CN110152683B - 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法 - Google Patents

一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法 Download PDF

Info

Publication number
CN110152683B
CN110152683B CN201910446562.1A CN201910446562A CN110152683B CN 110152683 B CN110152683 B CN 110152683B CN 201910446562 A CN201910446562 A CN 201910446562A CN 110152683 B CN110152683 B CN 110152683B
Authority
CN
China
Prior art keywords
magnetic
nano
msio
void
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910446562.1A
Other languages
English (en)
Other versions
CN110152683A (zh
Inventor
陈景露
张秋禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910446562.1A priority Critical patent/CN110152683B/zh
Publication of CN110152683A publication Critical patent/CN110152683A/zh
Application granted granted Critical
Publication of CN110152683B publication Critical patent/CN110152683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法,首先通过外磁场诱导组装成一维核壳式Fe3O4@(DVB‑MAA)纳米链;然后是通过简单的溶胶凝胶法对Fe3O4@P(DVB‑MAA)磁性纳米链进行二氧化硅包覆,并通过灼烧制备出摇铃状Fe3O4@Void@mSiO2磁性纳米链;最后在得到的摇铃状Fe3O4@Void@mSiO2磁性纳米链表面进行氨基修饰,然后通过氨基与钯离子(Pd2+)间较强的络合作用将钯离子负载在磁性纳米链上,并对负载的钯离子进行还原即可得到一维磁性中空纳米链负载钯纳米粒子催化剂。该发明有效的解决了贵金属钯纳米粒子作为催化剂使用时存在的难以分离且易团聚的问题。

Description

一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法
技术领域
本发明属于贵金属钯催化剂及其制备方法,涉及一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法。
背景技术
贵金属钯纳米粒子催化剂是有机反应中的良好的催化剂,通过使用纳米尺度的贵金属纳米粒子可以增加与反应物的接触面积,加快催化反应的发生,提高催化效率,但是,金属纳米粒子作为催化剂时存在容易团聚、反应结束后催化剂难以分离、回收利用率低等问题,见文献:[1]刘爽,李勇,申文杰.晶相调控对金属纳米粒子催化性能的影响(英文)[J].催化学报,2015,(09):1409-1418.以及[2]梁宇佳.碳载银、钯及其二元金属纳米粒子复合电催化剂的制备及性能研究[D].北京化工大学,2011。因此常采用将贵金属纳米粒子负载在易分离的载体上的方法来解决这个问题。载体的选择对负载型钯催化剂的催化性能有着重要的影响,多孔结构的引入能够增强负载型钯催化剂的吸附能力,缩短催化剂与底物之间的距离,提高催化效率。具有磁性能的载体制备的负载型钯催化剂便于分离,能够大大节约经济成本,还能够提高催化剂的重复使用效率。
此外,通过将贵金属钯纳米粒子负载在一维磁性纳米链上,不但可以通过分离回收载体达到回收贵金属纳米粒子的目的,还因为一维纳米链由于自身的各向异性犹如“搅拌磁子”一样进行转动,有助于溶液混合均匀,有效避免反应物的团聚现象,增加催化剂与反应物的接触机会,提高催化反应效率。如宋卫国教授团队制备的一维Fe3O4-NC-PZS-Pd磁力搅拌棒就是使用一维纳米棒作为载体制备的一种负载型钯催化剂,见文献:Yan g S L,Cao C Y,Sun Y B,Huan g P P,et al.Nanoscale Magnetic Stirring Bars for Heterogenerous Catalysis in Microscopic Systems[J],Angewandte Chemie InternationalEdition,2015,54(9):2661-2664。
发明内容
要解决的技术问题
为了避免现有技术的不足之处:贵金属钯纳米粒子催化剂存在的容易团聚、反应结束后催化剂难以分离、回收利用率低等问题,本发明提出一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法,通过一维摇铃状磁性纳米链在交变磁场中的转动以及摇铃状结构提供的高比表面积和孔性能负载钯纳米粒子,并使用外加磁场对磁性纳米链进行分离回收来解决钯金属纳米粒子催化剂存在的上述问题。
技术方案
一种可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:以外层包覆着介孔SiO2壳层且中部存在空腔层的一维磁性多孔Fe3O4纳米链作为载体,纳米链上负载着钯纳米颗粒;所述的纳米链的孔径分布在2~20nm,BET比表面积为175~180m2/g,BJH孔体积为0.2~0.3cm3,饱和磁强度为13~20emu/g,钯含量为3.0~3.5wt%。
一种所述可自转摇铃状Fe3O4纳米链负载钯纳米粒子催化剂的制备方法,其特征在于步骤如下:
步骤1、一维核壳式Fe3O4@P(DVB-MAA)磁性纳米链的制备:将Fe3O4颗粒、单体甲基丙烯酸MAA和交联剂二乙烯基苯DVB加入80~100mL乙腈中,通过超声均匀分散之后加入引发剂7~8mg偶氮二异丁腈AIBN,在80~90℃的加热下通过外磁场诱导进行蒸馏沉淀聚合,反应一小时后得到一维核壳式磁性Fe3O4@(DVB-MAA)纳米链;所述Fe3O4颗粒用量为0.01~0.03g,单体浓度为3.0~3.5g/mL,用量为0.25g~0.3g;交联剂浓度约为0.8~1.0g/mL,用量为0.05g~0.1g;
步骤2、一维摇铃状磁性Fe3O4@Void@mSiO2纳米链的制备:将一维核壳式磁性Fe3O4@(DVB-MAA)纳米链分散在80~100mL乙醇和10~12.5mL水中,搅拌下加入1.6~2mL氨水,搅拌1h后加入0.24~0.3mL的正硅酸乙酯TEOS和0.048~0.06mL的十八烷基三甲氧基硅烷C18TMS,反应12h后所得产物可通过外加磁场收集,所的产物使用乙醇清洗,60~65℃真空干燥12~14小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链;将获得的产物在氩气氛围中550~600℃灼烧8~10h,去除模板分子与聚合物P(DVB-MAA)壳层,得到摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链;
步骤3、一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链的制备:将0.1~0.2g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120~240mL无水乙醇中超声分散,然后在机械搅拌下滴加4~8mL的硅烷偶联剂KH-550,使用50~55℃水浴加热反应24h,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3~4次,制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链;
将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5~125mL的无水乙醇和25~50mL的去离子水的混合溶液中,并在制得的悬浮液中加入80~160mg的Pd(OAC)2,然后在机械搅拌下反应24h,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗,制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链;
将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120~240mL去离子水中,加入50~100mg硼氢化钠,在机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗,制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
所述步骤2~3的搅拌速度为250~300r/min。
所述步骤2的乙醇清洗2~3次。
所述步骤3的无水乙醇和去离子水洗3~4次。
所述步骤1的引发剂为偶氮二异丁腈AIBN或过氧化苯甲酰BPO。
一种所述的方法制备的可自转磁性纳米链负载钯纳米粒子催化剂验证步骤:一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链应用于Suzuki偶联反应:配制由1.2~1.5mmol苯硼酸、1.0~1.3mmol卤代芳烃、0.2764~0.3593g无水K2CO3和10~12mL异丙醇组成的前驱体溶液;然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80~85℃氮气保护下搅拌12~14h;最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱HPLC得到反应产率。
所述卤代芳烃为氯苯或溴苯。
使用十八烷基三甲氧基硅烷C18TMS作为模板分子,使用灼烧的方法去除模板分子形成多孔结构。
通过灼烧去除聚合物包覆层形成空腔层。
KH-550水解在纳米链表面形成一层褶皱层。
使用一维磁性纳米链作为载体,能够在交变磁场下转动。
有益效果
本发明提出的一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法,首先,通过外磁场诱导使Fe3O4颗粒定向排列成链,并且蒸馏沉淀聚合生成的聚合物P(MAA-DVB)包覆在了Fe3O4颗粒排列生成的链上,形成了聚合物包覆的一维磁性Fe3O4@P(DVB-MAA)纳米链;随后,使用溶胶凝胶法和模板法在Fe3O4@P(DVB-MAA)纳米链上包覆了一层SiO2外壳,并通过灼烧的方法去除模板分子和聚合物层P(MAA-DVB)形成了介孔SiO2外壳和一层空腔层,最终得到了包覆着介孔SiO2外壳的摇铃状Fe3O4@Void@mSiO2磁性纳米链;最后,通过氨基和钯离子的络合作用将二价钯离子负载在纳米链上,并随后使用硼氢化钠将钯离子还原,制得了一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链。将制备的一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链应用于氯苯和溴苯的Suzuki偶联反应,最高可得到将近100%的反应产率。
1、通过外磁场诱导使Fe3O4颗粒定向排列成链,形成的纳米链具有多孔结构,并使用聚合物和介孔SiO2外壳包覆纳米链来将纳米链进行固定,防止生成的磁性纳米链断裂,有效的增长了纳米链的强度。
2、通过溶胶凝胶法和模板法在生成的Fe3O4@P(DVB-MAA)纳米链上包覆一层SiO2外壳,并通过灼烧去除了模板分子和内部的聚合物包覆层,形成了介孔SiO2外壳和空腔层,最终制得的维摇铃状磁性Fe3O4@Void@mSiO2纳米链具有良好的孔性能。包覆介孔SiO2外壳和聚合物热解生成的空腔层可以有效地提升制备的纳米链的比表面积,空腔层更是能为钯纳米粒子的负载以及后续催化反应的进行提供场所,并且较大的比表面面积还可以通过有效的提高催化剂与反应体系的接触面积来提高催化效率。KH-550水解产生的褶皱层能够有效的为负载的钯纳米粒子提供保护作用,从而提高催化剂的催化效率和循环性能。
3、一维结构的磁性Fe3O4@Void@mSiO2纳米链能够在交变磁场下像“磁子”一样转动,可以有效的促进催化反应的反应物与催化剂的充分分散混合,从而提高催化效率。并且磁性纳米链可以在反应结束之后通过外加磁场分离回收,并且重复使用多次之后仍具有良好的催化性能。
附图说明
图1为核壳式Fe3O4@P(DVB-MAA)磁性纳米链SEM与TEM照片
图2为摇铃状Fe3O4@Void@mSiO2磁性纳米链SEM与TEM照片
图3为磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链的SEM与TEM照片
图4为核壳式多孔Fe3O4@P(DVB-MAA)磁性纳米链,Fe3O4@Void@mSiO2磁性纳米链和Fe3O4@Void@mSiO2-Pd(0)纳米链的磁滞回线。
图5为摇铃状Fe3O4@Void@mSiO2磁性纳米链(a)与Fe3O4@Void@mSiO2-Pd(0)纳米链(b)的等温吸附脱附曲线及孔径分布图。
图6为摇铃状Fe3O4@Void@mSiO2磁性纳米链(a)与Fe3O4@Void@mSiO2-Pd(0)纳米链(b)的XRD谱图。
图7为磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链催化下氯苯和溴苯循环反应七次的Suzuki偶联反应产率图。
图8为磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链催化下氯苯和溴苯的Suzuki偶联反应产率与反应时间关系图。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例一:
步骤一、通过外磁场诱导的蒸馏沉淀聚合来制备核壳式Fe3O4@P(DVB-MAA)磁性纳米链。将0.026g磁性微球、0.072g二乙烯基苯和0.271g甲基丙烯酸分散于80mL乙腈中,超声1小时后再加入7.5mg AIBN,溶解完全后将混合溶液转入三口烧瓶中,80℃水浴反应1小时,通过磁性分离收集产物,并分别使用无水乙醇和去离子水清洗产物3次,便得到核壳式Fe3O4@P(DVB-MAA)磁性纳米链。
步骤二、将制得的Fe3O4@P(DVB-MAA)磁性纳米链分散在含有50mL无水乙醇6.25mL去离子水的混合溶剂中,在280r/min的机械搅拌下加入2mL氨水,搅拌1小时后,依次加入0.15mL的TEOS和0.03mL的十八烷基三甲氧基硅烷,常温反应一夜,进行磁分离,并用无水乙醇和去离子水清洗3次,60℃真空干燥12小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链。将获得的产物在氩气氛围中550℃灼烧8小时,最后的产物便是摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链。
步骤三、称取0.15g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120mL无水乙醇中超声分散,然后在300r/min的机械搅拌下滴加4mL的KH-550,使用50℃水浴加热反应24小时,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链,将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5mL的无水乙醇和25mL的去离子水的混合溶液中,制得的悬浮液中加入80m g的Pd(OAC)2,然后在300r/min的机械搅拌下反应24小时,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链。将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120mL去离子水中,加入50m g硼氢化钠,在300r/min的机械搅拌下反应12小时,产物由外磁场收集,使用无水乙醇和去离子水洗3次,即可制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
步骤四、配制由1.2mmol苯硼酸、1.0mmol溴苯、0.2764g无水K2CO3和10mL异丙醇组成的前驱体溶液。然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80℃氮气保护下搅拌12h。最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱(HPLC)得到反应产率,反应产率如图七所示,循环七次之后的反应产率仍可保持在80%以上。
实施例二:
步骤一、通过外磁场诱导的蒸馏沉淀聚合来制备核壳式Fe3O4@P(DVB-MAA)磁性纳米链。将0.022g磁性微球、0.071g二乙烯基苯和0.273g甲基丙烯酸分散于80mL乙腈中,超声1h后再加入7.5mg AIBN,溶解完全后将混合溶液转入三口烧瓶中,80℃水浴反应1小时,通过磁性分离收集产物,并分别使用无水乙醇和去离子水清洗产物4次,便得到核壳式Fe3O4@P(DVB-MAA)磁性纳米链。
步骤二、将制得的Fe3O4@P(DVB-MAA)磁性纳米链分散在含有50mL无水乙醇6.25mL去离子水的混合溶剂中,在280r/min的机械搅拌下加入2mL氨水,搅拌1小时后,依次加入0.15mL的TEOS和0.03mL的十八烷基三甲氧基硅烷,常温反应一夜,进行磁分离,并用无水乙醇和去离子水清洗3次,60℃真空干燥12小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链。将获得的产物在氩气氛围中550℃灼烧8小时,最后的产物便是摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链。
步骤三、称取0.12g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120mL无水乙醇中超声分散,然后在300r/min的机械搅拌下滴加4mL的KH-550,使用50℃水浴加热反应24小时,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链,将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5mL的无水乙醇和25mL的去离子水的混合溶液中,制得的悬浮液中加入80mg的Pd(OAC)2,然后在300r/min的机械搅拌下反应24小时,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链。将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120mL去离子水中,加入50mg硼氢化钠,在300r/min的机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗3次,即可制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
步骤四、配制由1.2mmol苯硼酸、1.0mmol卤代芳烃氯苯、0.2764g无水K2CO3和10mL异丙醇组成的前驱体溶液。然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80℃氮气保护下搅拌12h。最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱(HPLC)得到反应产率,反应产率如图七所示,循环七次之后的反应产率反应产率仍可保持在60%以上。
实施例三:
步骤一、通过外磁场诱导的蒸馏沉淀聚合来制备核壳式Fe3O4@P(DVB-MAA)磁性纳米链。将0.02g磁性微球、0.07g二乙烯基苯和0.27g甲基丙烯酸分散于80mL乙腈中,超声1h后再加入7.5mg AIBN,溶解完全后将混合溶液转入三口烧瓶中,80℃水浴反应1h,通过磁性分离收集产物,并分别使用无水乙醇和去离子水清洗产物3~4次,便得到核壳式Fe3O4@P(DVB-MAA)磁性纳米链。
步骤二、将制得的Fe3O4@P(DVB-MAA)磁性纳米链分散在含有50mL无水乙醇6.25mL去离子水的混合溶剂中,在280r/min的机械搅拌下加入2mL氨水,搅拌1小时后,依次加入0.15mL的TEOS和0.03mL的十八烷基三甲氧基硅烷,常温反应一夜,进行磁分离,并用无水乙醇和去离子水清洗3次,60℃真空干燥12小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链。将获得的产物在氩气氛围中550℃灼烧8h,最后的产物便是摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链。
步骤三、称取0.1g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120mL无水乙醇中超声分散,然后在300r/min的机械搅拌下滴加4mL的KH-550,使用50℃水浴加热反应24h,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链,将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5mL的无水乙醇和25mL的去离子水的混合溶液中,制得的悬浮液中加入80mg的Pd(OAC)2,然后在300r/min的机械搅拌下反应24h,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链。将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120mL去离子水中,加入50mg硼氢化钠,在300r/min的机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗3次,即可制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
步骤四、配制由1.2mmol苯硼酸、1.0mmol溴苯、0.2764g无水K2CO3和10mL异丙醇组成的前驱体溶液。然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80℃氮气保护下分别搅拌8h,10h和12h。最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱(HPLC)得到反应产率,如图八所示反应产率分别为94.88%,97.72%和99.80%。
实施例四:
步骤一、通过外磁场诱导的蒸馏沉淀聚合来制备核壳式Fe3O4@P(DVB-MAA)磁性纳米链。将0.02g磁性微球、0.07g二乙烯基苯和0.27g甲基丙烯酸分散于80mL乙腈中,超声1h后再加入7.5mg AIBN,溶解完全后将混合溶液转入三口烧瓶中,80℃水浴反应1h,通过磁性分离收集产物,并分别使用无水乙醇和去离子水清洗产物3~4次,便得到核壳式Fe3O4@P(DVB-MAA)磁性纳米链。
步骤二、将制得的Fe3O4@P(DVB-MAA)磁性纳米链分散在含有50mL无水乙醇6.25mL去离子水的混合溶剂中,在280r/min的机械搅拌下加入2mL氨水,搅拌1小时后,依次加入0.15mL的TEOS和0.03mL的十八烷基三甲氧基硅烷,常温反应一夜,进行磁分离,并用无水乙醇和去离子水清洗3次,60℃真空干燥12小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链。将获得的产物在氩气氛围中550℃灼烧8h,最后的产物便是摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链。
步骤三、称取0.1g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120mL无水乙醇中超声分散,然后在300r/min的机械搅拌下滴加4mL的KH-550,使用50℃水浴加热反应24h,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链,将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5mL的无水乙醇和25mL的去离子水的混合溶液中,制得的悬浮液中加入80mg的Pd(OAC)2,然后在300r/min的机械搅拌下反应24h,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链。将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120mL去离子水中,加入50mg硼氢化钠,在300r/min的机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗3次,即可制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
步骤四、配制由1.2mmol苯硼酸、1.0mmol氯苯、0.2764g无水K2CO3和10mL异丙醇组成的前驱体溶液。然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80℃氮气保护下分别搅拌8h,10h和12h。最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱(HPLC)得到反应产率,如图八所示反应产率分别为为81.47%,98.94%和99.63%。
实施例五:
步骤一、通过外磁场诱导的蒸馏沉淀聚合来制备核壳式Fe3O4@P(EGDMA-MAA)纳米链。将0.036g的Fe3O4颗粒、0.36g的单体甲基丙烯酸(MAA)与0.096g的交联剂二甲基丙烯酸乙二醇酯(EGDMA)分散于80mL乙腈中,超声1h后再加入7.5mg AIBN,80℃水浴反应1h,通过磁性分离收集产物,并分别使用无水乙醇和去离子水清洗产物3~4次,即得到核壳式Fe3O4@P(EGDMA-MAA)纳米链;
步骤二、将制得的Fe3O4@P(EGDMA-MAA)磁性纳米链分散在含有50mL无水乙醇6.25mL去离子水的混合溶剂中,在280r/min的机械搅拌下加入2mL氨水,搅拌1小时后,依次加入0.15mL的TEOS和0.03mL的十八烷基三甲氧基硅烷,常温反应一夜,进行磁分离,并用无水乙醇和去离子水清洗3次,60℃真空干燥12小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链。将获得的产物在氩气氛围中550℃灼烧8h,最后的产物便是摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链。
步骤三、称取0.1g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120mL无水乙醇中超声分散,然后在300r/min的机械搅拌下滴加4mL的KH-550,使用50℃水浴加热反应24h,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链,将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5mL的无水乙醇和25mL的去离子水的混合溶液中,制得的悬浮液中加入80m】g的Pd(OAC)2,然后在300r/min的机械搅拌下反应24h,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗3次,即可制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链。将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120mL去离子水中,加入50mg硼氢化钠,在300r/min的机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗3次,即可制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
步骤四、配制由1.2mmol苯硼酸、1.0mmol氯苯、0.2764g无水K2CO3和10mL异丙醇组成的前驱体溶液。然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述混合体系中,于80℃氮气保护下搅拌12h。最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱(HPLC)得到反应产率,如图八所示反应产率为98.51%。

Claims (7)

1.一种可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:以外层包覆着介孔SiO2壳层且中部存在空腔层的一维磁性多孔Fe3O4纳米链作为载体,纳米链上负载着钯纳米颗粒;所述的纳米链的孔径分布在2~20nm,BET比表面积为175~180m2/g,BJH孔体积为0.2~0.3cm3/g,饱和磁强度为13~20emu/g,钯含量为3.0~3.5wt%;
可自转磁性纳米链负载钯纳米粒子催化剂为可自转摇铃状Fe3O4纳米链负载钯纳米粒子催化剂,其制备方法步骤如下:
步骤1、一维核壳式Fe3O4@P(DVB-MAA)磁性纳米链的制备:将Fe3O4颗粒、单体甲基丙烯酸MAA和交联剂二乙烯基苯DVB加入80~100mL乙腈中,通过超声均匀分散之后加入引发剂7~8mg偶氮二异丁腈AIBN,在80~90℃的加热下通过外磁场诱导进行蒸馏沉淀聚合,反应一小时后得到一维核壳式磁性Fe3O4@(DVB-MAA)纳米链;所述Fe3O4颗粒用量为0.01~0.03g,单体浓度为3.0~3.5g/mL,用量为0.25g~0.3g;交联剂浓度为0.8~1.0g/mL,用量为0.05g~0.1g;
步骤2、一维摇铃状磁性Fe3O4@Void@mSiO2纳米链的制备:将一维核壳式磁性Fe3O4@(DVB-MAA)纳米链分散在80~100mL乙醇和10~12.5mL水中,搅拌下加入1.6~2mL氨水,搅拌1h后加入0.24~0.3mL的正硅酸乙酯TEOS和0.048~0.06mL的十八烷基三甲氧基硅烷C18TMS,反应12h后所得产物可通过外加磁场收集,所得产物使用乙醇清洗,60~65℃真空干燥12~14小时,即得到核壳式Fe3O4@P(DVB-MAA)@SiO2磁性纳米链;将获得的产物在氩气氛围中550~600℃灼烧8~10h,去除模板分子与聚合物P(DVB-MAA)壳层,得到摇铃状结构的多孔Fe3O4@Void@mSiO2磁性纳米链;
步骤3、一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链的制备:将0.1~0.2g核壳式Fe3O4@Void@mSiO2磁性纳米链粉末,在120~240mL无水乙醇中超声分散,然后在机械搅拌下滴加4~8mL的硅烷偶联剂KH-550,使用50~55℃水浴加热反应24h,所得产品由外加磁场收集,并使用无水乙醇和去离子水洗3~4次,制得核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链;
将制得的核壳式Fe3O4@Void@mSiO2-NH4磁性纳米链超声分散在62.5~125mL的无水乙醇和25~50mL的去离子水的混合溶液中,并在制得的悬浮液中加入80~160mg的Pd(OAc)2,然后在机械搅拌下反应24h,制得的产品由外磁场收集,并使用无水乙醇和去离子水洗,制得核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链;
将制得的核壳式Fe3O4@Void@mSiO2-Pd(Ⅱ)磁性纳米链超声分散在120~240mL去离子水中,加入50~100mg硼氢化钠,在机械搅拌下反应12h,产物由外磁场收集,使用无水乙醇和去离子水洗,制得磁性多孔Fe3O4@Void@mSiO2-Pd(0)纳米链。
2.根据权利要求1所述可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:所述步骤2~3的搅拌速度为250~300r/min。
3.根据权利要求1所述可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:所述步骤2的乙醇清洗2~3次。
4.根据权利要求1所述可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:所述步骤3的无水乙醇和去离子水洗3~4次。
5.根据权利要求1所述可自转磁性纳米链负载钯纳米粒子催化剂,其特征在于:所述步骤1的引发剂还可以为过氧化苯甲酰BPO。
6.一种权利要求1-5任一项所述可自转磁性纳米链负载钯纳米粒子催化剂应用方法:一维摇铃状磁性Fe3O4@Void@mSiO2-Pd(0)纳米链应用于Suzuki偶联反应:配制由1.2~1.5mmol苯硼酸、1.0~1.3mmol卤代芳烃、0.2764~0.3593g无水K2CO3和10~12mL异丙醇组成的前驱体溶液;然后,将钯含量为0.142mol%的Fe3O4@Void@mSiO2-Pd(0)纳米链加入到上述前驱体溶液中,于80~85℃氮气保护下搅拌12~14h;最后,通过外磁场将Fe3O4@Void@mSiO2-Pd(0)纳米链分离出来,并通过离心分离取其上清液,通过高效液相色谱HPLC得到反应产率。
7.根据权利要求6所述应用方法,其特征在于:所述卤代芳烃为氯苯或溴苯。
CN201910446562.1A 2019-05-27 2019-05-27 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法 Active CN110152683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910446562.1A CN110152683B (zh) 2019-05-27 2019-05-27 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910446562.1A CN110152683B (zh) 2019-05-27 2019-05-27 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110152683A CN110152683A (zh) 2019-08-23
CN110152683B true CN110152683B (zh) 2022-04-26

Family

ID=67629307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910446562.1A Active CN110152683B (zh) 2019-05-27 2019-05-27 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110152683B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746744B (zh) * 2019-10-16 2020-10-30 武汉理工大学 一种高色彩饱和度的亲油性光子纳米磁性链及其制备方法
CN110665498B (zh) * 2019-10-16 2022-08-26 浙江大学台州研究院 一种负载贵金属磁力纳米搅拌子催化剂的制备及其应用
CN110746743B (zh) * 2019-10-16 2020-10-30 武汉理工大学 一种亲油性光子纳米磁性链及其制备方法
CN110813312A (zh) * 2019-11-08 2020-02-21 珠海格力电器股份有限公司 一种磁性纳米复合材料及其制备方法与应用
CN112871168A (zh) * 2020-12-01 2021-06-01 浙江大学台州研究院 一种一维磁性纳米光催化剂的制备方法
CN112871180B (zh) * 2021-01-15 2022-09-16 万华化学集团股份有限公司 一种结构型催化剂及其制备方法及应用
CN114632517A (zh) * 2022-02-18 2022-06-17 南京工业大学 一种纳米颗粒限域的功能集成型磁响应纳米棒状催化剂、制备方法及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN104667945A (zh) * 2015-01-10 2015-06-03 安徽大学 一种负载型钯催化剂Fe3O4/SiO2/Pd的制备及在Suzuki反应中的应用
CN104785301A (zh) * 2015-03-13 2015-07-22 苏州至善化学有限公司 一种磁性钯复合催化剂及其制备方法和用途
CN105032492A (zh) * 2015-01-26 2015-11-11 商丘师范学院 多孔网状高聚物包覆磁性纳米粒子负载钯催化剂及其制备方法
CN106277162A (zh) * 2016-08-18 2017-01-04 南京理工大学 一种超疏水磁性PS/SiO2油水分离材料及其制备方法
CN107638851A (zh) * 2017-08-31 2018-01-30 西北工业大学 一种摇铃状Fe3O4@void@SiO2纳米链及制备方法
CN108212211A (zh) * 2017-12-30 2018-06-29 武汉工程大学 一种负载纳米金的磁性纳米催化剂的制备方法
CN108295906A (zh) * 2018-03-06 2018-07-20 燕山大学 “摇铃”型铂基磁性空间限域催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836693B (zh) * 2012-09-19 2014-05-14 清华大学 一种用于去除放射性废水中Cs离子的磁核包覆型无机离子吸附剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974314A (zh) * 2012-12-04 2013-03-20 天津大学 一种磁性金纳米粒子复合材料及其制备方法和应用
CN104667945A (zh) * 2015-01-10 2015-06-03 安徽大学 一种负载型钯催化剂Fe3O4/SiO2/Pd的制备及在Suzuki反应中的应用
CN105032492A (zh) * 2015-01-26 2015-11-11 商丘师范学院 多孔网状高聚物包覆磁性纳米粒子负载钯催化剂及其制备方法
CN104785301A (zh) * 2015-03-13 2015-07-22 苏州至善化学有限公司 一种磁性钯复合催化剂及其制备方法和用途
CN106277162A (zh) * 2016-08-18 2017-01-04 南京理工大学 一种超疏水磁性PS/SiO2油水分离材料及其制备方法
CN107638851A (zh) * 2017-08-31 2018-01-30 西北工业大学 一种摇铃状Fe3O4@void@SiO2纳米链及制备方法
CN108212211A (zh) * 2017-12-30 2018-06-29 武汉工程大学 一种负载纳米金的磁性纳米催化剂的制备方法
CN108295906A (zh) * 2018-03-06 2018-07-20 燕山大学 “摇铃”型铂基磁性空间限域催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"磁场诱导沉淀聚合制备一维Fe3O4/P(MAA-DVB)纳米链";马明亮等;《中国科学杂志社》;20121231;第42卷(第7期);第1008页第2.3节,第1009页3.2.1节 *
"磁性Pd纳米催化剂的合成及其对有机反应中的应用";王鹏;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20180115(第1期);第三章第3.2节实验部分和第3.3.7节HMMS-NH2-Pd催化的Suzuki测试 *

Also Published As

Publication number Publication date
CN110152683A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN110152683B (zh) 一种可自转磁性纳米链负载钯纳米粒子催化剂及其制备方法
Dai et al. Janus N-doped carbon@ silica hollow spheres as multifunctional amphiphilic nanoreactors for base-free aerobic oxidation of alcohols in water
Arundhathi et al. Fe3O4@ mesoporouspolyaniline: A Highly Efficient and Magnetically Separable Catalyst for Cross‐Coupling of Aryl Chlorides and Phenols
Wang et al. Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor
Mao et al. Fe-based MOFs@ Pd@ COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction
Gao et al. The nanocomposites of SO 3 H-hollow-nanosphere and chiral amine for asymmetric aldol reaction
CN105664936A (zh) 一种以多巴胺为碳源制备核壳结构纳米复合材料的方法
Wang et al. New polymer colloidal and carbon nanospheres: stabilizing ultrasmall metal nanoparticles for solvent-free catalysis
KR101308764B1 (ko) 실리카 나노 입자, 이의 제조방법, 복합체 및 이의 제조방법
CN114832863B (zh) 一种多级孔金属有机框架材料及其制备方法和应用
Kargar et al. Cu/cellulose-modified magnetite nanocomposites as a highly active and selective catalyst for ultrasound-promoted aqueous O-arylation Ullmann and sp-sp2 Sonogashira cross-coupling reactions
Chen et al. A novel magnetic mesoporous Fe3O4@ Void@ mSiO2-Pd (0) nanochains with high heterogeneous catalysis efficiency for Suzuki coupling reaction
Zare et al. Magnetic chitosan supported covalent organic framework/copper nanocomposite as an efficient and recoverable catalyst for the unsymmetrical hantzsch reaction
Du et al. Novel yolk-shell polymer/carbon@ Au nanocomposites by using dendrimer-like mesoporous silica nanoparticles as hard template
Wei et al. Fabrication of core-shell sol-gel hybrid molecularly imprinted polymer based on metal–organic framework
Baran et al. Design of highly robust halloysite nanoclay supported palladium complex as a highly active heterogeneous catalyst for construction of biaryls
Pei et al. Highly dispersed Pd clusters anchored on nanoporous cellulose microspheres as a highly efficient catalyst for the Suzuki coupling reaction
Wang et al. Metal-organic framework grown in situ on chitosan microspheres as robust host of palladium for heterogeneous catalysis: Suzuki reaction and the p-nitrophenol reduction
Do et al. Controlled formation of magnetic yolk-shell structures with enhanced catalytic activity for removal of acetaminophen in a heterogeneous fenton-like system
Zhang et al. Preparation of mesoporous silica from electrolytic manganese slags by using amino-ended hyperbranched polyamide as template
Shaker et al. Magnetic Ti-containing phenylene-based mesoporous organosilica: A powerful nanocatalyst with high recoverability
Dabiri et al. Pd nanoparticles supported on cubic shaped ZIF-based materials and their catalytic activates in organic reactions
Gorji et al. Ag nanoparticles stabilized on basalt fibers as a novel, stable, and reusable catalyst for Suzuki–Miyaura coupling reactions
Haydari et al. Magnetic nanoporous MCM-41 supported melamine: A powerful nanocatalyst for synthesis of biologically active 2-amino-3-cyanopyridines
Aschenaki et al. Preparation of a magnetic and recyclable superparamagnetic silica support with a boronic acid group for immobilizing Pd catalysts and its applications in Suzuki reactions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant