3A Active CN110160964B (zh) 2019-05-24 2019-05-24 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法

Country Status (1)

Country Link
CN (1) CN110160964B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077294A (zh) * 2019-12-31 2020-04-28 重庆大学 一种生物组织光热物性参数同时测量方法
CN113343547A (zh) * 2021-04-27 2021-09-03 东南大学 一种陶瓷-金属复合结构光热波场建模方法
CN116305765A (zh) * 2022-12-29 2023-06-23 中国航天三江集团有限公司 高能激光辐照树脂基纤维增强复合材料的仿真方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1755150A1 (ru) * 1990-06-01 1992-08-15 Томский политехнический институт им.С.М.Кирова Устройство дл прецизионного определени характеристик материала
DE19623121A1 (de) * 1996-06-10 1997-12-11 Wagner Int Verfahren und Vorrichtung zum photothermischen Prüfen von Werkstückoberflächen
CN103454244A (zh) * 2013-09-11 2013-12-18 哈尔滨工业大学 基于多频调制激光辐照的半透明介质辐射特性测量方法
CN103528963A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 采用多频调制激光加热与光热信息重建技术的半透明材料辐射特性测量方法
CN103528978A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 利用脉冲激光加热产生的瞬态光热信号测量半透明材料热物性参数的方法
JP2015225034A (ja) * 2014-05-29 2015-12-14 株式会社超高温材料研究センター 半透明材料の熱拡散率の測定方法
CN105319174A (zh) * 2015-12-09 2016-02-10 哈尔滨工业大学 同时获取半透明材料温变导热系数及吸收系数的测量方法
CN106018286A (zh) * 2016-05-18 2016-10-12 哈尔滨工业大学 基于光场相机与调频激光的弥散介质光学参数分布的重建探测装置及重建方法
CN108362733A (zh) * 2018-02-11 2018-08-03 哈尔滨工业大学 基于锁相热波与光学层析相结合的半透明材料光热特性分布测量方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1755150A1 (ru) * 1990-06-01 1992-08-15 Томский политехнический институт им.С.М.Кирова Устройство дл прецизионного определени характеристик материала
DE19623121A1 (de) * 1996-06-10 1997-12-11 Wagner Int Verfahren und Vorrichtung zum photothermischen Prüfen von Werkstückoberflächen
CN103454244A (zh) * 2013-09-11 2013-12-18 哈尔滨工业大学 基于多频调制激光辐照的半透明介质辐射特性测量方法
CN103528963A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 采用多频调制激光加热与光热信息重建技术的半透明材料辐射特性测量方法
CN103528978A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 利用脉冲激光加热产生的瞬态光热信号测量半透明材料热物性参数的方法
JP2015225034A (ja) * 2014-05-29 2015-12-14 株式会社超高温材料研究センター 半透明材料の熱拡散率の測定方法
CN105319174A (zh) * 2015-12-09 2016-02-10 哈尔滨工业大学 同时获取半透明材料温变导热系数及吸收系数的测量方法
CN106018286A (zh) * 2016-05-18 2016-10-12 哈尔滨工业大学 基于光场相机与调频激光的弥散介质光学参数分布的重建探测装置及重建方法
CN108362733A (zh) * 2018-02-11 2018-08-03 哈尔滨工业大学 基于锁相热波与光学层析相结合的半透明材料光热特性分布测量方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GONG JINLONG 等: "Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique", 《NDT & E INTERNATIONAL》 *
SUN SHUANGCHENG 等: "Combined lock-in thermography and SQP algorithm for non-intrusive reconstruction of optical and thermal properties in semitransparent medium", 《INTERNATIONAL JOURNAL OF THERMAL SCIENCES》 *
任亚涛: "金纳米颗粒光热参数重建及其在激光诱导热疗中的应用", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
孙双成: "激光辐照下含异质体半透明介质光热参数场重建", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
王大林: "激光辐照下半透明体光热信号模拟及内部参数重构", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077294A (zh) * 2019-12-31 2020-04-28 重庆大学 一种生物组织光热物性参数同时测量方法
CN113343547A (zh) * 2021-04-27 2021-09-03 东南大学 一种陶瓷-金属复合结构光热波场建模方法
CN116305765A (zh) * 2022-12-29 2023-06-23 中国航天三江集团有限公司 高能激光辐照树脂基纤维增强复合材料的仿真方法及系统

Also Published As

Publication number Publication date
CN110160964B (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
Zhu et al. A novel reconstruction method for temperature distribution measurement based on ultrasonic tomography
CN110160964A (zh) 基于Chirp调频激光辐照的半透明材料光热特性参数检测方法
CN108362733B (zh) 基于锁相热波与光学层析相结合的半透明材料光热特性分布测量方法
Sun Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium
CN105319174B (zh) 同时获取半透明材料温变导热系数及吸收系数的测量方法
Roggan Measurements of optical tissue properties using integrating sphere technique
Liu et al. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement
Asllanaj et al. Transient combined radiation and conduction heat transfer in fibrous media with temperature and flux boundary conditions
Sun et al. A multi-stage optimization technique for simultaneous reconstruction of infrared optical and thermophysical parameters in semitransparent media
Frank et al. A comparison of approximate models for radiation in gas turbines
Ishchuk et al. The reconstruction of a cuboid of infrared images to detect hidden objects. Part 1. A solution based on the coefficient inverse problem of heat conduction
Liu et al. Simultaneous identification of temperature profile and wall emissivities in one-dimensional semitransparent medium by inverse radiation analysis
CN111077294B (zh) 一种生物组织光热物性参数同时测量方法
CN109932059A (zh) 一种基于贝叶斯推断的红外热成像温度高精度标定方法
Qi et al. Image Reconstruction of Two‐Dimensional Highly Scattering Inhomogeneous Medium Using MAP‐Based Estimation
Kauati et al. A source-detector methodology for the construction and solution of the one-dimensional inverse transport equation
Kazanci Weight matrix analysis for back reflection continuous wave diffuse optical tomography (CWDOT) systems: translational method
Jia et al. Virtual-source diffusion approximation for enhanced near-field modeling of photon-migration in low-albedo medium
Srivastava et al. Modeling the thermal response of laser-irradiated biological samples through generalized non-fourier heat conduction models: A review
Liu et al. Design and implementation of a Ku-band high-precision blackbody calibration target
Spagna Jr et al. Radiation transport in dust in disk geometry. I-Application to externally heated interstellar clouds
Hosseini Sarvari Inverse reconstruction of path-length κ-distribution in a plane-parallel radiative medium
Li et al. Element different method for three-dimensional radiative transfer within heterogeneous media
Zhao et al. Modified accelerate iteration for optical property reconstruction based on time-domain radiative transfer equation
Shamparov et al. Analytical Solution of Problems about the Radiative and Radiative–Conductive Stationary Heat Transfer in a Medium with an Arbitrary Dependence of the Scattering and Absorption on Frequency Boundary Conditions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant