CN110148648B - 一种具有双掺杂Al组分渐变分离层的紫外探测器 - Google Patents

一种具有双掺杂Al组分渐变分离层的紫外探测器 Download PDF

Info

Publication number
CN110148648B
CN110148648B CN201910414019.3A CN201910414019A CN110148648B CN 110148648 B CN110148648 B CN 110148648B CN 201910414019 A CN201910414019 A CN 201910414019A CN 110148648 B CN110148648 B CN 110148648B
Authority
CN
China
Prior art keywords
layer
type
doped
undoped
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910414019.3A
Other languages
English (en)
Other versions
CN110148648A (zh
Inventor
张�雄
陆亮
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910414019.3A priority Critical patent/CN110148648B/zh
Publication of CN110148648A publication Critical patent/CN110148648A/zh
Application granted granted Critical
Publication of CN110148648B publication Critical patent/CN110148648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及一种具有双掺杂Al组分渐变分离层的紫外探测器,包括由下至上依次设置的衬底、AlN中间层、非掺杂i‑Alx1Ga1‑x1N缓冲层、n型n‑Alx2Ga1‑x2N层、非掺杂i‑Alx3Ga1‑x3N吸收层、双掺杂Al组分渐变p‑Alx4Ga1‑x4N/i‑Alx5Ga1‑x5N/n‑Alx6Ga1‑x6N分离层、非掺杂i‑Alx7Ga1‑x7N倍增层、p型p‑Alx8Ga1‑x8N层以及p型GaN层;在n型n‑Alx1Ga1‑x1N层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,其中x1>x2=x3=x4>x5>x6=x7>x8,通过对分离层两端的Al组分渐变区域分别进行p型掺杂和n型掺杂,可利用组分渐变伴随的极化诱导效应,增加载流子浓度,进一步增强极化电场。

Description

一种具有双掺杂Al组分渐变分离层的紫外探测器
技术领域
本发明涉及一种具有双掺杂Al组分渐变分离层的紫外探测器,属于半导体光电子器件领域。
背景技术
作为直接带隙半导体材料的AlxGa1-xN,禁带宽度随着Al组分的不同从3.42 eV到6.8 eV连续可调,其发射光谱范围为200-365 nm,恰好覆盖由于臭氧层吸收紫外光而产生的太阳光谱盲区 (240-280 nm),并且AlGaN材料体积小,重量轻,寿命长,抗震性好;耐高温,耐腐蚀,抗辐照,适用于恶劣环境;工作电压低,不需要高压电源等特点,是制作太阳盲区紫外探测器的理想材料之一。
微弱光信号的探测是紫外探测领域中的一个重要的应用,尤其是单光子的探测。单光子探测要求探测器具备高响应,高增益的性能,因此探测器需要采用雪崩结构,光注入产生的电子空穴对在雪崩电场下加速,在获得足够的动能后,通过碰撞电离产生更多的电子-空穴对,实现雪崩增益,使微弱信号得到培增,从而对其进行探测。
然而,制备日盲波段的紫外探测器需要采用高Al组分的AlGaN材料。事实上,如果把AlxGa1-xN材料中的Al组分调整到x>0.4,就可以使制备的AlGaN紫外探测器的截止波长低于280 nm。但是,增加Al组分也会增大材料的晶格失配。此外,对于存在吸收层、分离层和倍增层的p-i-n结构的紫外探测器,由于各层之间的Al组分存在较大的差异,所以会导致较大的晶格失配,因而容易引发高位错密度,严重影响器件的晶体质量,从而产生较大的暗电流。另外,较大的Al组分差异还会增强压电极化效应,降低电子空穴离化能,进而影响微弱信号的探测,导致响应度降低。
发明内容
本发明针对现有技术中存在的不足,提供了一种具有双掺杂Al组分渐变分离层的紫外探测器,以解决现有技术中存在的问题。
为实现上述目的,本发明采用的技术方案如下:
一种具有双掺杂Al组分渐变分离层的紫外探测器,包括由下至上依次设置的衬底、AlN中间层、非掺杂i-Alx1Ga1-x1N缓冲层、n型n-Alx2Ga1-x2N层、非掺杂i-Alx3Ga1-x3N吸收层、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层、非掺杂i-Alx7Ga1- x7N倍增层、p型p-Alx8Ga1-x8N层以及p型GaN层;在n型n-Alx1Ga1-x1N层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,其中x1、x2、x3、x4、x5、x6、x7、x8满足x1>x2=x3=x4>x5>x6=x7>x8。
作为本发明的一种改进,所述衬底为可外延生长出极性、半极性GaN基材料的蓝宝石衬底。
作为本发明的一种改进,所述AlN中间层的厚度为5-5000 nm,非掺杂i-Alx1Ga1-x1N缓冲层的厚度为50-5000 nm,n型n-Alx2Ga1-x2N层的厚度为200-5000 nm,非掺杂i-Alx3Ga1- x3N吸收层的厚度为100-250 nm,非掺杂i-Alx7Ga1-x7N倍增层的厚度为100-250 nm,p型p-Alx8Ga1-x8N层的厚度为100-200 nm,p型GaN层的厚度为50-100 nm。
作为本发明的一种改进,所述双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层包括从下到上依次进行设置的p型掺杂p-Alx4Ga1-x4N层、非掺杂i-Alx5Ga1-x5N层以及n型掺杂n-Alx6Ga1-x6N层;p型掺杂层与非掺杂i-Alx5Ga1-x5N层的交界处设有第一Al组分渐变层,并且Al组分为渐变方式进行生长;非掺杂i-Alx5Ga1-x5N层以及n型掺杂n-Alx6Ga1-x6N层的交界处设有第二Al组分渐变层,并且Al组分为渐变方式进行生长。
作为本发明的一种改进,所述非掺杂i-Alx5Ga1-x5N层的厚度为20-100 nm;所述p型掺杂p-Alx4Ga1-x4N层的厚度为20-100 nm,其中包括5-10 nm 的第一Al组分渐变层;n型掺杂n-Alx6Ga1-x6N层的厚度为20-100 nm,其中包括5-10 nm 的第二Al组分渐变层。
作为本发明的一种改进,所述p型掺杂p-Alx4Ga1-x4N层利用Mg、Be、Zn和Cd等p型杂质进行掺杂,其中的空穴浓度为1×1015-1×1019cm-3;n型掺杂n-Alx6Ga1-x6N层利用Si、S、Se和Te等n型杂质进行掺杂,其中的电子浓度为1×1015-1×1020cm-3
本发明公开了一种具有双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层的紫外探测器,能够有效降低位错密度,提高晶体质量,降低暗电流,同时减弱压电极化效应,进一步增强分离层中的极化电场,提高紫外探测器的响应度和灵敏度。
由于采用了以上技术,本发明较现有技术相比,具有的有益效果如下:
本发明提供的一种具有双掺杂Al组分渐变分离层的紫外探测器,通过对分离层与吸收层之间的异质结界面处进行p型掺杂,以及对分离层与倍增层之间的异质结界面处进行n型掺杂,可充分利用存在于氮化物这一极性材料中的强极化效应,形成与极化电场方向一致的电场,从而可以增强极化电场,显著提高空穴进入倍增区的动能,明显降低雪崩击穿电压,减小雪崩击穿时的暗电流,显著提高雪崩倍增因子,进而提高探测器的灵敏度和响应度。此外,Al组分渐变层的插入能有效减少由于Al组分相差过大引起的较大晶格失配,有利于减少异质界面处的位错密度,提高晶体质量,降低探测器中的暗电流,减少探测器工作过程中的噪声,提高了探测器响应度。并且,Al组分渐变层的引入能有效释放晶格形变产生的应力,减弱压电极化电场。但同时伴随的极化诱导效应,却有利于增加载流子浓度,进一步增强极化电场。因此,本发明提供的一种具有双掺杂Al组分渐变分离层,对于提高紫外探测器的响应度和灵敏度具有十分重要的意义。
附图说明
图1为本发明提供的具有双掺杂Al组分渐变分离层紫外探测器的层结构示意图;
图2为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器的双掺杂Al组分分离层的放大断面结构示意图;
图3为现有的具有吸收-分离-倍增层结构的紫外探测器的层结构示意图;
图中:101、衬底,102、AlN中间层,103、非掺杂i-Alx1Ga1-x1N缓冲层,104、n型n-Alx2Ga1-x2N层,105、非掺杂i-Alx3Ga1-x3N吸收层,106、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层,107、非掺杂i-Alx7Ga1-x7N倍增层,108、p型p-Alx8Ga1-x8N层,109、p型GaN层,110、n型欧姆电极,111 p型欧姆电极,1061、p型掺杂p-Alx4Ga1-x4N层,1062、非掺杂i-Alx5Ga1-x5N层,1063、n型掺杂n-Alx6Ga1-x6N层,1064、第一Al组分渐变层,1065、第二Al组分渐变层,203、非掺杂i-Aly1Ga1-y1N缓冲层,204、n型n-Aly2Ga1-y2N层,205、非掺杂i-Aly3Ga1-y3N吸收层,206、n型n-Aly4Ga1-y4N分离层,207、非掺杂i-Aly5Ga1-y5N倍增层,208、p型p-Aly6Ga1-y6N层。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明。
实施例1
一种具有双掺杂Al组分渐变分离层的紫外探测器,包括由下至上依次设置的衬底101、AlN中间层102、非掺杂i-Alx1Ga1-x1N缓冲层103、n型n-Alx2Ga1-x2N层104、非掺杂i-Alx3Ga1-x3N吸收层105、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层106、非掺杂i-Alx7Ga1-x7N倍增层107、p型p-Alx8Ga1-x8N层108以及p型GaN层109;在n型n-Alx1Ga1-x1N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111,其中x1、x2、x3、x4、x5、x6、x7、x8满足x1>x2=x3=x4>x5>x6=x7>x8。
如图1所示为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器,由下至上依次设置的c面蓝宝石衬底101,AlN中间层102,非掺杂i-Al0.65Ga0.35N缓冲层103,n型n-Al0.60Ga0.40N层104,非掺杂i-Al0.60Ga0.40N吸收层105,双掺杂Al组分渐变p-Al0.60Ga0.40N/i-Al0.50Ga0.50N/n-Al0.40Ga0.60N分离层106,非掺杂i-Al0.40Ga0.60N倍增层107,p型p-Al0.35Ga0.65N层108,p型GaN层109,在n型n-Al0.60Ga0.40N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111。
所述的AlN中间层102的厚度为500 nm,非掺杂i-Al0.65Ga0.35N缓冲层103的厚度为1000 nm,n型n-Al0.60Ga0.40N层104的厚度为500 nm,非掺杂i-Al0.60Ga0.40N吸收层105的厚度为100 nm,非掺杂i-Al0.40Ga0.60N倍增层107厚度为100 nm,p型p-Al0.35Ga0.65N层108的厚度为100 nm,p型GaN层109厚度为50 nm。
所述衬底101为可外延生长出极性、半极性GaN基材料的蓝宝石衬底101。
图2为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器的双掺杂Al组分分离层106的放大断面结构示意图。双掺杂Al组分渐变p-Al0.60Ga0.40N/i-Al0.50Ga0.50N/n-Al0.40Ga0.60N分离层106包括由下至上依次设置的p型掺杂p-Al0.60Ga0.40N层1061、非掺杂i-Al0.50Ga0.50N层1062和n型掺杂n-Al0.40Ga0.60N层1063,并且p型掺杂p-Al0.60Ga0.40N层1061与非掺杂i-Al0.50Ga0.50N层1062的交界处设有第一Al组分渐变层1064(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.60渐变到0.50方式生长,n型掺杂n-Al0.40Ga0.60N层1063与非掺杂i-Al0.50Ga0.50N层1062的交界处设有第二Al组分渐变层1065(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.50渐变到0.40方式生长。
非掺杂i-Al0.50Ga0.50N层1062的厚度为20 nm;p型掺杂p-Al0.60Ga0.40N层1061的厚度为20 nm,其中包括5 nm的第一Al组分渐变层1064(p型掺杂Al组分渐变层); n型掺杂n-Al0.40Ga0.60N层1063的厚度为20 nm,其中包括5 nm的第二Al组分渐变层1065(n型掺杂Al组分渐变层)。
所述的双掺杂Al组分渐变p-Al0.60Ga0.40N/i-Al0.50Ga0.50N/n-Al0.40Ga0.60N分离层106中p型掺杂p-Al0.60Ga0.40N层1061利用Mg进行掺杂,其中Mg掺杂的空穴浓度为1×1015cm-3
所述的双掺杂Al组分渐变p-Al0.60Ga0.40N/i-Al0.50Ga0.50N/n-Al0.40Ga0.60N分离层106中n型掺杂n-Al0.40Ga0.60N层1063利用Si进行掺杂,其中Si掺杂的电子浓度为1×1015cm-3
所述p型欧姆电极111和n型欧姆电极110均由Ni/Au合金材料构成。
实施例2
一种具有双掺杂Al组分渐变分离层的紫外探测器,包括由下至上依次设置的衬底101、AlN中间层102、非掺杂i-Alx1Ga1-x1N缓冲层103、n型n-Alx2Ga1-x2N层104、非掺杂i-Alx3Ga1-x3N吸收层105、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层106、非掺杂i-Alx7Ga1-x7N倍增层107、p型p-Alx8Ga1-x8N层108以及p型GaN层109;在n型n-Alx1Ga1-x1N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111,其中x1、x2、x3、x4、x5、x6、x7、x8满足x1>x2=x3=x4>x5>x6=x7>x8。
如图1所示为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器,由下至上依次设置的c面蓝宝石衬底101,AlN中间层102,非掺杂i-Al0.60Ga0.40N缓冲层103,n型n-Al0.55Ga0.45N层104,非掺杂i-Al0.55Ga0.45N吸收层105,双掺杂Al组分渐变p-Al0.55Ga0.45N/i-Al0.45Ga0.55N/n-Al0.35Ga0.65N分离层106,非掺杂i-Al0.35Ga0.65N倍增层107,p型p-Al0.3Ga0.7N层108,p型GaN层109,在n型n-Al0.55Ga0.45N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111。
所述的AlN中间层102的厚度为1000 nm,非掺杂i-Al0.60Ga0.40N缓冲层103的厚度为2000 nm,n型n-Al0.55Ga0.45N层104的厚度为1000 nm,非掺杂i-Al0.55Ga0.45N吸收层105的厚度为200 nm,非掺杂i-Al0.35Ga0.65N倍增层107厚度为200 nm,p型p-Al0.3Ga0.7N层108的厚度为150 nm,p型GaN层109厚度为60 nm。
所述衬底101为可外延生长出极性、半极性GaN基材料的蓝宝石衬底101。
图2为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器的双掺杂Al组分分离层106的放大断面结构示意图。双掺杂Al组分渐变p-Al0.55Ga0.45N/i-Al0.45Ga0.55N/n-Al0.35Ga0.65N分离层106包括由下至上依次设置的p型掺杂p-Al0.55Ga0.45N层1061、非掺杂i-Al0.45Ga0.55N层1062和n型掺杂n-Al0.35Ga0.65N层1063,并且p型掺杂p-Al0.55Ga0.45N层1061与非掺杂i-Al0.45Ga0.55N层1062的交界处设有第一Al组分渐变层1064(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.55渐变到0.45方式生长,n型掺杂n-Al0.35Ga0.65N层1063与非掺杂i-Al0.45Ga0.55N层1062的交界处设有第二Al组分渐变层1065(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.45渐变到0.35方式生长。
非掺杂i-Al0.45Ga0.55N层1062的厚度为50 nm;p型掺杂p-Al0.55Ga0.45N层1061的厚度为50 nm,其中包括6 nm的第一Al组分渐变层1064(p型掺杂Al组分渐变层); n型掺杂n-Al0.35Ga0.65N层1063的厚度为50 nm,其中包括6 nm的第二Al组分渐变层1065(n型掺杂Al组分渐变层)。
所述的双掺杂Al组分渐变p-Al0.55Ga0.45N/i-Al0.45Ga0.55N/n-Al0.35Ga0.65N分离层106中p型掺杂p-Al0.55Ga0.45N层1061利用Mg进行掺杂,其中Mg掺杂的空穴浓度为1×1017cm-3
所述的双掺杂Al组分渐变p-Al0.55Ga0.45N/i-Al0.45Ga0.55N/n-Al0.35Ga0.65N分离层106中n型掺杂n-Al0.35Ga0.65N层1063利用Si进行掺杂,其中Si掺杂的电子浓度为1×1019cm-3
所述p型欧姆电极111和n型欧姆电极110均由Ni/Au合金材料构成。
实施例3
一种具有双掺杂Al组分渐变分离层的紫外探测器,包括由下至上依次设置的衬底101、AlN中间层102、非掺杂i-Alx1Ga1-x1N缓冲层103、n型n-Alx2Ga1-x2N层104、非掺杂i-Alx3Ga1-x3N吸收层105、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层106、非掺杂i-Alx7Ga1-x7N倍增层107、p型p-Alx8Ga1-x8N层108以及p型GaN层109;在n型n-Alx1Ga1-x1N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111,其中x1、x2、x3、x4、x5、x6、x7、x8满足x1>x2=x3=x4>x5>x6=x7>x8。
如图1所示为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器,由下至上依次设置的c面蓝宝石衬底101,AlN中间层102,非掺杂i-Al0.55Ga0.45N缓冲层103,n型n-Al0.50Ga0.50N层104,非掺杂i-Al0.50Ga0.50N吸收层105,双掺杂Al组分渐变p-Al0.50Ga0.50N/i-Al0.40Ga0.60N/n-Al0.30Ga0.70N分离层106,非掺杂i-Al0.30Ga0.70N倍增层107,p型p-Al0.25Ga0.75N层108,p型GaN层109,在n型n-Al0.50Ga0.50N层104上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111。
所述的AlN中间层102的厚度为5000 nm,非掺杂i-Al0.55Ga0.45N缓冲层103的厚度为5000 nm,n型n-Al0.55Ga0.45N层104的厚度为2000 nm,非掺杂i-Al0.50Ga0.50N吸收层105的厚度为250 nm,非掺杂i-Al0.30Ga070N倍增层107厚度为250 nm,p型p-Al0.25Ga0.75N层108的厚度为200 nm,p型GaN层109厚度为100 nm。
所述衬底101为可外延生长出极性、半极性GaN基材料的蓝宝石衬底101。
图2为本发明提供的具有双掺杂Al组分渐变分离层的紫外探测器的双掺杂Al组分分离层106的放大断面结构示意图。双掺杂Al组分渐变p-Al0.50Ga0.50N/i-Al0.40Ga0.60N/n-Al0.30Ga0.70N分离层106包括由下至上依次设置的p型掺杂p-Al0.50Ga0.50N层1061、非掺杂i-Al0.40Ga0.60N层1062和n型掺杂n-Al0.30Ga0.60N层1063,并且p型掺杂p-Al0.50Ga0.50N层1061与非掺杂i-Al0.40Ga0.60N层1062的交界处设有第一Al组分渐变层1064(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.50渐变到0.40方式生长,n型掺杂n-Al0.30Ga0.70N层1063与非掺杂i-Al0.40Ga0.60N层1062的交界处设有第二Al组分渐变层1065(图1和图2中以虚线和阴影标出),并且Al组分为渐变方式进行生长,即界面处采用Al组分从0.40渐变到0.30方式生长。
非掺杂i-Al0.40Ga0.60N层1062的厚度为100 nm;p型掺杂p-Al0.50Ga0.50N层1061的厚度为100 nm,其中包括10nm的第一Al组分渐变层1064(p型掺杂Al组分渐变层); n型掺杂n-Al0.30Ga0.70N层1063的厚度为100 nm,其中包括10 nm的第二Al组分渐变层1065(n型掺杂Al组分渐变层)。
所述的双掺杂Al组分渐变p-Al0.50Ga0.50N/i-Al0.40Ga0.60N/n-Al0.30Ga0.70N分离层106中p型掺杂p-Al0.50Ga0.50N层1061利用Mg进行掺杂,其中Mg掺杂的空穴浓度为1×1019cm-3
所述的双掺杂Al组分渐变p-Al0.50Ga0.50N/i-Al0.40Ga0.60N/n-Al0.30Ga0.70N分离层106中n型掺杂n-Al0.30Ga0.70N层1063利用Si进行掺杂,其中Si掺杂的电子浓度为1×1020cm-3
所述p型欧姆电极111和n型欧姆电极110均由Ni/Au合金材料构成。
实施例4
图3为现有的具有吸收-分离-倍增层结构的紫外探测器的层结构示意图。其结构从下至上依次设置为:衬底101,AlN中间层102、非掺杂i-Aly1Ga1-y1N缓冲层203,n型n-Aly2Ga1-y2N层204,非掺杂i-Aly3Ga1-y3N吸收层205,n型n-Aly4Ga1-y4N分离层206,非掺杂i-Aly5Ga1-y5N倍增层207,p型p-Aly6Ga1-y6N层208,p型GaN层109,在n型n-Aly2Ga1-y2N层204上引出n型欧姆电极110,在p型GaN层109上引出p型欧姆电极111,所述y1、y2、y3、y4、y5、y6满足y1>y2>y3>y4>y5>y6。
需着重说明的是,本发明的双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层106包括有p型掺杂p-Alx4Ga1-x4N层1061、非掺杂i-Alx5Ga1-x5N层1062和n型掺杂n-Alx6Ga1-x6N层1063,并且p型掺杂p-Al0.55Ga0.45N层1061与非掺杂i-Al0.45Ga0.55N层1062的交界处设有第一Al组分渐变层1064,并且Al组分为渐变方式进行生长,n型掺杂n-Al0.35Ga0.65N层1063与非掺杂i-Al0.45Ga0.55N层1062的交界处设有第二Al组分渐变层1065,并且Al组分为渐变方式进行生长。此部分是本发明能使极化电场进一步增强,晶体质量提高的关键部分,其主要作用在于形成与极化电场方向一致的电场,减小压电极化效应,进一步增强极化电场,并且有效降低位错密度,提高晶体质量,从而提高紫外探测器的响应度和灵敏度。
上述实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围,即在此范围内的等同替换改进,也在本发明的保护范围之内。

Claims (6)

1.一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:包括由下至上依次设置的衬底(101)、AlN中间层(102)、非掺杂i-Alx1Ga1-x1N缓冲层(103)、n型n-Alx2Ga1-x2N层(104)、非掺杂i-Alx3Ga1-x3N吸收层(105)、双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层(106)、非掺杂i-Alx7Ga1-x7N倍增层(107)、p型p-Alx8Ga1-x8N层(108)以及p型GaN层(109);在n型n-Alx1Ga1-x1N层(104)上引出n型欧姆电极(110),在p型GaN层(109)上引出p型欧姆电极(111),其中x1、x2、x3、x4、x5、x6、x7、x8满足x1>x2=x3=x4>x5>x6=x7>x8。
2.根据权利要求1所述的一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:所述衬底(101)为可外延生长出极性、半极性GaN基材料的蓝宝石衬底。
3.根据权利要求1所述的一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:所述AlN中间层(102)的厚度为5-5000 nm,非掺杂i-Alx1Ga1-x1N缓冲层(103)的厚度为50-5000 nm,n型n-Alx2Ga1-x2N层(104)的厚度为200-5000 nm,非掺杂i-Alx3Ga1-x3N吸收层(105)的厚度为100-250 nm,非掺杂i-Alx7Ga1-x7N倍增层(107)的厚度为100-250 nm,p型p-Alx8Ga1-x8N层(108)的厚度为100-200 nm,p型GaN层(109)的厚度为50-100 nm。
4.根据权利要求1所述的一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:所述双掺杂Al组分渐变p-Alx4Ga1-x4N/i-Alx5Ga1-x5N/n-Alx6Ga1-x6N分离层(106)包括从下到上依次进行设置的p型掺杂p-Alx4Ga1-x4N层(1061)、非掺杂i-Alx5Ga1-x5N层(1062)以及n型掺杂n-Alx6Ga1-x6N层(1063);p型掺杂层(1061)与非掺杂i-Alx5Ga1-x5N层(1062)的交界处设有第一Al组分渐变层(1064),并且Al组分为渐变方式进行生长;非掺杂i-Alx5Ga1-x5N层(1062)与n型掺杂n-Alx6Ga1-x6N层(1063)的交界处设有第二A1组分渐变层(1065),
并且Al组分为渐变方式进行生长。
5.根据权利要求4所述的一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:所述非掺杂i-Alx5Ga1-x5N层(1062)的厚度为20-100 nm;所述p型掺杂p-Alx4Ga1-x4N层(1061)的厚度为20-100 nm,其中包括5-10 nm 的第一Al组分渐变层(1064);n型掺杂n-Alx6Ga1-x6N层(1063)的厚度为20-100 nm,其中包括5-10 nm 的第二Al组分渐变层(1065)。
6.根据权利要求4所述的一种具有双掺杂Al组分渐变分离层的紫外探测器,其特征在于:所述p型掺杂p-Alx4Ga1-x4N层(1061)的空穴浓度为1×1015-1×1019cm-3;n型掺杂n-Alx6Ga1-x6N层(1063)的电子浓度为1×1015-1×1020 cm-3
CN201910414019.3A 2019-05-17 2019-05-17 一种具有双掺杂Al组分渐变分离层的紫外探测器 Active CN110148648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910414019.3A CN110148648B (zh) 2019-05-17 2019-05-17 一种具有双掺杂Al组分渐变分离层的紫外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910414019.3A CN110148648B (zh) 2019-05-17 2019-05-17 一种具有双掺杂Al组分渐变分离层的紫外探测器

Publications (2)

Publication Number Publication Date
CN110148648A CN110148648A (zh) 2019-08-20
CN110148648B true CN110148648B (zh) 2021-05-11

Family

ID=67594296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910414019.3A Active CN110148648B (zh) 2019-05-17 2019-05-17 一种具有双掺杂Al组分渐变分离层的紫外探测器

Country Status (1)

Country Link
CN (1) CN110148648B (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845081B2 (ja) * 1993-04-07 1999-01-13 日本電気株式会社 半導体受光素子
FR2756420B1 (fr) * 1996-11-27 1999-02-12 France Telecom Photodiodes a avalanche
EP2446483B1 (en) * 2009-06-26 2018-02-14 Amplification Technologies, INC. Low-level signal detection by semiconductor avalanche amplification
CN104362213B (zh) * 2014-09-11 2016-06-15 东南大学 一种铝镓氮基日盲紫外探测器及其制备方法
CN105590971B (zh) * 2016-03-18 2017-02-08 南京大学 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN108400159B (zh) * 2018-01-25 2020-08-25 厦门市三安集成电路有限公司 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
CN108305911B (zh) * 2018-03-16 2019-10-25 中山大学 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器

Also Published As

Publication number Publication date
CN110148648A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
US6956251B2 (en) On-p-GaAs substrate Zn1−xMgxSySe1−y pin photodiode and on-p-GaAs substrate Zn1−xMgxSySe1−y avalanche photodiode
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN105655437A (zh) 一种紫外雪崩光电探测器
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN110164996B (zh) 一种非极性algan基肖特基紫外探测器
JP2017126622A (ja) 間接遷移半導体材料を用いた量子構造を有する光電変換素子
CN102820367A (zh) 基于异质结构吸收、倍增层分离GaN基雪崩光电探测器
US7525131B2 (en) Photoelectric surface and photodetector
CN114361285A (zh) 1.55微米波段雪崩光电探测器及其制备方法
CN100511554C (zh) 半导体光电阴极、以及应用半导体光电阴极的光电管
CN106410001B (zh) 一种AlGaN基紫外发光二极管
CN110137279A (zh) 一种具有金属和石墨烯插入层的紫外探测器
CN113257962B (zh) 一种具有p-i-n型多量子阱结构的紫外发光二极管
Hou et al. Study on AlGaN PININ solar-blind avalanche photodiodes with Al 0.45 Ga 0.55 N multiplication layer
CN102593234B (zh) 一种基于异质结构的吸收、倍增层分离的紫外雪崩光电探测器
CN110148648B (zh) 一种具有双掺杂Al组分渐变分离层的紫外探测器
CN108538930B (zh) 光电探测器
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN102254779A (zh) 无需Cs激活的异质结型GaN负电子亲和势光电阴极
CN207021269U (zh) 一种pin结构紫外光电探测器
CN112151639B (zh) 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant