CN110160680B - 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法 - Google Patents

一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法 Download PDF

Info

Publication number
CN110160680B
CN110160680B CN201910522715.6A CN201910522715A CN110160680B CN 110160680 B CN110160680 B CN 110160680B CN 201910522715 A CN201910522715 A CN 201910522715A CN 110160680 B CN110160680 B CN 110160680B
Authority
CN
China
Prior art keywords
micro
electrode
slurry
screen printing
structure electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910522715.6A
Other languages
English (en)
Other versions
CN110160680A (zh
Inventor
鲁志松
唐桂林
乔琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201910522715.6A priority Critical patent/CN110160680B/zh
Publication of CN110160680A publication Critical patent/CN110160680A/zh
Application granted granted Critical
Publication of CN110160680B publication Critical patent/CN110160680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明公开了一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法,该浆料包括多壁碳纳米管和粘结剂LA133,通过利用丝网印刷技术将浆料印刷到基底上形成微网格状电极,然后制备成压阻型传感器,通过本发明方法制得的传感器灵敏度高,方法简单快捷,成本低廉,应用广泛。

Description

一种基于丝网印刷得到微网状结构电极的浆料及其制备微网 状结构电极的方法
技术领域
本发明涉及微网状结构电极,具体涉及一种基于丝网印刷得到微网状结构电极的浆料,还涉及制备微网状结构电极的方法。
背景技术
受到自然界已有结构的启发,开发具有新颖几何特征设备已经得到了很大的发展。借助这些规整的微纳米结构,可以有效提高器件的性能。以柔性压力传感器为例,通过在电极表面构建类似人类皮肤表面皱纹的分层结构,可极大提高灵敏度并降低检测限。也有研究证实,构建具有金字塔微纳米结构的薄膜,可将压力传感器的灵敏度提高30倍;通过在电极表面构建模仿生物表面的微观结构也可有效的提高器件的性能。
传统创建微结构的方法例如用激光刻蚀,利用高能量激光光束照射到被刻蚀工件表面,使其融化、气化,形成一定深度的凹槽,实现对材料刻蚀的目的,但其受刻蚀速度影响较大,不利于大批量生产。聚二甲基硅氧烷(PDMS,polydimethylsiloxane)具有很好的形状可塑性,可以利用PDMS倒模的方法创建微结构,但这个方法步骤繁琐,过程中用到的部分试剂有一定的毒性。
因此,急需一种简单,能够大批量生产的微网格状结构的方法,对提高器件的性能具有重要意义。
发明内容
有鉴于此,本发明的目的之一在于提供一种基于丝网印刷得到微网状结构电极的浆料;本发明的目的之二在于提供利用所述浆料制备微网状结构电极的方法;本发明的目的之三在于提供由所述方法制得的微网状结构电极;本发明的目的之四在于提供利用所述微网状结构电极制备压力传感器的方法。
为达到上述目的,本发明提供如下技术方案:
1、一种基于丝网印刷得到微网状结构电极的浆料,包括多壁碳纳米管和粘结剂LA133。
本发明中,所述浆料的粘度为100mPa·s~20000mPa·s,优选粘度为308mPa·s~11076mPa·s,更优选的,粘度为11076mPa·s。
本发明中,所述多壁碳纳米管和粘结剂LA133的质量比为5:1~25:1,优选的,所述多壁碳纳米管和粘结剂LA133的质量比为7:1。
本发明中,所述浆料由多壁碳纳米管、乙炔黑和粘结剂LA133组成。
本发明中,所述多壁碳纳米管、乙炔黑和粘结剂LA133的质量比为5:2:1~25:2:1;所述多壁碳纳米管(MWCNT)、乙炔黑和粘结剂LA133的质量比为7:2:1。
2、利用所述浆料制备微网状结构电极的方法,选择表面光滑平整的基底;然后将浆料倾倒在200~400目的网版上于18~25℃条件下进行印刷,得到微纳米的网格状结构电极。
优选的,所述网板为200目。
本发明中,所述基底为纸或PET塑料。
3、由所述方法制得的微网状结构电极。
4、所述微网状结构电极在制备压力传感器中的应用。
5、利用所述微网状结构电极制备压力传感器的方法,包括如下步骤:将所述微网状结构电极面对面进行组装,即获得压力传感器。
本发明的有益效果在于:本发明首次利用丝网印刷将材料印刷到电极上形成微网格状材料层,制备了具有微观结构的压阻型传感器并进行了电学性能的表征,通过这种方法可在电极表面形成网格状纳米纤维堆叠,提高传感器的灵敏度等。本发明方法简单快捷,成本低廉,应用广泛。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为利用丝网印刷形成微网格层流程图。
图2为不同黏度条件表面结构SEM图(A:粘度为11076mPa·s的表面SEM图;B:粘度为949mPa·s的表面SEM图;C:粘度为308mPa·s的表面SEM图;D:粘度为11076mPa·s的侧面图;E:粘度为949mPa·s的侧面图;F:粘度为308mPa·s的侧面图)。
图3为不同材料表面SEM图(A:零维材料SiO2;B:一维材料多壁碳纳米管;C:二维材料氧化石墨烯)。
图4为不同目数网版印刷形成微纳米结构SEM图(A:200目数网版丝网印刷;B:300目数网版丝网印刷;C:400目数网版丝网印刷)。
图5为印刷CNT浆料加乙炔黑和不加乙炔黑SEM图对比(A:不加乙炔黑的多壁碳纳米管浆料丝网印刷;B:加乙炔黑的多壁碳纳米管浆料丝网印刷)。
图6为压力传感器结构图及原理图(A:传感器的侧面截图;B:传感器结构图;C:传感器内部材料层)。
图7为基于该方法制备电极与无规整微纳米结构电极的压力传感器性能(sample1、sample2、sample3分别指代粘度为11076mPa·s,949mPa·s,308mPa·s浆料丝网印刷制备的压力传感器)。
具体实施例
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1、基于丝网印刷的微网格结构的制作方法
基于丝网印刷的微网格结构的制作方法,包括如下步骤:选择表面光滑平整的基底(如纸、PET),印刷6*6mm银电极,作为集流体;然后将多壁碳纳米管(MWCNT)、乙炔黑和粘结剂LA133以7:2:1的质量比过夜搅拌制成浆料,选择200目数的网版在室温条件下进行印刷,得到微纳米的网格状结构,具体过程如图1所示。
实施例2、不同粘度对微网格结构的影响
为研究不同粘度对微网格结构的影响,按实施例1的方法将粘度分别为11076mPa·s,949mPa·s,308mPa·s的浆料进行印刷,然后观察表面SEM图和对应的侧面图,结果如图2所示。结果显示,在一定的粘度下浆料印刷可以形成规整的微网格结构,随着粘度的下降,微网格结构凸出高度逐渐下降。
实施例3、不同材料对微网格结构的影响
为研究不同维数材料对微网格结构的影响,按实施例1的方法,分别使用零维材料SiO2、一维材料多壁碳纳米管和二维材料氧化石墨烯和粘结剂LA133制成浆料进行印刷,然后观察表面结构。结果如图3所示。结果显示,使用一维材料多壁碳纳米管能够获得微网格结构,而使用零维材料和二维材料不能形成网格结构。
实施例4、不同目数网版对微网格结构的影响
为研究不同目数网版对对微网格结构的影响,按实施例1的方法分别使用200目、300目和400目的的网版进行印刷,观察表面结构,结果如图4所示。结果显示,不同目数的网版可以形成不同密度的微网格结构,使用200目网版印刷效果最好。
实施例5、乙炔黑对微网格结构的影响
为研究乙炔黑对微网格结构的影响,配制2份浆料,按实施例1的配方一份加乙炔黑,一份不加乙炔黑,然后进行印刷,观察表面结构,结果如图5所示。结果显示,是否添加乙炔黑对微网格结构影响不大。再检测两个单电级电阻,可以发现加乙炔黑的电阻为6.5Ω,不加乙炔黑的电阻为8.2Ω,表明单电极电阻相差不大,因此可以使用不加乙炔黑的浆料进行印刷。
应用实施例6、基于丝网印刷层层堆积装备传感器电极
将实施例1制备的微网格结构作为电极,将2个电极面对面进行组装,如图6所示。然后将组装好的设备用电化学工作站进行电学性能表征,测定在不同的压强下的设备电导率,同时以无规整微纳米结构电极的压力传感器性能作为对照,结果如图7所示。结果显示,本发明电极制得的压力传感器性能优于无规整微纳米结构电极的压力传感器。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (5)

1.利用浆料制备微网状结构电极的方法,其特征在于:选择表面光滑平整的基底;然后将浆料倾倒在200目的网版上于18~25℃条件下进行印刷,得到微纳米的网格状结构电极;所述浆料由多壁碳纳米管、乙炔黑和粘结剂LA133组成;所述多壁碳纳米管、乙炔黑和粘结剂LA133的质量比为5:2:1~25:2:1,所述浆料的粘度为11076 mPa∙s。
2.根据权利要求1所述的方法,其特征在于:所述基底为纸或PET塑料。
3.由权利要求1或2所述方法制得的微网状结构电极。
4.权利要求3所述微网状结构电极在制备压力传感器中的应用。
5.利用权利要求3所述微网状结构电极制备压力传感器的方法,其特征在于,包括如下步骤:将所述微网状结构电极面对面进行组装,即获得压力传感器。
CN201910522715.6A 2019-06-17 2019-06-17 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法 Active CN110160680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910522715.6A CN110160680B (zh) 2019-06-17 2019-06-17 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910522715.6A CN110160680B (zh) 2019-06-17 2019-06-17 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法

Publications (2)

Publication Number Publication Date
CN110160680A CN110160680A (zh) 2019-08-23
CN110160680B true CN110160680B (zh) 2020-11-06

Family

ID=67625787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910522715.6A Active CN110160680B (zh) 2019-06-17 2019-06-17 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法

Country Status (1)

Country Link
CN (1) CN110160680B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114518402B (zh) * 2022-02-25 2024-03-22 青岛大学附属医院 一种电化学传感器、制备方法及其在甲氨蝶呤浓度检测中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261760A (zh) * 2015-10-30 2016-01-20 中航锂电(洛阳)有限公司 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208124A1 (en) * 2015-01-19 2016-07-21 Chung-Ping Lai Conductive ink composition and conductive architecture for wireless antenna
CN109844447A (zh) * 2016-07-12 2019-06-04 新度技术有限公司 一种纳米复合力传感材料
US10283280B2 (en) * 2017-01-04 2019-05-07 Nanotek Instruments, Inc. Process for flexible and shape-conformal rope-shape supercapacitors
CN108753169A (zh) * 2018-06-14 2018-11-06 杭州电子科技大学 一种适用于丝网印刷工艺的压敏复合材料的制备方法
CN109192923B (zh) * 2018-09-25 2021-09-14 清华大学 一种锂离子电池负极导电浆料的制备方法
CN109713310A (zh) * 2018-12-05 2019-05-03 上海空间电源研究所 一种轻量化柔性硫电极及其制备方法和应用
CN109860580B (zh) * 2019-02-28 2021-04-20 蜂巢能源科技有限公司 正极材料及其制备方法、正极片和锂硫电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261760A (zh) * 2015-10-30 2016-01-20 中航锂电(洛阳)有限公司 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTRICAL PROPERTIES OF ADDITIVELY MANUFACTURED ACRYLONITRILE BUTADIENE STYRENE/CARBON NANOTUBE NANOCOMPOSITE;Thaler, D;《PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS》;20181231 *
导电聚合物基纳米复合高比容电极及器件研究;杨文耀;《中国博士学位论文全文数据库(工程科技Ⅱ辑)》;20160715;C042-40 *

Also Published As

Publication number Publication date
CN110160680A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Yue et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor
Sang Tran et al. Graphene-based inks for printing of planar micro-supercapacitors: A review
In et al. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices
Luo et al. Hybrid spray-coating, laser-scribing and ink-dispensing of graphene sensors/arrays with tunable piezoresistivity for in situ monitoring of composites
Yang et al. Carbon nanotube–graphene composite for ionic polymer actuators
Li et al. Scalable fabrication of flexible piezoresistive pressure sensors based on occluded microstructures for subtle pressure and force waveform detection
Riyajuddin et al. Linear piezoresistive strain sensor based on graphene/g-C3N4/PDMS heterostructure
Ali et al. Pressure sensitive sensors based on carbon nanotubes, graphene, and its composites
Sun et al. A highly-sensitive flexible tactile sensor array utilizing piezoresistive carbon nanotube–polydimethylsiloxane composite
Yilmazoglu et al. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing
Lee et al. Carbon nanotube thin film strain sensors: comparison between experimental tests and numerical simulations
CN113203505A (zh) 一种基于低维纳米复合材料的压力/应变双模态传感器及其制备方法
CN110160680B (zh) 一种基于丝网印刷得到微网状结构电极的浆料及其制备微网状结构电极的方法
CN113970394A (zh) 一种基于多孔微结构的柔性压阻式传感器及其制备方法
KR102149829B1 (ko) 다공성 pdms-cnt 구조체를 이용한 스트레인 센서
Cho et al. Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications
CN109639175B (zh) 摩擦纳米发电机、可穿戴传感器及其制备方法
Zhao et al. Highly responsive screen-printed asymmetric pressure sensor based on laser-induced graphene
Sundriyal et al. Inkjet printing-based micro-manufacturing of the thin film electrodes for flexible supercapacitor applications
Hou et al. Porous fiber paper and 3D patterned electrodes composed high-sensitivity flexible piezoresistive sensor for physiological signal monitoring
Zhao et al. Highly responsive asymmetric pressure sensor based on MXene/reduced graphene oxide nanocomposite fabricated by laser scribing technique
CN114413744A (zh) 基于拉胀结构的3d打印复合材料柔性应变传感器及其制备方法
Li et al. Fabrication of bagel-like graphene aerogels and its application in pressure sensors
Zhang et al. A novel MXene-based high-performance flexible pressure sensor for detection of human motion
Ahammed et al. Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant