CN110157668B - Cd39内化调控对p2x7r活化的作用 - Google Patents

Cd39内化调控对p2x7r活化的作用 Download PDF

Info

Publication number
CN110157668B
CN110157668B CN201910460389.0A CN201910460389A CN110157668B CN 110157668 B CN110157668 B CN 110157668B CN 201910460389 A CN201910460389 A CN 201910460389A CN 110157668 B CN110157668 B CN 110157668B
Authority
CN
China
Prior art keywords
bmdcs
lps
internalization
atp
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910460389.0A
Other languages
English (en)
Other versions
CN110157668A (zh
Inventor
赵荣兰
彭效祥
乔晋娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weifang Medical University
Original Assignee
Weifang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weifang Medical University filed Critical Weifang Medical University
Priority to CN201910460389.0A priority Critical patent/CN110157668B/zh
Publication of CN110157668A publication Critical patent/CN110157668A/zh
Application granted granted Critical
Publication of CN110157668B publication Critical patent/CN110157668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了CD39内化调控对P2X7R活化的作用,本发明的有益效果是提供多种Toll样受体(TLR)配体可促进BMDCs细胞表面CD39内化,进而抑制细胞外ATP的降解,导致细胞外ATP的累积后激活P2X7R信号通路,从而促进炎症反应。同时TLR配体介导的BMDCs中CD39内化的诱导是由MyD88途径介导的。该发明在控制免疫反应和炎症方面具有重要的应用价值。

Description

CD39内化调控对P2X7R活化的作用
技术领域
本发明属于微生物技术领域,涉及CD39内化调控对P2X7R活化的作用。
背景技术
P2X7R广泛表达与包括骨髓源性树突状细胞(BMDCs)在内的免疫细胞表面,胞外高浓度的三磷酸腺苷(ATP)与其结合后激活信号通路在免疫反应中发挥重要作用。已知P2X7R信号通的激活需要局部高浓度的ATP累积,细胞外高浓度ATP的积累一方面需要细胞释放大量ATP,另一方面需要减少ATP的降解。已知核苷三磷酸二磷酸水解酶-1(CD39)是细胞外ATP代谢的关键酶之一,因此免疫炎症病程中进入体内的病原相关分子模式如Toll样受体(TLR)配体等,能否通过调节BMDCs中CD39的表达和功能,进而导致细胞外ATP的堆积,激活P2X7R信号通路,促进炎症反应。
发明内容
本发明的目的在于提供CD39内化调控对P2X7R活化的作用,本发明的有益效果是提供多种Toll样受体(TLR)配体可促进BMDCs细胞表面CD39内化,进而抑制细胞外ATP的降解,导致细胞外ATP的累积后激活P2X7R信号通路,从而促进炎症反应。同时TLR配体介导的BMDCs中CD39内化的诱导是由MyD88途径介导的。该发明在控制免疫反应和炎症方面具有重要的应用价值。
本发明提出了CD39内化调控对P2X7R活化的作用。
进一步,TLR4配体脂多糖(LPS)处理BMDCs骨髓源性树突状细胞后,BMDCs细胞膜上所述CD39数量减少,而细胞上的CD39总量保持不变。
进一步,LPS可促进BMDCs上所述CD39内吞,减少CD39水解ATP的作用,增加细胞外ATP堆积,激活P2X7R嘌呤能离子通道型受体7,进而促进BMDCs炎性因子IL-1β的生成和释放。
进一步,除了polyI:C聚肌胞苷酸,Toll样受体3(TLR3)配体,所有其他的Toll样受体配体如TLR 1/2配体,Pam3csk4三酰脂肽;TLR2配体,PGN-BS(从革兰氏阳性细菌枯草芽孢杆菌中纯化的肽聚糖);TLR4配体,LPS;TLR7/8配体,CL075(一种噻唑并喹啉酮衍生物,其激活人外周血单核细胞中的TLR7、TLR8),TLR9配体,ODN 1585(A类CpG寡核苷酸特异性激活小鼠TLR9)都显示出类似促进BMDCs细胞膜上CD39的内化作用。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
为了推断TLR配体可以改变BMDCs中CD39的表达或活性,我们选用TLR4配体LPS处理BMDCs细胞,并检测BMDCs中CD39的表达。TLR配体是影响DCs在免疫应答中功能的重要因素。DCs表达各种类型的TLR,它们的功能由病原体相关分子模式(PAMPS)强烈塑造。TLR配体的结合激活相关信号通路促进DC成熟、细胞因子产生和抗原呈递功能。研究显示在某些细胞类型和DC中存在CD39。当LPS处理的BMDCs中膜CD39表达显著降低时,这些细胞中的Cd39mRNA和全细胞总CD39表达与未处理的BMDCs中的水平相同,揭示LPS促进BMDCs膜CD39的内化。LPS诱导的膜CD39表达下调可能是由于表面暴露的CD39被运输到细胞质中(内吞作用)引起。
为了阐明LPS诱导的膜CD39表达下调是由内吞作用介导,我们测试了多种内吞作用抑制剂来抑制膜CD39表达降低的能力。测试中包括网格蛋白依赖性或非依赖性途径的胞吞作用抑制剂。使用LPS处理的BMDCs中膜CD39表达的下调几乎完全被添加的甲基-β-环糊精(MβCD,胞膜窖介导的内吞抑制剂)阻断。而在LPS处理或未处理的BMDCs中,细胞总CD39表达和Cd39mRNA表达没有差异。因此,可以确定内吞作用(即内化作用)是导致LPS处理的BMDCs中膜CD39表达下调的原因。
为了确定BMDCs膜CD39内化可改变细胞外ATP代谢。我们使用50ng/mlLPS处理BMDCs,并选择LPS处理后0,15和72小时,三个时间点添加外源ATP至终浓度3mM。结果显示BMDCs中的CD39内化最早在LPS处理后9小时检测到,在处理后18小时达最大水平并维持数小时后逐渐下降;在LPS处理后约75小时,膜CD39表达几乎恢复到未处理的BMDsC中的水平。第一次和第三次添加ATP不会在培养基中引起ATP积累;当在处理后15小时添加ATP时(此时LPS处理的BMDCs中发生了强烈的CD39内化),检测到显著的ATP积累(在培养基中超过1mM数小时)。使用内吞抑制剂MβCD抑制CD39内化后,LPS处理后18和24小时,细胞外ATP的浓度显著降低;MβCD与CD39抑制剂ARL共存时,MβCD的作用几乎完全被阻断。进一步证实细胞外ATP积累是由CD39内化引起的。
LPS处理BMDCs激活膜CD39内化,促进细胞外ATP积累。我们接下来阐明哪种ATP受体(P2X4R或P2X7R)被这种累积的ATP激活。P2X7R在BMDCs中表达。我们用LPS处理BMDCs(LPS-BMDCs)或含有MβCD的LPS处理BMDCs(LPS-BMDCs/MβCD)后,向细胞中加入ATP(终浓度1或3mM)。在无外源ATP时,LPS-BMDCs和LPS-BMDCs/MβCD中均未检测到钙积累。当添加外源ATP时,在LPS处理的CD39内化的BMDCs中检测到显著的钙积累,而在LPS/MβCD处理的无CD39内化的BMDC中发现钙积累水平大大降低。在选择性P2X7R拮抗剂氧化的ATP(OX-ATP,80μM)存在下,外源ATP诱导的LPS-BMDCs中钙的积累被抑制;选择性P2X4R拮抗剂苏拉明(suramin,100μM)存在下,外源ATP诱导的LPS-BMDCs中钙的积累不被抑制。ATP(3mM)在LPS-BMDCs/MβCD中没有诱导显著的细胞内钙积累,但用非代谢型ATP类似物2-methylthio-ATP或P2X7R激动剂Bz-ATP处理后,成功地诱导了这些细胞中的钙积累。因此,证实LPS处理BMDCs激活膜CD39内化,促进细胞外ATP积累,而胞外积累的ATP是通过P2X7R信号导致LPS-BMDCs中的细胞内钙积累。
为了检验胞外积累的ATP通过P2X7R信号促进LPS-BMDCs中IL-1β的产生,我们使用了外源性P2X7R拮抗剂OX-ATP和激动剂Bz-ATP。研究显示联合使用LPS引发和ATP激活受体,可以显著增加BMDCs中IL-1(α和β)的产生。LPS引发加ATP刺激的BMDCs表现出较快的大荧光染料(如噁唑黄)摄取,比单独的LPS引发或ATP刺激的BMDCs中观察到更强的荧光信号。证实噁唑黄的摄取取决于ATP的介导和P2X7R激活。P2X7R的激活需要高浓度的ATP(毫摩尔[mM])。我们测试了CD39内化是否通过控制细胞外ATP代谢,进而激活P2X7R,影响LPS-BMDCs产生IL-1β。在不添加外源ATP的情况下,LPS-BMDCs和LPS-BMDCs/MβCD均产生恒定量的IL-1β,当暴露于不同浓度的ATP时,LPS-BMDCs显示出对ATP的敏感性显着增加,在500μM的浓度下,ATP仅在LPS-BMDCs中显著促进IL-1β的产生,并且需要2.5mM的ATP浓度才能在LPS/MβCD-BMDCs中获得相同的结果。1mM ATP诱导的LPS-BMDCs产生IL-1β几乎完全被P2X7R拮抗剂OX-ATP消除,但不被P2X4R拮抗剂苏拉明消除。ATP+ARL(CD39抑制剂)或Bz-ATP(选择性P2X7R激动剂)显著增加LPS/MβCD-BMDCs IL-1β的产生。这些均表明LPS激活BMDCs中的膜CD39内化,导致细胞外ATP的积累并促进P2X7R激活,促进IL-1β的产生。
不同的TLR配体在BMDCs中诱导膜CD39内化的作用是否不同,我们使用不同的TLR配体或组合处理BMDCs 24小时。除了TLR3配体(polyI:C,10μg/ml)外,所有测试的TLR配体在诱导BMDCs膜CD39内化方面显示出类似的作用,包括TLR1/2配体Pam3csk4(5μg/ml),TLR2配体PGN-BS(10μg/ml),TLR4配体LPS(50ng/ml),TLR7/8配体CL075(1μg/ml)和TLR9配体ODN1585(1μM)。用TLR配体的不同组合(LPS、LPS+Pam3csk4、LPS+Pam3csk4+PGN、LPS+Pam3csk4+PGN+CL075)处理BMDCs,未观察到不同TLR配体的协同效应,表明这些TLR配体可以共享诱导CD39内化的相同途径。
与其他TLR配体相比,LPS被证明具有与其他TLR配体相似的诱导CD39内化的能力,除了TLR3配体polyI:C。除了TLR3之外的所有TLR都是通过MyD88介导的。为了检测TLR配体诱导的BMDCs膜CD39内化是由MyD88途径介导,我们使用了MyD88抑制剂,检测是否可阻断BMDCs中CD39内化。TLR配体[Pam3csk4(5μg/ml)、LPS(50ng/ml)和ODN1585(1μM)]诱导的BMDCs膜CD39内化均可被MyD88抑制剂完全阻断。证实TLR配体诱导的BMDCs膜CD39内化是由MyD88途径介导的。
综上:当LPS处理的BMDCs膜CD39表达显着降低时,这些细胞中的Cd39mRNA和总CD39表达与未处理的BMDC中的水平相同。这些结果表明,LPS诱导的BMDCs膜CD39表达下调可能是由于表面暴露的CD39被内吞所致。为了测试该假设,设计了添加内吞作用抑制剂以阻断CD39内化的实验。测试中包括网格蛋白依赖性或非依赖性途径的胞吞作用抑制剂。LPS处理的BMDCs膜CD39表达的下调几乎完全被添加的胞膜窖介导的内吞抑制剂MβCD阻断。而在LPS处理或未处理的BMDCs中,细胞总CD39表达和Cd39mRNA表达没有差异。充分证明内吞作用导致LPS处理的BMDC中膜CD39下调。
在证实CD39的胞吞作用后,我们需要确定CD39内化是否改变细胞外ATP代谢并诱导BMDCs功能改变。结果显示LPS处理的CD39lowBMDCs引起ATP的长期积累,其激活P2X7R信号传导以诱导细胞内钙积累和IL-1β产生。与其他TLR配体相比,LPS被证明具有与其他TLR配体相似的诱导CD39内化的能力,除TLR3配体polyI:C。除了TLR3之外的所有TLR通过MyD88依赖性途径发挥作用,并且各种TLR配体缺乏协同效应,强烈表明这些TLR配体可以共享诱导CD39内化的相同途径。如所预期的,结果证明了TLR配体通过MyD88依赖性途径诱导BMDCs中的CD39内化。我们的结果表明,在TLR配体处理后,BMDCs中CD39发生内化。这有利于细胞外ATP积聚和P2X7R活化,进而促进IL-1β产生,并可能介导促炎作用。通过操纵CD39内化可能成为控制免疫应答和炎症反应的新策略。

Claims (3)

1. 一种调控小鼠BMDCs的P2X7R活化的方法,其特征在于,所述方法包括使用TLR配体离体处理小鼠BMDCs,促进细胞膜上CD39的内化,减少CD39水解三磷酸腺苷ATP的作用,增加细胞外ATP堆积,激活P2X7R;所述TLR配体选自TLR1/2配体Pam3csk4、TLR2配体PGN-BS、TLR4配体LPS、TLR7/8配体CL075、TLR9配体ODN 1585。
2.如权利要求1所述的方法,其特征在于,所述TLR配体为LPS。
3.如权利要求1所述的方法,其特征在于,激活P2X7R能促进BMDCs炎性因子IL-1β的生成和释放。
CN201910460389.0A 2019-05-30 2019-05-30 Cd39内化调控对p2x7r活化的作用 Active CN110157668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910460389.0A CN110157668B (zh) 2019-05-30 2019-05-30 Cd39内化调控对p2x7r活化的作用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910460389.0A CN110157668B (zh) 2019-05-30 2019-05-30 Cd39内化调控对p2x7r活化的作用

Publications (2)

Publication Number Publication Date
CN110157668A CN110157668A (zh) 2019-08-23
CN110157668B true CN110157668B (zh) 2023-07-14

Family

ID=67629940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910460389.0A Active CN110157668B (zh) 2019-05-30 2019-05-30 Cd39内化调控对p2x7r活化的作用

Country Status (1)

Country Link
CN (1) CN110157668B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105078948A (zh) * 2015-06-04 2015-11-25 中山大学孙逸仙纪念医院 P2x7受体抑制剂的用途
CN108289912A (zh) * 2015-09-01 2018-07-17 先天肿瘤免疫公司 具有提高的免疫力或免疫抑制性细胞因子抗性的免疫细胞及其用途
CN109321589A (zh) * 2018-10-15 2019-02-12 潍坊医学院 一种制备p2x7r免疫原的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105078948A (zh) * 2015-06-04 2015-11-25 中山大学孙逸仙纪念医院 P2x7受体抑制剂的用途
CN108289912A (zh) * 2015-09-01 2018-07-17 先天肿瘤免疫公司 具有提高的免疫力或免疫抑制性细胞因子抗性的免疫细胞及其用途
CN109321589A (zh) * 2018-10-15 2019-02-12 潍坊医学院 一种制备p2x7r免疫原的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury;Savio et al.;《Journal of Hepatology》;20171031;全文 *

Also Published As

Publication number Publication date
CN110157668A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Warden et al. Toll-like receptor 3 activation increases voluntary alcohol intake in C57BL/6J male mice
Józefowski et al. Disparate regulation and function of the class A scavenger receptors SR-AI/II and MARCO
KR100689942B1 (ko) 면역자극 핵산분자
Verron et al. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Mika et al. The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord
AU2009335740B2 (en) Antisense compositions and methods for modulating contact hypersensitivity or contact dermatitis
US9241991B2 (en) Agents, compositions, and methods for treating pruritus and related skin conditions
Bandyopadhyay et al. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response
Jin et al. P2X4 receptor in the dorsal horn partially contributes to brain‐derived neurotrophic factor oversecretion and toll‐like receptor‐4 receptor activation associated with bone cancer pain
KR102232623B1 (ko) 결장직장암의 치료 방법
Roy et al. Particulate β‐glucan induces TNF‐α production in wound macrophages via a redox‐sensitive NF‐κβ‐dependent pathway
US20220241282A1 (en) Par1 modulation to alter myelination
Cremer et al. MiR-155 induction by microbes/microbial ligands requires NF-κB-dependent de novo protein synthesis
Garofalo et al. The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells
Zhu et al. Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain
Park et al. Repositioning of the antipsychotic drug TFP for sepsis treatment
TW202132568A (zh) 用於治療血管收縮素原相關病症之方法及組成物
WO2013066721A2 (en) Methods and compositions for the specific inhibition of met by double-stranded rna
Ai et al. Gene silencing of the BDNF/TrkB axis in multiple myeloma blocks bone destruction and tumor burden in vitro and in vivo
Fundytus et al. Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation
Quanhong et al. Intrathecal PLCβ3 oligodeoxynucleotides antisense potentiates acute morphine efficacy and attenuates chronic morphine tolerance
US11629347B2 (en) Anti-C9ORF72 oligonucleotides and related methods
WO2009015107A1 (en) Modulation of toll-like receptors for controlling neurogenesis
CN110157668B (zh) Cd39内化调控对p2x7r活化的作用
Rubione et al. Modulation of the inflammatory response by pre-emptive administration of IMT504 reduces postoperative pain in rats and has opioid-sparing effects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant