CN110148006A - 一种电力市场恶意竞价行为识别方法 - Google Patents

一种电力市场恶意竞价行为识别方法 Download PDF

Info

Publication number
CN110148006A
CN110148006A CN201910419673.3A CN201910419673A CN110148006A CN 110148006 A CN110148006 A CN 110148006A CN 201910419673 A CN201910419673 A CN 201910419673A CN 110148006 A CN110148006 A CN 110148006A
Authority
CN
China
Prior art keywords
price
quotation
market
participating
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910419673.3A
Other languages
English (en)
Other versions
CN110148006B (zh
Inventor
徐玉杰
翟树军
张凯楠
吕岳
袁海洲
胡本哲
杨霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Tianjin Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Tianjin Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201910419673.3A priority Critical patent/CN110148006B/zh
Publication of CN110148006A publication Critical patent/CN110148006A/zh
Application granted granted Critical
Publication of CN110148006B publication Critical patent/CN110148006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/018Certifying business or products
    • G06Q30/0185Product, service or business identity fraud
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Finance (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Development Economics (AREA)
  • Algebra (AREA)
  • Accounting & Taxation (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种电力市场恶意竞价行为识别方法,包括如下步骤:S1、采集电力交易中心各市场参与主体申报电量、申报电价数据及历史出清价格,写入数据库;将参与主体本次申报电价数据作为分析识别对象;S2、计算所有报价数据的平均值与标准差σ;S3、根据正态分布的置信概率理论,确定出让方报价合理区间为S4、根据置信概率区间,判断各出让方申报电价的合理性,筛选出所有可能恶意报价的出让方;S5、根据步骤S4筛选的可能恶意报价出让方,计算其本次报价与历史报价均值的偏离幅度,确定恶意报价主体;本发明在申报阶段能够根据申报电价,及时识别出异常报价行为并发出预警,提高了市场健康度,优化了电力市场运行机制。

Description

一种电力市场恶意竞价行为识别方法
技术领域
本发明属于电力市场竞价识别技术领域,尤其涉及一种电力市场恶意竞价行为识别方法。
背景技术
在电力市场环境下,开展策略性竞价是市场参与者的重要决策行为之一,各市场参与者向电力交易中心策略报价以达到自身价值最大化的目的。在电力撮合交易中,科学合理的竞价行为是提高市场活力,优化资源配置的重要手段。通常情况下,发电企业(出让方)会根据自身历史发电成本,综合考虑电力供需形势及盈利目标,确定自身的申报电价;用电企业(受让方)会根据自身历史用电成本,综合考虑电力供需形势及节能目标,确定自身的申报电价。然而,在电力集中交易市场中,由于市场存在的信息不对称性,部分市场主体借助自身市场控制力,恶意申报明显高于或低于成本的市场报价以攫取非法利益,严重扰乱了市场经济行为,相应带来了更高的交易违约率,不利于电力市场的建设和发展。因此,迫切需要一种识别电力市场参与主体恶意报价行为的方法,在申报阶段能够根据申报电价,及时识别出异常报价行为并发出预警,这是提高市场健康度,优化电力市场机制设计的一种重要手段。
发明内容
本发明的目的在于克服现有技术的不足,提供一种在申报阶段能够根据申报电价,及时识别出异常报价行为并发出预警,提高市场健康度,优化电力市场运行机制的电力市场恶意竞价行为识别方法。
本发明解决其技术问题是采取以下技术方案实现的:
一种电力市场恶意竞价行为识别方法,包括如下步骤:
S1、采集电力交易中心各市场参与主体申报电量、申报电价数据及历史出清价格,写入数据库;采集电力交易中心各市场参与主体本次申报电价数据,作为分析识别对象;
S2、计算所有参与主体申报电价数据的平均值与标准差σ:
式中:为参与主体申报电价的均价,Qi、Pi分别为参与主体i的申报电量和申报电价,N为电力市场参与主体的数量;
S3、根据正态分布的置信概率理论,确定参与主体报价合理区间为
其中:k为置信因子,k的取值取决于市场容忍程度,k越大,市场容忍度越高;
S4、根据置信概率区间,判断各参与主体申报电价的合理性,筛选出所有可能恶意报价的参与主体,判断依据如下:
时,认为参与主体可能恶意报低价;当时,认为参与主体可能恶意报高价;
S5、根据步骤S4筛选的可能恶意报价参与主体,计算其本次报价与历史报价均值的偏离幅度,并与交易中心设定的判断阈值α进行对比,确定恶意报价主体;偏离幅度计算方法如下:
其中,n为参与主体i历史报价次数,Pij为参与主体i第j次申报电价,α为电力交易中心设定的判断阈值;
当θi≤α时,认为参与主体i报价策略保持稳定,属于正常的报价行为;
当θi>α时,认为参与主体i本次报价明显偏离历史报价规律,有恶意报价的嫌疑。
进一步的,所述电力交易中心设定的判断阈值α可根据电力市场历史申报电价均值与出清电价均值的偏差确定,确定判断阈值α的计算公式如下:
其中,为电力市场全部参与主体历史申报电价均值,为电力市场全部参与主体历史出清电价均值。
需要说明的是,所述参与主体可以为出让方,也可以为受让方;通常情况下,出让方是指发电企业,受让方是指用电企业。
本发明的优点和积极效果是:
本发明在申报阶段能够根据申报电价,及时识别出异常报价行为并发出预警,既适用于识别电力市场主体中出让方恶意报价的行为,也适用于受让方恶意报价的行为,提高了市场健康度,优化了电力市场运行机制。
附图说明
以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述,但是应当知道,这些附图仅是为解释目的而设计的,因此不作为本发明范围的限定。此外,除非特别指出,这些附图仅意在概念性地说明此处描述的结构构造,而不必要依比例进行绘制。
图1为本发明实施例提供的电力市场恶意竞价行为识别方法的步骤流程图;
具体实施方式
首先,需要说明的是,以下将以示例方式来具体说明本发明的具体结构、特点和优点等,然而所有的描述仅是用来进行说明的,而不应将其理解为对本发明形成任何限制。此外,在本文所提及各实施例中予以描述或隐含的任意单个技术特征,仍然可在这些技术特征(或其等同物)之间继续进行任意组合或删减,从而获得可能未在本文中直接提及的本发明的更多其他实施例。需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面就结合图1来具体说明本发明。
实施例1
本实施例以出让方作为市场参与主体来进行说明;
图1为本发明实施例提供的电力市场恶意竞价行为识别方法的步骤流程图;
本实施例以某省级电力交易中心3月份电力市场交易数据为研究对象,分析相关参与主体市场竞价行为。本次电力市场交易共计有56家出让方参加,申报总电量为32961万kWh。部分申报数据如下表1所示。
表1某省级电力交易中心3月份电力市场交易部分数据
通过公式(1)、(2)分别计算56家出让方的所有报价数据的平均值P与标准差σ:
式中:为各出让方申报均价,Qi、Pi分别为出让方i的申报电量和申报电价,N为电力市场出让方数量;
根据正态分布的置信概率理论,确定出让方报价合理区间为
其中:k为置信因子,k的取值取决于市场容忍程度,k越大,市场容忍度越高,在此实施例中,k取值为2,此时,置信概率为0.9545,意味着有95.45%的概率水平下认为样本在报价合理区间内,这是较为常用的置信概率水平;
根据公式(1)和(2)求得σ,确定合理的报价区间为(268.1元/MWh,457.27元/MWh),此时筛选出,出让方4与出让方8的报价偏离合理报价区间,可能恶意报低价;
根据筛选的可能恶意报价出让方,计算其本次报价与历史报价均值的偏离幅度,并与交易中心设定的判断阈值α进行对比,确定恶意报价主体;偏离幅度计算方法如下:
其中,n为出让方i历史报价次数,Pij为出让方i第j次申报电价,α为电力交易中心设定的判断阈值;
所述电力交易中心设定的判断阈值α可根据电力市场历史申报电价均值与出清电价均值的偏差确定,确定判断阈值α的计算公式如下:
其中,为电力市场全部参与主体历史申报电价均值,为电力市场全部参与主体历史出清电价均值,出清电价是指最后交易成功后的电价,在本实施例中,通过计算,交易中心判断阈值为10%;
出让方4的历史报价均值为211.6元/MWh,本次报价为212.2元/MWh,则偏离幅度为(212.2-211.6)/211.6=0.6/211.6=0.28%,低于判断阈值10%,则认为出让方4的报价策略保持稳定,属于正常的报价行为。此时交易人员则可以从该出让方发电形式、发电平均成本等角度开展分析工作,例如,该出让方为水电企业,发电成本低于150元/MWh,企业报价是基于实际成本+合理收益率的角度开展的。
出让方8的历史报价均值为322.7元/MWh,本次报价为209.3元/MWh,则偏离幅度为(209.3-322.7)/322.7=-35%,35%高于判断阈值10%,显著偏离以往报价行为,则认定该企业有恶意报价的嫌疑,及时发出预警信息,为交易人员提供决策依据。
以上实施例对本发明进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (3)

1.一种电力市场恶意竞价行为识别方法,其特征在于:包括如下步骤:
S1、采集电力交易中心各市场参与主体申报电量、申报电价数据及历史出清价格,写入数据库;采集电力交易中心各市场参与主体本次申报电价数据,作为分析识别对象;
S2、计算所有参与主体申报电价数据的平均值与标准差σ:
式中:为参与主体申报电价的均价,Qi、Pi分别为参与主体i的申报电量和申报电价,N为电力市场参与主体的数量;
S3、根据正态分布的置信概率理论,确定参与主体报价合理区间为
其中:k为置信因子,k的取值取决于市场容忍程度,k越大,市场容忍度越高;
S4、根据置信概率区间,判断各参与主体申报电价的合理性,筛选出所有可能恶意报价的参与主体,判断依据如下:
时,认为参与主体可能恶意报低价;当时,认为参与主体可能恶意报高价;
S5、根据步骤S4筛选的可能恶意报价参与主体,计算其本次报价与历史报价均值的偏离幅度,并与交易中心设定的判断阈值α进行对比,确定恶意报价主体;偏离幅度计算方法如下:
其中,n为参与主体i历史报价次数,Pij为参与主体i第j次申报电价,α为电力交易中心设定的判断阈值;
当θi≤α时,认为参与主体i报价策略保持稳定,属于正常的报价行为;
当θi>α时,认为参与主体i本次报价明显偏离历史报价规律,有恶意报价的嫌疑。
2.根据权利要求1所述的一种电力市场恶意竞价行为识别方法,其特征在于:所述电力交易中心设定的判断阈值α可根据电力市场历史申报电价均值与出清电价均值的偏差确定,确定判断阈值α的计算公式如下:
其中,为电力市场全部参与主体历史申报电价均值,为电力市场全部参与主体历史出清电价均值。
3.根据权利要求1或2任一项所述的一种电力市场恶意竞价行为识别方法,其特征在于:所述参与主体为出让方或受让方中的一类。
CN201910419673.3A 2019-05-20 2019-05-20 一种电力市场恶意竞价行为识别方法 Active CN110148006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910419673.3A CN110148006B (zh) 2019-05-20 2019-05-20 一种电力市场恶意竞价行为识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910419673.3A CN110148006B (zh) 2019-05-20 2019-05-20 一种电力市场恶意竞价行为识别方法

Publications (2)

Publication Number Publication Date
CN110148006A true CN110148006A (zh) 2019-08-20
CN110148006B CN110148006B (zh) 2023-05-12

Family

ID=67592234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910419673.3A Active CN110148006B (zh) 2019-05-20 2019-05-20 一种电力市场恶意竞价行为识别方法

Country Status (1)

Country Link
CN (1) CN110148006B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111582937A (zh) * 2020-05-08 2020-08-25 中国南方电网有限责任公司 一种节点电价偏离度准确率的计算方法、装置及存储介质
CN111951121A (zh) * 2020-07-20 2020-11-17 广东电力交易中心有限责任公司 电力现货市场报价模式分类方法、装置及存储介质
CN112072636A (zh) * 2020-07-24 2020-12-11 国网天津市电力公司电力科学研究院 基于源网荷不确定因素的电力现货市场运营方法
CN112258246A (zh) * 2020-11-12 2021-01-22 北京筑龙信息技术有限责任公司 物料的异常报价识别方法、装置、电子设备及存储介质
CN112488389A (zh) * 2020-11-30 2021-03-12 国网浙江省电力有限公司电力科学研究院 一种现货市场出清申报参数自动校核及修正方法和系统
CN113191854A (zh) * 2021-05-26 2021-07-30 广东电网有限责任公司 一种电力市场现货交易方法及装置
CN113344589A (zh) * 2021-05-12 2021-09-03 兰州理工大学 一种基于vaegmm模型的发电企业串谋行为的智能识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254274A (zh) * 2011-06-17 2011-11-23 龚政 基于web2.0模式的网络定价方法
CN106156882A (zh) * 2016-06-07 2016-11-23 国家电网公司 一种用于电力市场仿真平台的发电厂报价模拟方法
CN107845022A (zh) * 2017-11-02 2018-03-27 北京恒泰能联科技发展有限公司 电力市场辅助决策系统
CN108346008A (zh) * 2018-03-17 2018-07-31 国网陕西省电力公司电力科学研究院 一种电力市场大用户直接交易的算法模型和管控方法
CN108564456A (zh) * 2018-02-28 2018-09-21 中国电力科学研究院有限公司 一种电力市场交易竞价数据的自动化交互方法及系统
CN109523310A (zh) * 2018-10-29 2019-03-26 杭州中恒云能源互联网技术有限公司 一种基于自适应滤波的电力市场报价预测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254274A (zh) * 2011-06-17 2011-11-23 龚政 基于web2.0模式的网络定价方法
CN106156882A (zh) * 2016-06-07 2016-11-23 国家电网公司 一种用于电力市场仿真平台的发电厂报价模拟方法
CN107845022A (zh) * 2017-11-02 2018-03-27 北京恒泰能联科技发展有限公司 电力市场辅助决策系统
CN108564456A (zh) * 2018-02-28 2018-09-21 中国电力科学研究院有限公司 一种电力市场交易竞价数据的自动化交互方法及系统
CN108346008A (zh) * 2018-03-17 2018-07-31 国网陕西省电力公司电力科学研究院 一种电力市场大用户直接交易的算法模型和管控方法
CN109523310A (zh) * 2018-10-29 2019-03-26 杭州中恒云能源互联网技术有限公司 一种基于自适应滤波的电力市场报价预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈建华等: ""电力市场下的发电企业报价行为分析"" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111582937A (zh) * 2020-05-08 2020-08-25 中国南方电网有限责任公司 一种节点电价偏离度准确率的计算方法、装置及存储介质
CN111582937B (zh) * 2020-05-08 2023-08-08 中国南方电网有限责任公司 一种节点电价偏离度准确率的计算方法、装置及存储介质
CN111951121A (zh) * 2020-07-20 2020-11-17 广东电力交易中心有限责任公司 电力现货市场报价模式分类方法、装置及存储介质
CN112072636A (zh) * 2020-07-24 2020-12-11 国网天津市电力公司电力科学研究院 基于源网荷不确定因素的电力现货市场运营方法
CN112072636B (zh) * 2020-07-24 2023-09-29 国网天津市电力公司电力科学研究院 基于源网荷不确定因素的电力现货市场运营方法
CN112258246A (zh) * 2020-11-12 2021-01-22 北京筑龙信息技术有限责任公司 物料的异常报价识别方法、装置、电子设备及存储介质
CN112258246B (zh) * 2020-11-12 2024-01-05 北京筑龙信息技术有限责任公司 物料的异常报价识别方法、装置、电子设备及存储介质
CN112488389A (zh) * 2020-11-30 2021-03-12 国网浙江省电力有限公司电力科学研究院 一种现货市场出清申报参数自动校核及修正方法和系统
CN113344589A (zh) * 2021-05-12 2021-09-03 兰州理工大学 一种基于vaegmm模型的发电企业串谋行为的智能识别方法
CN113344589B (zh) * 2021-05-12 2022-10-21 兰州理工大学 一种基于vaegmm模型的发电企业串谋行为的智能识别方法
CN113191854A (zh) * 2021-05-26 2021-07-30 广东电网有限责任公司 一种电力市场现货交易方法及装置

Also Published As

Publication number Publication date
CN110148006B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN110148006A (zh) 一种电力市场恶意竞价行为识别方法
Wang et al. Cross-border venture capital performance: Evidence from China
Karpf et al. Price and network dynamics in the European carbon market
Orij et al. Is CSR the new competitive environment for CEOs? The association between CEO turnover, corporate social responsibility and board gender diversity: Asian evidence
US20080065561A1 (en) Method and system for collaborative investment, saving and financial planning
CN111080138B (zh) 一种售电公司的电力交易风险管理系统及方法
Mpiira et al. Factors influencing households participation in the Savings and Credit Cooperative (SACCO) programmes in Uganda
Liu et al. China's Export Surge and the New Margins of Trade
Santos‐Paulino Aid and trade sustainability under liberalisation in least developed countries
CN110837980A (zh) 企业信用评级方法、装置、设备及存储介质
CN111159644A (zh) 为初创型企业估值的方法及系统
TW201222455A (en) Method, computer program product and computer-readable recordable medium for selecting investment target
Chen et al. Strategic risk shifting and the idiosyncratic volatility puzzle
Grill et al. Strategically valuable resources and capabilities and successful M&A: a dyadic perspective
Chakrabarty et al. Identifying High Frequency Trading activity without proprietary data
Allahaim et al. Developing a risk-based cost contingency estimation model based on the influence of cost overrun causes
Ciola et al. Charging the macroeconomy with an energy sector: an agent-based model
Božić et al. The trade credit clearinghouse: Liquidity and coordination
Sahut et al. L'Hocine Houanti and Nhu Tuyen Le,(2020)''Women on corporate boards, stated-owned enterprises and firm performance: Evidence from Vietnam and quantile regression''
Chen et al. Interest rate liberalization and firm leverage in China: Effects and channels
US20050261998A1 (en) Computerized system and method for valuating employee stock options
Cuciniello et al. Overborrowing in the North and the South
Chau et al. Networked Leaders in the Shadow of the Market–A Chinese Experiment in Allocating Land Conversion Rights
Yunhe et al. Do Foreign Institutional Investors Drive Value-Enhancing CSR decisions? Evidence from Chinese Listed Firms
Liu The Influence of Long‐Term and Short‐Term Institutional Investors on Complicated Mispricing of Stocks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant