CN110149047B - 直流-直流转换控制器 - Google Patents

直流-直流转换控制器 Download PDF

Info

Publication number
CN110149047B
CN110149047B CN201810281814.5A CN201810281814A CN110149047B CN 110149047 B CN110149047 B CN 110149047B CN 201810281814 A CN201810281814 A CN 201810281814A CN 110149047 B CN110149047 B CN 110149047B
Authority
CN
China
Prior art keywords
current
parameter setting
output
coupled
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810281814.5A
Other languages
English (en)
Other versions
CN110149047A (zh
Inventor
张志廉
洪沛霝
徐正青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UPI Semiconductor Corp
Original Assignee
UPI Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UPI Semiconductor Corp filed Critical UPI Semiconductor Corp
Publication of CN110149047A publication Critical patent/CN110149047A/zh
Application granted granted Critical
Publication of CN110149047B publication Critical patent/CN110149047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Air Bags (AREA)
  • Details Of Television Scanning (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开一种直流‑直流转换控制器,包括电流感测单元、参数设定接脚、参数设定单元与误差放大器。电流感测单元提供感测电流。参数设定接脚耦接外部参数设定单元。参数设定单元耦接电流感测单元与参数设定接脚,且参数设定单元具有内部参数设定单元。参数设定单元根据外部参数设定单元与感测电流产生下降电流。误差放大器包括第一输入端与第二输入端。第一输入端接收输出回授电压且第二输入端接收第一参考电压。第二输入端耦接内部参数设定单元的一端。本发明的直流‑直流转换控制器可有效节省接脚数目并提供动态调整输出电压与对输出电流温度补偿的功能。

Description

直流-直流转换控制器
技术领域
本发明与电源转换有关,尤其是关于一种直流-直流转换控制器。
背景技术
为了避免负载(Load line)由轻载切换至重载(亦即抽载)时,瞬间的大电流造成负载的毁损,已知的直流-直流转换控制器通常会提供负载掉压(Load line droop)功能。
如图1所示,已知的直流-直流转换控制器1通常会在其接脚DAC与接脚EAP之间耦接外部电阻RDRP,并通过调整外部电阻RDRP的方式来改变负载掉压,进而达到随外部负载电流的变化动态调整输出电压的功能。进一步而言,接脚DAC用以发送输出电流IOUT经过外部电阻RDRP在接脚EAP产生第一参考电压VEAP提供给误差放大器EA。
然而,随着直流-直流转换控制器1具有的功能愈来愈多,其所需的接脚数目亦随之增加,由于耦接于接脚DAC与接脚EAP之间的外部电阻RDRP一次占用两个接脚DAC与EAP而导致这两个接脚DAC与EAP无法提供其他功能。
此外,已知的直流-直流转换控制器1还设置有输出电流加总接脚CSPSUM与CSNSUM,用来加总各相的输出电流,并且在输出电流加总接脚CSPSUM与CSNSUM还耦接有热敏电阻NTC,用以对输出电流提供温度补偿功能。上述现象均会造成已知的直流-直流转换控制器的接脚数目的浪费而使得接脚数目不敷使用,此一现象亟待改善。
发明内容
有鉴于此,本发明提出一种直流-直流转换控制器,以有效解决先前技术所遭遇到之上述问题。
依据本发明的一具体实施例为一种直流-直流转换控制器。于此实施例中,直流-直流转换控制器包括电流感测单元、参数设定接脚、参数设定单元与误差放大器。电流感测单元提供感测电流。参数设定接脚耦接外部参数设定单元。参数设定单元耦接电流感测单元与参数设定接脚,且参数设定单元具有内部参数设定单元。参数设定单元根据外部参数设定单元与感测电流产生下降电流。误差放大器包括第一输入端与第二输入端。第一输入端接收输出回授电压且第二输入端接收第一参考电压。第二输入端耦接内部参数设定单元的一端。
于一实施例中,内部参数设定单元的另一端接收下降电流并于内部参数单元的一端产生第一参考电压。
于一实施例中,直流-直流转换控制器还包括第一电流感测接脚、电流加总单元与电流输出接脚。第一电流感测接脚用以感测第一输出电流。电流加总单元耦接第一电流感测接脚与电流感测单元,用以根据第一输出电流产生加总电流。电流输出接脚耦接电流加总单元,用以输出加总电流。
于一实施例中,直流-直流转换控制器还包括第二电流感测接脚,用以感测第二输出电流,电流加总单元亦耦接第二电流感测接脚并根据第一输出电流与第二输出电流产生加总电流。
于一实施例中,电流加总单元包括第一电压随耦器,第一电压随耦器包括第一输入端、第二输入端与输出端,第二输入端耦接电流输出接脚、第一输入端耦接至输出端且输出端耦接参数设定单元。
于一实施例中,电流加总单元包括第二电压随耦器,第二电压随耦器包括第一输入端、第二输入端与输出端,第二输入端耦接第二参考电压、第一输入端分别耦接输出端与参数设定单元且输出端耦接输出参考接脚。
于一实施例中,参数设定单元还包括电流镜(CM),用以根据设定信号复制产生多个下降电流后输出。
于一实施例中,参数设定单元还包括模拟数字转换器(ADC),耦接于参数设定接脚与电流镜之间,用以根据参数设定接脚的设定电压产生设定信号至电流镜。
于一实施例中,参数设定单元还包括查找表,参数设定单元搭配查找表根据参数设定接脚的设定电压产生设定信号至电流镜。
于一实施例中,误差放大器根据输出回授电压与参考电压产生补偿信号。
相较于现有技术,本发明的直流-直流转换控制器将图1中的已知的接脚DAC与EAP与耦接于两者之间的外部电阻RDRP均整合至其内部以节省接脚数目,并利用多功能接脚通过外部电阻接地并进行参数设定来调整负载电流比例,以动态调整输出电压。此外,本发明的直流-直流转换控制器将各相的输出电流在其内部加总后提供给电流镜或自电流输出接脚IMON输出,故可取消已知的输出电流加总接脚CSPSUM与CSNSUM,以更进一步节省接脚数目。至于原本耦接于输出电流加总接脚CSPSUM与CSNSUM的热敏电阻NTC则改为耦接于电流输出接脚IMON与输出参考接脚REFOUT之间,由以对输出电流提供温度补偿功能。
关于本发明的优点与精神可以通过以下的发明详述与所附图式得到进一步的了解。
附图说明
图1为已知的直流-直流转换控制器1的示意图。
图2为依据本发明的一具体实施例中的直流-直流转换控制器2的示意图。
主要元件符号说明:
1:直流-直流转换控制器
CSPSUM/CSNSUM:输出电流加总接脚
2:直流-直流转换控制器
20:电流加总单元
22:参数设定单元
24:电流感测单元
FCS:设定电流源
EA:误差放大器
PROG:参数设定接脚
IMON:电流输出接脚
REFOUT:输出参考接脚
CSP1/CSN1:第一电流感测接脚
CSP2/CSN2:第二电流感测接脚
FB:回授接脚
COMP:补偿接脚
REFIN:输入参考接脚
CS1:第一电流源
CS2:第二电流源
EA1:第一电压随耦器
EA2:第二电压随耦器
VF:电压随耦器
+:正输入端
-:负输入端
R、RIMON:电阻
VREF:第二参考电压
C:电容
NTC:热敏电阻
ADC:模拟数字转换器
CM:电流镜
RDRP:内部参数设定单元
RDRP’:外部参数设定单元
ISEN:设定电流
VSET:设定电压
K:设定信号
IDRP:下降电流
IIN:输入电流
ISUM:加总电流
DAC:内部参数设定单元的第一端
EAP:内部参数设定单元的第二端
VFB:回授电压
VEAP:第一参考电压
EA3:第三电压随耦器
EA4:第四电压随耦器
具体实施方式
现在将详细参考本发明的示范性实施例,并在附图中说明所述示范性实施例的实例。在图式与实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。
依据本发明的一具体实施例为一种直流-直流转换控制器。于此实施例中,直流-直流转换控制器将已知的外部电阻RDRP与其两端DAC与EAP均整合至其内部并取消了已知的输出电流加总接脚CSPSUM与CSNSUM,故能有效节省其接脚数目,以将空出来的接脚提供给其他功能使用。
请参照图2,图2为此实施例中的直流-直流转换控制器2的示意图。如图2所示,直流-直流转换控制器2可包括电流加总单元20、参数设定单元22、电流感测单元24、误差放大器EA、参数设定接脚PROG、电流输出接脚IMON、输出参考接脚REFOUT、第一电流感测接脚CSP1/CSN1、第二电流感测接脚CSP2/CSN2、回授接脚FB、补偿接脚COMP与输入参考接脚REFIN。
于此实施例中,第一电流感测接脚CSP1/CSN1用以感测第一相的第一输出电流且第二电流感测接脚CSP2/CSN2用以感测第二相的第二输出电流。电流感测单元24可包括第三电压随耦器EA3与第四电压随耦器EA4。第三电压随耦器EA3的正输入端+与负输入端-分别耦接第一电流感测接脚CSP1/CSN1,且第三电压随耦器EA3的负输入端-与输出端均耦接电流加总单元20。第三电压随耦器EA3用以提供第一输出电流至电流加总单元20。第四电压随耦器EA4的正输入端+与负输入端-分别耦接第二电流感测接脚CSP2/CSN2,且第四电压随耦器EA4的负输入端-与输出端均耦接电流加总单元20。第四电压随耦器EA4用以提供第二输出电流至电流加总单元20。
电流加总单元20分别耦接电流感测单元24、第一电流感测接脚CSN1、第二电流感测接脚CSN2与电流输出接脚IMON,用以根据第一输出电流与第二输出电流产生一加总电流ISUM并通过电流输出接脚IMON输出加总电流ISUM。
于此实施例中,电流加总单元20可包括第一电流源CS1、第二电流源CS2、第一电压随耦器EA1与第二电压随耦器EA2。第一电流源CS1分别耦接第三电压随耦器EA3的输出端、第一电流感测接脚CSN1、电流输出接脚IMON与第一电压随耦器EA1的正输入端+。第二电流源CS2分别耦接第四电压随耦器EA4的输出端、第二电流感测接脚CSN2、电流输出接脚IMON与第一电压随耦器EA1的正输入端+。也就是说,第一电流源CS1的两电流源分别耦接至第一电流感测接脚CSN1与电流输出接脚IMON;第二电流源CS2的两电流源分别耦接至第二电流感测接脚CSN2与电流输出接脚IMON。
第一电压随耦器EA1的正输入端+分别耦接电流输出接脚IMON、第一电流源CS1与第二电流源CS2且第一电压随耦器EA1的输出端分别耦接其负输入端-、电流镜CM的输入端与电阻R。第二电压随耦器EA2的正输入端+耦接第二参考电压VREF且第二电压随耦器EA2的负输入端-耦接至其输出端与输出参考接脚REFOUT之间并通过电阻R耦接电流镜CM的输入端。
由上述可知:电流镜CM的输入端分别耦接第一电压随耦器EA1、第二电压随耦器EA2与电阻R,由于第一电压随耦器EA1与第二电压随耦器EA2分别耦接于电阻R的两端,故可根据第一电压随耦器EA1与第二电压随耦器EA2之间的电压差搭配电阻R产生一输入电流IIN输入至电流镜CM的输入端。
于实际应用中,直流-直流转换控制器2可包括N组电流感测接脚,用以分别感测N相的输出电流,其中N为正整数。由于本发明的直流-直流转换控制器2将各相的输出电流(例如第一相的第一输出电流与第二相的第二输出电流)在其内部通过电流加总单元20相加为加总电流ISUM后通过电流输出接脚IMON输出或通过第一电压随耦器EA1提供给电流镜CM,故可将图1中的现有技术用来加总输出电流的接脚CSPSUM与CSNSUM均取消,由以有效节省接脚数目,并可将省下来的接脚用来提供其他功能。
电流输出接脚IMON与输出参考接脚REFOUT可外接热敏电阻NTC(例如负温度系数热敏电阻,但不以此为限),由以对电流输出接脚IMON所输出的加总电流提供温度补偿功能,以取代图1中的耦接于接脚CSPSUM与CSNSUM的热敏电阻NTC。此外,电流输出接脚IMON还可通过串接的电阻RIMON与电容C接地,以滤除噪声。
于此实施例中,参数设定单元22可包括设定电流源FCS、模拟数字转换器ADC、电流镜CM与内部参数设定单元RDRP。其中,模拟数字转换器ADC耦接于参数设定接脚PROG与电流镜CM之间;内部参数设定单元RDRP耦接电流镜CM的输出端;设定电流源FCS耦接至模拟数字转换器ADC与参数设定接脚PROG之间。
参数设定接脚PROG可外接外部参数设定单元RDRP’(例如外部电阻,但不以此为限)且可通过外部参数设定单元RDRP’接地并进行参数设定,以调整加总电流ISUM的放大比例。于IC初始期间,设定电流源FCS施加一固定值的设定电流ISEN于参数设定接脚PROG上,并搭配外部设定电阻RDRP’于参数设定接脚PROG产生设定电压VSET。模拟数字转换器ADC根据设定电压VSET产生设定信号K至电流镜CM,以调整电流镜CM的放大倍率。当IC开始运作后,设定信号K维持设定不变。设定电流源FCS、模拟数字转换器ADC与外部参数设定单元RDRP’即不再作用。
承前述,当电流镜CM的输入端接收到输入电流IIN时,电流镜CM会依照设定信号K所设定的放大倍率根据输入电流IIN产生多个下降电流IDRP并通过电流镜CM的输出端输出。
于实际应用中,参数设定单元22除了可通过模拟数字转换器ADC产生设定信号K之外,参数设定单元22亦可于IC初始期间搭配查找表根据设定电压VSET产生设定信号K至电流镜CM。
参数设定单元22中的内部参数设定单元RDRP具有第一端DAC与第二端EAP。内部参数设定单元RDRP的第一端DAC接收电流镜CM的输出端所输出的下降电流IDRP并于内部参数设定单元RDRP的第二端EAP产生第一参考电压VEAP。
内部参数设定单元RDRP可以是内部电阻,且其第一端DAC与第二端EAP对应于图1中的已知的接脚DAC与EAP。由于内部参数设定单元RDRP与其第一端DAC与第二端EAP均已整合至直流-直流转换控制器2的内部,故可有效节省直流-直流转换控制器2的接脚数目。
误差放大器EA的正输入端+与负输入端-分别耦接内部参数设定单元RDRP的第二端EAP与回授接脚FB。误差放大器EA的正输入端+自内部参数设定单元RDRP的第二端EAP接收第一参考电压VEAP且误差放大器EA的负输入端-自回授接脚FB接收一输出回授电压VFB。误差放大器EA根据其接收到的输出回授电压VFB与参考电压EAP产生补偿信号COMP并通过补偿接脚COMP输出补偿信号COMP。
于实际应用中,直流-直流转换控制器2还可包括有电压随耦器VF。电压随耦器VF的正输入端+耦接至输入参考接脚REFIN且电压随耦器VF的负输入端-与输出端均耦接至内部参数设定单元RDRP的第一端DAC。
相较于先前技术,本发明的直流-直流转换控制器将图1中的已知的接脚DAC与EAP与耦接于两者之间的外部电阻RDRP均整合至其内部以节省接脚数目,并利用多功能接脚通过外部电阻接地并进行参数设定来调整负载电流比例,以动态调整输出电压。此外,本发明的直流-直流转换控制器将各相的输出电流在其内部加总后提供给电流镜CM或自电流输出接脚IMON输出,故可取消已知的输出电流加总接脚CSPSUM与CSNSUM,以更进一步节省接脚数目。至于原本耦接于输出电流加总接脚CSPSUM与CSNSUM的热敏电阻NTC则改为耦接于电流输出接脚IMON与输出参考接脚REFOUT之间,由以对输出电流提供温度补偿功能。

Claims (10)

1.一种直流-直流转换控制器,其特征在于,上述直流-直流转换控制器包括:
一电流感测单元,提供一感测电流;
一电流加总单元,耦接上述电流感测单元,用以根据一第一输出电流产生一加总电流;
一参数设定接脚,耦接一外部电阻且通过上述外部电阻接地;
一参数设定单元,耦接上述电流加总单元与上述参数设定接脚,且上述参数设定单元具有一内部电阻,其中上述参数设定单元根据上述外部电阻与上述感测电流产生一下降电流;以及
一误差放大器,包括一第一输入端与一第二输入端,其中上述第一输入端接收一输出回授电压,上述第二输入端接收一第一参考电压,
其中,上述第二输入端耦接上述内部电阻的一端且上述内部电阻的另一端接收上述下降电流,上述电流加总单元包括一第一电压随耦器且上述加总电流通过上述第一电压随耦器提供给上述参数设定单元。
2.如权利要求1所述的直流-直流转换控制器,其特征在于,于上述内部电阻的上述一端产生上述第一参考电压。
3.如权利要求1所述的直流-直流转换控制器,其特征在于,上述直流-直流转换控制器还包括:
一第一电流感测接脚,耦接上述电流加总单元,用以感测上述第一输出电流;
以及
一电流输出接脚,耦接上述电流加总单元,用以输出上述加总电流。
4.如权利要求3所述的直流-直流转换控制器,其特征在于,上述直流-直流转换控制器还包括:
一第二电流感测接脚,用以感测一第二输出电流,上述电流加总单元亦耦接上述第二电流感测接脚并根据上述第一输出电流与上述第二输出电流产生上述加总电流。
5.如权利要求3所述的直流-直流转换控制器,其特征在于,上述第一电压随耦器包括一第一输入端、一第二输入端与一输出端,上述第二输入端耦接上述电流输出接脚、上述第一输入端耦接至上述输出端且上述输出端耦接上述参数设定单元。
6.如权利要求5所述的直流-直流转换控制器,其特征在于,上述电流加总单元包括一第二电压随耦器,上述第二电压随耦器包括一第一输入端、一第二输入端与一输出端,上述第二输入端耦接一第二参考电压、上述第一输入端分别耦接上述输出端与上述参数设定单元且上述输出端耦接一输出参考接脚。
7.如权利要求1所述的直流-直流转换控制器,其特征在于,上述参数设定单元还包括:
一电流镜,用以根据一设定信号复制产生多个上述下降电流后输出。
8.如权利要求7所述的直流-直流转换控制器,其特征在于,上述参数设定单元还包括:
一模拟数字转换器,耦接于上述参数设定接脚与上述电流镜之间,用以根据上述参数设定接脚的一设定电压产生设定信号K至上述电流镜。
9.如权利要求7所述的直流-直流转换控制器,其特征在于,上述参数设定单元还包括:
一查找表,上述参数设定单元搭配上述查找表根据上述参数设定接脚的一设定电压产生上述设定信号K至上述电流镜。
10.如权利要求1所述的直流-直流转换控制器,其特征在于,上述误差放大器根据上述输出回授电压与上述第一参考电压产生一补偿信号。
CN201810281814.5A 2018-02-12 2018-04-02 直流-直流转换控制器 Active CN110149047B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107105063A TWI782951B (zh) 2018-02-12 2018-02-12 直流-直流轉換控制器
TW107105063 2018-02-12

Publications (2)

Publication Number Publication Date
CN110149047A CN110149047A (zh) 2019-08-20
CN110149047B true CN110149047B (zh) 2022-03-08

Family

ID=67541188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810281814.5A Active CN110149047B (zh) 2018-02-12 2018-04-02 直流-直流转换控制器

Country Status (3)

Country Link
US (1) US10680511B2 (zh)
CN (1) CN110149047B (zh)
TW (1) TWI782951B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079378A (zh) 2020-08-17 2022-02-22 力智电子股份有限公司 电源转换器的控制电路及其参考电压调整方法
CN115001263B (zh) * 2021-11-26 2023-05-09 荣耀终端有限公司 一种电源变换电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465993B1 (en) * 1999-11-01 2002-10-15 John Clarkin Voltage regulation employing a composite feedback signal
CN101040424A (zh) * 2004-08-19 2007-09-19 国际整流器公司 在多相变换器的相之间调节电流的方法和设备
CN103795036A (zh) * 2014-01-14 2014-05-14 广州金升阳科技有限公司 一种开关电源控制器的输入欠压保护电路
CN206442299U (zh) * 2016-12-09 2017-08-25 力智电子股份有限公司 直流对直流控制器的集成电路及其直流对直流转换电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446518B2 (en) * 2004-03-08 2008-11-04 Semtech Corporation Method and apparatus for enhancing voltage regulator transient response
TWI259273B (en) * 2004-09-22 2006-08-01 Richtek Technology Corp Temperature compensation device applied to voltage regulator and method thereof
CN101204002B (zh) * 2005-04-12 2011-07-06 意法半导体股份有限公司 多相电压调节器
US8072200B1 (en) 2007-12-21 2011-12-06 Intersil Americas Inc. AC and DC temperature compensation scheme for DCR current sense
ITMI20110832A1 (it) * 2011-05-12 2012-11-13 St Microelectronics Srl Dispositivo di sensing di corrente per un regolatore di tensione multifase a commutazione
US9300202B2 (en) * 2012-05-10 2016-03-29 Intersil Americas LLC System and method of dynamic droop for switched mode regulators
TWM443878U (en) 2012-07-23 2012-12-21 Richtek Technology Corp Multi-phase switching regulator and droop circuit therefor
US9419518B2 (en) * 2013-03-06 2016-08-16 Qualcomm Incorporated Transfer function generation based on pulse-width modulation information
WO2014166537A1 (en) * 2013-04-11 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Voltage droop control in a voltage-regulated switched mode power supply
US9419627B2 (en) * 2014-05-08 2016-08-16 Intersil Americas LLC Current synthesizer correction
US9473027B2 (en) * 2014-07-25 2016-10-18 Monolithic Power Systems, Inc. Voltage regulator with hybrid adaptive voltage position and control method thereof
US9887626B2 (en) * 2016-01-11 2018-02-06 Semiconductor Components Industries, Llc Adaptive feedback control system and method for voltage regulators
US10044273B2 (en) * 2016-12-21 2018-08-07 Dialog Semiconductor (Uk) Limited Multi-phase switching converter
TWI798200B (zh) * 2018-02-02 2023-04-11 力智電子股份有限公司 直流-直流轉換控制器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465993B1 (en) * 1999-11-01 2002-10-15 John Clarkin Voltage regulation employing a composite feedback signal
CN101040424A (zh) * 2004-08-19 2007-09-19 国际整流器公司 在多相变换器的相之间调节电流的方法和设备
CN103795036A (zh) * 2014-01-14 2014-05-14 广州金升阳科技有限公司 一种开关电源控制器的输入欠压保护电路
CN206442299U (zh) * 2016-12-09 2017-08-25 力智电子股份有限公司 直流对直流控制器的集成电路及其直流对直流转换电路

Also Published As

Publication number Publication date
TWI782951B (zh) 2022-11-11
TW201935832A (zh) 2019-09-01
US20190252982A1 (en) 2019-08-15
US10680511B2 (en) 2020-06-09
CN110149047A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
CN109586565B (zh) Cot控制的多相直流变换器及控制电路和均流方法
EP1844533B1 (en) Compensated droop method for paralleling of power supplies ( c-droop method)
US10666272B2 (en) COT control circuit and associated DC-DC converter
JP4810775B2 (ja) Dc−dcコンバータ
US7193871B2 (en) DC-DC converter circuit
TWI634728B (zh) 運作於脈衝省略模式的控制電路及具有其之電壓轉換器
US20120187995A1 (en) Error amplification circuit, control method for error amplification circuit, and switching regulator employing error amplification circuit
TWI591949B (zh) 具有漣波調變定導通時間之切換式電源供應器及其控制電路與控制方法
CN110149047B (zh) 直流-直流转换控制器
CN114070055A (zh) 具快速瞬时响应的电源转换器
US10700607B2 (en) Control method and control circuit of a multi-phase converter
WO2021005820A1 (ja) 電源システム
US20190149047A1 (en) Multiphase buck converter with current balancing
JP2021174388A (ja) 電源装置
US7432692B2 (en) Circuit and method for changing transient response characteristics of a DC/DC converter module
CN111277134A (zh) 电压转换电路及显示装置
US11133742B2 (en) Switched capacitor converter, current control circuit and current control method thereof
US10574141B2 (en) Current mirror calibration circuit and current mirror calibration method
CN110138208B (zh) 直流-直流转换控制器
US11621637B2 (en) Control circuit of power converter
CN113285589B (zh) 电压转换电路及电子设备
CN110932524B (zh) 多相电源转换的控制器及电流平衡方法
JP2021101594A (ja) 特性補償回路
CN117691546A (zh) 过温保护电路及其适用的电源装置
KR20210014967A (ko) 오차 전압 생성기 및 이를 포함하는 전력 변환장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant