CN110147112A - 中低轨航天器天空地二维指向机构及其跟踪方法 - Google Patents

中低轨航天器天空地二维指向机构及其跟踪方法 Download PDF

Info

Publication number
CN110147112A
CN110147112A CN201910290407.5A CN201910290407A CN110147112A CN 110147112 A CN110147112 A CN 110147112A CN 201910290407 A CN201910290407 A CN 201910290407A CN 110147112 A CN110147112 A CN 110147112A
Authority
CN
China
Prior art keywords
spacecraft
dimensional pointing
low orbit
pointing mechanism
vacant lot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910290407.5A
Other languages
English (en)
Other versions
CN110147112B (zh
Inventor
温渊
杨勇
邵益凯
李云端
蒋光伟
孙允珠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201910290407.5A priority Critical patent/CN110147112B/zh
Publication of CN110147112A publication Critical patent/CN110147112A/zh
Application granted granted Critical
Publication of CN110147112B publication Critical patent/CN110147112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种航天器总体设计技术领域的中低轨航天器天空地二维指向机构,包括一台电控箱,一副驱动轴正交的二维指向机构及一个用于安装二维指向机构的指向平台,指向机构具有两个可旋转角度,机构的基座可以在航天器的Xb方向,也可以在Yb方向。本发明只需要一副二维指向机构,就可以完成中低轨航天器对天、对空、对地的指向,即可以完成中低轨航天器对中继卫星、中低轨航天器对其他中低轨航天器、中低轨航天器对地面站的指向,可以大幅度提高航天器的集成度,减少航天器的体积,节省航天器的成本。该指向机构的使用方法灵活,可以具有多种指向修正手段,具有指向精度高,使用简单的特点。

Description

中低轨航天器天空地二维指向机构及其跟踪方法
技术领域
本发明涉及航天器总体设计技术领域,具体地,涉及一种中低轨航天器天空地二维指向机构及其跟踪方法。
背景技术
随着高分辨率遥感技术的发展,航天器在轨数据码速率越来越高,越来越多的航天器在轨数据传输方案采用点波束天线或激光通信等指向型数据传输方案,需要航天器具有对地面站指向跟踪的二维指向机构。
其次,中低轨航天器每天过境内地面站上空的时间很短,对于我国境内,每天一般可飞过境内4轨,每轨通常只有10分钟左右,在有限的数传码速率下,有效数据下传总量难以满足高分辨率遥感数据的下传要求,迫切需要提高航天器的可数传时间。通常的做法是增加大量境外地面站或增加数传中继手段。另一方面,在缺少足够的境外站或数传中继手段的条件下,为了获取境外的遥感数据,需要将实时获取的观测数据缓存在星上大容量存储器上,在航天器飞过境内时再安排下传,存在时间延迟,数据获取的时效性较差。为了提高每轨数据下传量,或提高航天器境外探测数据的时效性,越来越多的航天器安装了中继通信天线,通过中继卫星将数据实时转发回境内,需要航天器具有可以指向对天面的中继二维指向机构。
再次,为了满足航天器编队飞行、星座组网、空间目标探测等要求,部分航天器间要求具有星间通信或空间目标探测功能,要求航天器具有对空间目标的二维指向能力。
通常航天器的天空地三种指向需求需要通过不同的二维指向机构实现,对航天器的重量、功耗、成本、布局(多个机构安装、视场规避等)均提出了更高的要求。
目前没有发现同本发明类似技术的说明或报道,也未收集到国内外类似资料。经对现有技术的检索,申请号为201510527806.0的中国发明专利公开了一种用STK获取航天器二维转动机构指向角度的方法。首先,定义航天器二维转动机构相关信息;然后,建立STK仿真场景、航天器轨道和跟踪目标;其次,在STK中设置所需的矢量和平面等三维特征;最后,在STK中分别建立二维转动机构的X轴和Y轴目标指向角度。但是,该方案中,航天器的天空地三种指向需求需要通过不同的二维指向机构实现,达不到航天器的重量、功耗、成本、布局(多个机构安装、视场规避等)等的相关要求。
发明内容
针对现有技术的缺陷,本发明的目的是提供一种中低轨航天器天空地二维指向机构及其跟踪方法,克服现有航天器二维指向机构功能过于单一化,不同功能需要多副二维指向机构的不足。
本发明涉及一种中低轨航天器天空地二维指向机构,包括一台电控箱,一副驱动轴正交的二维指向机构及一个用于安装二维指向机构的指向平台,指向机构具有两个可旋转角度,机构的基座可以在航天器的Xb方向,也可以在Yb方向。
优选地,所述两个指向机构的旋转维度,其中一个维度实现360°转动,另一个维度实现至少270°以上的转动,如果不要求天、空、地都能够用同一个机构指向,例如只要求对三者之一或之二指向,则二维机构的两个旋转角度的可转动角度范围可以更小。
优选地,所述电控箱通过柔性电缆与二维指向机构的两个旋转电机相连,无滑环机构。
优选地,所述指向机构连接杆内部中空,可安装波导、光纤、射频电缆等,如果为硬波导,可在旋转关节部位通过波导关节进行连接。
优选地,两个旋转维度,采用三个机构或更多机构,但存在平行冗余旋转轴,用于对不同指向目标类似的切换,最终等效于只有两个正交旋转维度。
优选地,还包括一个安装平台,提供与测控天线、数传天线、星间通信天线或激光通信发射装置的螺栓安装接口,适用于中低轨卫星、飞船、临近空间飞行器等航天器对中继卫星、对其他中低轨航天器或对地面站进行微波通信或激光通信数据交互。
本发明还涉及一种中低轨航天器天空地二维指向机构的跟踪方法,包括如下步骤:
步骤1、将航天器的轨道参数递推至天线跟踪时刻,并计算该时刻下航天器在惯性或地固系坐标系下的位置矢量;
步骤2、计算地面站(或目标航天器、中继卫星)在惯性或地固坐标系下的位置矢量;
步骤3、计算航天器指向地面站(或目标航天器、中继卫星)的惯性系或地固坐标系单位矢量;
步骤4、将航天器指向地面站(或目标航天器、中继卫星)单位矢量转到航天器轨道坐标系;
步骤5、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器轨道坐标系转到航天器本体坐标系,修正航天器姿态角引起的偏差;
步骤6、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器本体坐标系转到天线安装坐标系,修正基座安装矩阵;
步骤7、利用航天器轨道坐标系中的航天器指向地面站(或目标航天器、中继卫星)单位矢量计算二维驱动角;
步骤8、计算驱动角,并对输出的角度的范围根据目标类型及机构的硬件限位进行进一步判断,判断通过后进行角度驱动。
优选地,其计算与修正过程可在电控箱中执行,也可由航天器其他计算单元计算并修正后,通过1553B总线或RS422等其他通信手段发送给电控箱,电控箱根据接收到的驱动角度对两台指向电机进行驱动控制。
优选地,所述步骤7所述的两个驱动角度可以根据航天器及指向目标的实时轨道参数或位置信息进行在轨递推计算,地面通过对航天器发送指令或注数,切换天空地目标类型,在计算驱动角或驱动前切换,或者根据跟踪任务自动识别并切换。
优选地,所述步骤7中,在计算时二维驱动角时,对二维指向机构的安装误差、驱动轴零位误差、指向平台上的安装误差进行修正,在轨对修正参数进行注数修改,以满足高精度指向应用需求。
与现有技术相比,本发明具有如下的有益效果:
1、本发明的中低轨航天器天空地二维指向机构,只使用一副二维指向机构就可以完成中低轨航天器对天、对空、对地的指向,即可以完成中低轨航天器对中继卫星、中低轨航天器对其他中低轨航天器、中低轨航天器对地面站的指向,可以大幅度提高航天器的集成度,减少航天器的体积,节省航天器的成本。该指向机构的使用方法灵活,可以具有多种指向修正手段,具有指向精度高,使用简单的特点;
2、本发明的中低轨航天器天空地二维指向机构,安装在航天器边缘,包括前向、后向、侧向等,不占用航天器的对地面,有利于整星布局;
3、本发明的中低轨航天器天空地二维指向机构的跟踪方法,地面可通过对航天器发送指令、注数或根据跟踪任务自动识别切换跟踪目标类型,可在计算驱动角时或驱动前进行切换;
4、本发明的中低轨航天器天空地二维指向机构的跟踪方法,在计算指向驱动角时可以对二维指向机构的安装误差、驱动轴零位误差等进行修正,在轨可对修正参数进行注数修改,可满足高精度指向应用需求;
5、本发明提出了一种可以适应天空地指向需求的指向系统,可以分别满足航天器对中继卫星指向,对空间目标指向及对地面站指向的需求,具有集成度高、体积小、安装布局简单、指向精度高、总运动部件数少,功耗低,可靠性高,成本低的特点,具有广泛的应用价值。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为本发明中低轨航天器天空地二维指向机构结构示意图;
图2为本发明中低轨航天器天空地二维指向机构指向地面站目标状态结构示意图,(二维指向机构为指向对地面站目标状态,机构安装在航天器飞行方向上,机构X轴为基座旋转轴;)。
图3为本发明中低轨航天器天空地二维指向机构指向对空目标状态;
图4为本发明中低轨航天器天空地二维指向机构指向中继卫星状态;
图5为本发明中低轨航天器天空地二维指向机构及其跟踪方法指向角度的计算流程。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
需要说明的是,在本发明各附图中,Yb方向垂直于轨道面方向,指向负轨道法线或负角动量方向;Zb指向对地心方向或对天方向;Xb指向航天器飞行方向或飞行方向反方向,与Yb,Zb呈右手定则。
实施例
本实施例中,本发明的中低轨航天器天空地二维指向机构介绍如下:包括一台电控箱,一副驱动轴正交的二维指向机构及一个用于安装二维指向机构的指向平台,指向机构的两个可旋转角度均大于300度,机构的基座可以在航天器的Xb方向,也可以在Yb方向。
接下来对本发明进行详细的描述。
本发明的目的是提供一种中低轨航天器天空地二维指向机构及其跟踪方法,克服现有航天器二维指向机构功能单一化,不同功能需要多副二维指向机构不足。
如图2所示,本实施例提供的中低轨航天器天空地二维指向机构及其跟踪方法方案,机构X轴为基座旋转轴,机构Y轴的旋转轴随着X轴的旋转而发生变化。在安装时,先把机构装配完成,再把基座安装到航天器上。该二维机构可安装在航天器飞行方向上,也可安装在飞行方向反方向上,如果把基座方向改为Y方向,还可以安装在飞行器的侧向上。
机构的基座粘贴有精测棱镜,在安装完成后可通过精测获得相对于航天器本体坐标系的安装矩阵BTA。各旋转轴的零位可通过对比测角部件与实测结果的差值获得,X轴和Y轴的零位分别记为dx和dy。
图2至图4所示,为本发明中低轨航天器天空地二维指向机构指向地面站目标、对空目标状态、中继卫星状态示意图。
本发明提供一种中低轨航天器天空地二维指向机构,包括一台电控箱,一副驱动轴正交的二维指向机构及一个用于安装指向载荷的指向平台,两个指向机构的可旋转角度均大于300度,机构的基座可以在航天器的Xb方向,也可以在Yb方向;
电控箱,通过柔性电缆与二维指向机构的两个旋转电机相连,无滑环机构;
二维指向机构连接杆内部中空,可安装波导、光纤、射频电缆等,如果为硬波导,可在旋转关节部位通过波导关节进行连接;二维指向机构有两个旋转维度,可以设计三个机构或更多机构,但存在平行旋转轴,最终等效于只有两个正交旋转维度,冗余维度的机构可用于对不同指向目标类似的切换;
中低轨航天器天空地二维指向机构还包括一个安装平台,提供与测控天线、数传天线、星间通信天线或激光通信发射装置的螺栓安装接口,可适用于中低轨卫星、飞船、临近空间飞行器等航天器对中继卫星、对其他中低轨航天器或对地面站进行微波通信或激光通信数据交互;
上述中低轨航天器天空地二维指向机构的跟踪方法,包括如下步骤:
步骤1、将航天器的轨道参数递推至天线跟踪时刻,并计算该时刻下航天器在惯性或地固系坐标系下的位置矢量;
步骤2、计算地面站(或目标航天器、中继卫星)在惯性或地固坐标系下的位置矢量;
步骤3、计算航天器指向地面站(或目标航天器、中继卫星)的惯性系或地固坐标系单位矢量;
步骤4、将航天器指向地面站(或目标航天器、中继卫星)单位矢量转到航天器轨道坐标系;
步骤5、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器轨道坐标系转到航天器本体坐标系,修正航天器姿态角引起的偏差;
步骤6、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器本体坐标系转到天线安装坐标系,修正基座安装矩阵;
步骤7、利用航天器轨道坐标系中的航天器指向地面站(或目标航天器、中继卫星)单位矢量计算二维驱动角,同时修正零位误差;
步骤8、对输出的角度的范围根据目标类型及机构的硬件限位进行进一步判断,判断通过后进行角度驱动。
其计算与修正过程可在电控箱中执行,也可由航天器其他计算单元计算并修正后,通过1553B总线或RS422等其他通信手段发送给电控箱,电控箱根据接收到的驱动角度对两台指向电机进行驱动控制;
中低轨航天器天空地二维指向机构的跟踪方法,特征1、采用一副二维指向机构实现天空地多用途指向;如果采用三个或更多的旋转机构,其中一个或多个机构的旋转轴与其他旋转轴存在平行旋转轴,例如专用一个旋转轴用于切换对天、对地及对空间目标指向,最终等效于只有两个正交旋转维度,也属于二维指向机构及其跟踪方法。特征2、二维指向机构及其跟踪方法两个维度的转动轴均可实现大角度范围的转动,其中一个维度可以实现360°转动,另一个维度可以实现至少270°以上的转动,以满足分别对地面站、对中继卫星及对空间目标的指向需求。为了避开视场的遮挡,二维指向机构通常安装在航天器的边缘,如附图1所示。特征3、二维指向机构及其跟踪方法的两个驱动角度可以根据航天器及指向目标的实时轨道参数或位置信息进行在轨递推计算,地面可通过对航天器发送指令或注数,切换天空地目标类型,可在计算驱动角或驱动前切换,也可根据跟踪任务自动识别并切换。在计算时可对二维指向机构的安装误差、驱动轴零位误差、指向平台上的安装误差等进行修正,在轨可对修正参数进行注数修改,以满足高精度指向应用需求。
中低轨航天器天空地二维指向机构及其跟踪方法驱动角度的计算流程图如图5所示,主要计算步骤如下:
1、将航天器的轨道参数递推至天线跟踪时刻t,并计算t时刻下航天器在惯性坐标系下的位置矢量ri,ri的三个分量为分别为rix,riy,riz。;
2、计算地面站(或目标航天器、中继卫星)在惯性坐标系下的位置矢量Rista,Rista的三个分量为分别为Ristax,Ristay,Ristaz
3、计算航天器指向地面站(或目标航天器、中继卫星)的单位矢量
先计算航天器指向地面站矢量Riws,Riws的三个分量为分别为riwsx,riwsy,riwsz
计算航天器指向地面站(或目标航天器、中继卫星)矢量的距离riwsl
将惯性系下航天器指向地面站(或目标航天器、中继卫星)矢量化为单位矢量
4、将航天器指向地面站(或目标航天器、中继卫星)单位矢量转到航天器轨道坐标系;
式中,为轨道坐标系下的航天器指向地面站(或目标航天器、中继卫星)单位矢量,ITO为惯性系到轨道系的旋转矩阵,us表示卫星轨道参数中的幅度幅角,is表示卫星轨道参数中的轨道倾角,Ωs表示卫星轨道参数中的升交点赤经,Rz(us),Rx(is)及Rzs),分别表示绕Z轴、X轴和Z轴旋转us,is,Ωs
5、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器轨道坐标系转到航天器本体坐标系,修正航天器姿态角引起的偏差;
式中,表示本体系坐标系下航天器指向地面站(或目标航天器、中继卫星)单位矢量,OTB为姿态转换矩阵,OTB计算与姿态描述的转序有关,如姿态转序为3-1-2转序,则姿态转换矩阵其中为滚动姿态角,θ为俯仰姿态角,ψ为偏航姿态角,Ry(θ),和Rz(ψ)分别表示绕y轴、x轴和z轴旋转θ和ψ角。
6、将航天器指向地面站(或目标航天器、中继卫星)单位矢量从航天器本体坐标系转到天线安装坐标系,修正基座安装矩阵;
式中表示天线安装坐标系下的航天器指向地面站(或目标航天器、中继卫星)单位矢量,BTA为天线基座的安装矩阵。
7、利用航天器轨道坐标系中的航天器指向地面站(或目标航天器、中继卫星)单位矢量计算不考虑零位及光电轴偏差ATD的二维驱动角;
式中,θ0分别表示二维指向机构绕Y轴的旋转角和绕X轴的旋转角理论值。
8、实际的驱动角度需要考虑驱动轴的零位误差,二维指向机构绕Y轴的驱动角和绕X轴的驱动角可由下式计算;
式中,θd分别表示二维指向机构绕Y轴的驱动角和绕X轴的驱动角。
在输出最终的角度时,还可以对输出的角度的范围根据目标类型及机构的硬件限位进行进一步判断及限制,以保障机构的平稳运行。
综上所述,本发明的中低轨航天器天空地二维指向机构,只使用一副二维指向机构就可实现天、空、地指向,重量、功耗、体积更小,成本更低;本发明的中低轨航天器天空地二维指向机构,安装在航天器边缘,不占用航天器的对地面,有利于整星布局;本发明的中低轨航天器天空地二维指向机构的跟踪方法,地面可通过对航天器发送指令、注数或根据跟踪任务自动识别切换跟踪目标类型,可在计算驱动角时或驱动前进行切换;在计算指向驱动角时可以对二维指向机构的安装误差、驱动轴零位误差等进行修正,在轨可对修正参数进行注数修改,满足高精度指向应用需求;本发明提出了一种可以适应天空地指向需求的指向系统,可以满足航天器对中继卫星指向,对空间目标指向及对地面站指向的需求,具有集成度高、体积小、安装布局简单、指向精度高、总运动部件数少,功耗低,可靠性高,成本低的特点,具有广泛的应用价值。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种中低轨航天器天空地二维指向机构,其特征在于,包括一台电控箱,一副驱动轴正交的二维指向机构及一个用于安装二维指向机构的指向平台,指向机构具有两个可旋转角度,机构的基座可以在航天器的Xb方向,也可以在Yb方向。
2.如权利要求1所述的中低轨航天器天空地二维指向机构,其特征是,指向机构的两个旋转维度,其中一个维度实现360°转动,另一个维度实现至少270°以上的转动,如果不要求天、空、地都能够用同一个机构指向,则二维机构的两个旋转维度的可转动角度范围变小。
3.如权利要求1所述的中低轨航天器天空地二维指向机构,其特征是,所述电控箱通过柔性电缆与二维指向机构的两个旋转电机相连,无滑环机构。
4.如权利要求1所述的中低轨航天器天空地二维指向机构,其特征是,所述指向机构的连接杆内部中空,安装波导、光纤、射频电缆等,如果为硬波导,在旋转关节部位通过波导关节进行连接。
5.如权利要求1所述的中低轨航天器天空地二维指向机构,其特征是,两个旋转维度,采用三个机构或更多机构,但存在平行冗余旋转轴,用于对不同指向目标类似的切换,最终等效于只有两个正交旋转维度。
6.如权利要求1所述的中低轨航天器天空地二维指向机构,其特征是,还包括一个安装平台,提供与测控天线、数传天线、星间通信天线或激光通信发射装置的螺栓安装接口。
7.一种如权利要求1-6任一项所述的中低轨航天器天空地二维指向机构的跟踪方法,其特征是,包括如下步骤:
步骤1、将航天器的轨道参数递推至天线跟踪时刻,并计算该时刻下航天器在惯性或地固系坐标系下的位置矢量;
步骤2、计算地面站或目标航天器、中继卫星在惯性或地固坐标系下的位置矢量;
步骤3、计算航天器指向地面站或目标航天器、中继卫星的惯性系或地固坐标系单位矢量;
步骤4、将航天器指向地面站或目标航天器、中继卫星单位矢量转到航天器轨道坐标系;
步骤5、将航天器指向地面站或目标航天器、中继卫星单位矢量从航天器轨道坐标系转到航天器本体坐标系,修正航天器姿态角引起的偏差;
步骤6、将航天器指向地面站或目标航天器、中继卫星单位矢量从航天器本体坐标系转到天线安装坐标系,修正基座安装矩阵;
步骤7、利用航天器轨道坐标系中的航天器指向地面站或目标航天器、中继卫星单位矢量计算二维驱动角;
步骤8、计算驱动角,并对输出的角度的范围根据目标类型及机构的硬件限位进行进一步判断,判断通过后进行角度驱动。
8.如权利要求7所述的中低轨航天器天空地二维指向机构的跟踪方法,其特征是,其计算与修正过程在电控箱中执行,或者由航天器其他计算单元计算并修正后,通过1553B总线或RS422或其他通信手段发送给电控箱,电控箱根据接收到的驱动角度对两台指向电机进行驱动控制。
9.如权利要求7所述的中低轨航天器天空地二维指向机构的跟踪方法,其特征是,所述步骤7所述的两个驱动角度根据航天器及指向目标的实时轨道参数或位置信息进行在轨递推计算,地面通过对航天器发送指令或注数,切换天空地目标类型,在计算驱动角或驱动前切换,或者根据跟踪任务自动识别并切换。
10.如权利要求7所述的中低轨航天器天空地二维指向机构的跟踪方法,其特征是,所述步骤7中,在计算时二维驱动角时,对二维指向机构的安装误差、驱动轴零位误差、指向平台上的安装误差进行修正,在轨对修正参数进行注数修改,以满足高精度指向应用需求。
CN201910290407.5A 2019-04-11 2019-04-11 中低轨航天器天空地二维指向机构及其跟踪方法 Active CN110147112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910290407.5A CN110147112B (zh) 2019-04-11 2019-04-11 中低轨航天器天空地二维指向机构及其跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910290407.5A CN110147112B (zh) 2019-04-11 2019-04-11 中低轨航天器天空地二维指向机构及其跟踪方法

Publications (2)

Publication Number Publication Date
CN110147112A true CN110147112A (zh) 2019-08-20
CN110147112B CN110147112B (zh) 2022-03-18

Family

ID=67589639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910290407.5A Active CN110147112B (zh) 2019-04-11 2019-04-11 中低轨航天器天空地二维指向机构及其跟踪方法

Country Status (1)

Country Link
CN (1) CN110147112B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998821A (zh) * 2020-07-03 2020-11-27 中国人民解放军32032部队 一种在轨维护卫星传感器指向控制角度计算方法
CN112666988A (zh) * 2020-12-15 2021-04-16 上海卫星工程研究所 二维指向机构安装及光电轴指向的偏差修正方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030114A (zh) * 2010-11-16 2011-04-27 中国航天科技集团公司第五研究院第五一○研究所 一种四轴二维指向机构
CN103488193A (zh) * 2013-09-29 2014-01-01 天津航天机电设备研究所 一种星载高精度指向跟踪机构
CN105183961A (zh) * 2015-08-25 2015-12-23 航天东方红卫星有限公司 一种用stk获取航天器二维转动机构指向角度的方法
CN110140443B (zh) * 2014-05-20 2017-06-30 上海宇航系统工程研究所 一种模块化拼装式的星载天线用二维指向机构
EP3229313A1 (en) * 2016-04-06 2017-10-11 MacDonald, Dettwiler and Associates Corporation Three axis reflector deployment and pointing mechanism
EP3330189A1 (en) * 2016-12-05 2018-06-06 Airbus Defence and Space GmbH Pointing mechanism for use in an electric propulsion system of a spacecraft
CN109515766A (zh) * 2018-11-15 2019-03-26 上海宇航系统工程研究所 二维指向机构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030114A (zh) * 2010-11-16 2011-04-27 中国航天科技集团公司第五研究院第五一○研究所 一种四轴二维指向机构
CN103488193A (zh) * 2013-09-29 2014-01-01 天津航天机电设备研究所 一种星载高精度指向跟踪机构
CN110140443B (zh) * 2014-05-20 2017-06-30 上海宇航系统工程研究所 一种模块化拼装式的星载天线用二维指向机构
CN105183961A (zh) * 2015-08-25 2015-12-23 航天东方红卫星有限公司 一种用stk获取航天器二维转动机构指向角度的方法
EP3229313A1 (en) * 2016-04-06 2017-10-11 MacDonald, Dettwiler and Associates Corporation Three axis reflector deployment and pointing mechanism
EP3330189A1 (en) * 2016-12-05 2018-06-06 Airbus Defence and Space GmbH Pointing mechanism for use in an electric propulsion system of a spacecraft
CN109515766A (zh) * 2018-11-15 2019-03-26 上海宇航系统工程研究所 二维指向机构

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
LINLI: "Recent advances in precision measurement & pointing control of spacecraft", 《CHINESE JOURNAL OF AERONAUTICS》 *
周勇: "数传跟踪天线驱动控制建模与仿真", 《中国空间科学技术》 *
张文会: "星载对地数传天线结构设计分析与试验", 《星载对地数传天线结构设计分析与试验 *
张锋: "星载天线指向机构误差分析与建模", 《电子机械工程》 *
徐喆垚: "A Active disturbance rejection control for spacecraft rendezvous and docking simulation system during proximity operations", 《航空学报》 *
曾麒麟 等: "星载高精度天线指向机构设计仿真分析", 《星载高精度天线指向机构设计仿真分析 *
李晖: "《卫星通信与卫星网络》", 31 January 2018, 西安电子科技大学出版社 *
温渊: "高精度海洋耀斑二维指向算法研究", 《2018年光学技术与应用研讨会暨交叉学科论坛论文集》 *
王冬霞: "航天器姿态指向跟踪的一种自适应滑模控制方法", 《空间控制技术与应用》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111998821A (zh) * 2020-07-03 2020-11-27 中国人民解放军32032部队 一种在轨维护卫星传感器指向控制角度计算方法
CN112666988A (zh) * 2020-12-15 2021-04-16 上海卫星工程研究所 二维指向机构安装及光电轴指向的偏差修正方法和系统
CN112666988B (zh) * 2020-12-15 2022-10-25 上海卫星工程研究所 二维指向机构安装及光电轴指向的偏差修正方法和系统

Also Published As

Publication number Publication date
CN110147112B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN100451898C (zh) 微小卫星的姿态控制方法及系统
CN106096148B (zh) 一种简单姿态控制下的大倾角轨道卫星太阳帆板指向方法
CN105775170B (zh) 太阳同步轨道卫星双视场星敏感器安装指向设计方法
CN105928524B (zh) 太阳同步轨道卫星三视场星敏感器安装指向设计方法
CN103991559B (zh) 一种洛伦兹航天器悬停控制方法
CN102880184A (zh) 一种静止轨道卫星自主轨道控制方法
CN106679674B (zh) 基于星历模型的地月L2点Halo轨道阴影分析方法
CN105043417B (zh) 多目标连续成像偏流角补偿方法
CN110147112A (zh) 中低轨航天器天空地二维指向机构及其跟踪方法
CN110450989A (zh) 微纳卫星集群捕获空间非合作目标的贴附消旋与轨控方法
CN109781060A (zh) 星载点波束天线对地指向精度评估方法
CN106410410A (zh) 一种具有物理水平平台的vsat天线系统卫星捕获跟踪方法
CN101858747A (zh) 一种有效利用地球辐照能的卫星帆板对日定向目标姿态的解析确定方法
CN110502026A (zh) 基于视线指向考虑热控测控约束的卫星滚动姿态规划方法
CN104038272A (zh) 一种光照约束下的中轨全球覆盖星座
CN109657417A (zh) 一种用于惯性空间观测卫星的能源保障设计方法
CN110046436A (zh) 航天器自主测控覆盖分析方法
CN106200660B (zh) 一种用于同步轨道sar卫星的姿态机动轨迹计算方法
CN110647163B (zh) 对geo空间目标持续可见光探测的绕飞轨道设计方法
CN107985631B (zh) 低轨微纳卫星及适用于脉冲微弧电推力器的在轨安装方法
CN111366953A (zh) 一种北斗Ka复杂相控阵天线跟踪可见报生成算法
CN109858151A (zh) 一种适用于惯性空间观测卫星的热环境保障设计方法
CN102394688B (zh) 一种天线固联式对地通信方法
CN110162069A (zh) 一种近地轨道航天器阳光反射凝视期望姿态解析求解方法
CN107323685A (zh) 敏捷sar小卫星及其总体设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant