CN110138461A - 自适应多入多出与正交频分复用相结合的水声通信方法 - Google Patents

自适应多入多出与正交频分复用相结合的水声通信方法 Download PDF

Info

Publication number
CN110138461A
CN110138461A CN201910366147.5A CN201910366147A CN110138461A CN 110138461 A CN110138461 A CN 110138461A CN 201910366147 A CN201910366147 A CN 201910366147A CN 110138461 A CN110138461 A CN 110138461A
Authority
CN
China
Prior art keywords
channel
channel estimation
ofdm
underwater acoustic
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910366147.5A
Other languages
English (en)
Other versions
CN110138461B (zh
Inventor
张友文
席珺琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanhai Innovation And Development Base Of Sanya Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201910366147.5A priority Critical patent/CN110138461B/zh
Publication of CN110138461A publication Critical patent/CN110138461A/zh
Application granted granted Critical
Publication of CN110138461B publication Critical patent/CN110138461B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0055MAP-decoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2695Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供的是一种自适应多入多出与正交频分复用相结合的水声通信方法。在SFBC自适应MIMO‑OFDM水声通信系统中使用MMP‑DCD‑CV信道估计和空频软均衡,在频域MIMO‑OFDM水声通信中,利用SFBC减少双扩水声信道带来的载波间干扰,利用自适应信道估计完成时变信道追踪,利用MMP‑DCD‑CV完成单OFDM块信道估计并通过空频软均衡进行频域均衡减少码间干扰。本发明提高了双扩时变水声信道的传输速率和准确性问题。本发明适用于水声通信技术领域。

Description

自适应多入多出与正交频分复用相结合的水声通信方法
技术领域
本发明涉及的是一种通信方法,具体地说是一种MIMO-OFDM水声通信方法。
背景技术
为提高带宽利用率将正交频分复用(OFDM)技术与多入多出(MIMO)相结合,同时也有效的降低了由于带宽有限和严重的多途效应引起的码间干扰。但水声信道严重的多普勒效应和快时变性破坏MIMO-OFDM系统中子载波的正交性,产生载波间干扰,影响MIMO-OFDM系统的通信性能。近年来,利用分集增益提高系统传输性能的空频分组编码逐步引入水声通信。由于水声信道为快时变信道,基本OFDM的设计准则满足频率一致性假设,即子载波在空间上足够紧密,以保证子载波传递函数的平滑性,因此OFDM系统更易满足SFBC的实现要求。并且,在快衰落的水声信道中,当归一化多普勒频率大时,SFBC显示出更好的传输分集。
水声信道稀疏性的证实,使得以压缩感知为基础的信道估计技术在水声通信中迅猛发展,压缩感知理论对有效信号进行采样压缩,将信道估计变为重建稀疏信号,有效提高了频带利用率。为了减少由于时延扩展所造成的符号间干扰和深衰落引起的误码率的增加,利用MAP均衡基本思想基础上形成的空频软均衡算法进行均衡。
发明内容
本发明的目的在于提供一种能够有效追踪时变信道及提高传输准确性的自适应多入多出与正交频分复用相结合的水声通信方法。
本发明的目的是这样实现的:
步骤1、信源发送每块长度为K的二进制比特数据包a(n),进行卷积码编码生成二进制比特数据包b(n),进行交织得到二进制比特数据包c(n),根据星座符号s={s0,s1,…,sM}进行Q=log2M阶调制,sm∈C,m=1,…,M,得到复数数据包d(n)=[d0(n),d1(n),…,dK-1(n)]T,进行类Alamouti空频编码,定义复数数据包dk'(n)=[d2k'(n),d2k'+1(n)]T,其中,k'=0,1,…,K/2-1,得两个发射机的发射信号:
对所述发射信号分别进行OFDM调制后发射;
步骤2、在接收系统中,首先同步接收到的信号R,利用FFT对OFDM符号解调得到接收信号y,利用IFFT/FFT进行OFDM调制解调;
步骤3、利用自适应信道估计跟踪时变信道,稀疏信道估计某时刻信道;
步骤4、某时刻的接收部分同步、解调之后,进行信道估计和初始化符号估计,初始均衡利用初始符号估计结果计算外部对数似然比Le,再利用MAP译码得到后验对数似然比L和首次均衡得到的信源信息估计值利用均衡后得到的重新编码调制,进行空频编码并重新进行信道估计,得到信道估计结果利用接收后多通道处理得到的接收信号y,MAP译码得到后验对数似然比L和新的信道估计重新进行频域均衡,实现频域均衡迭代。
本发明还可以包括:
1.步骤2具体包括:
将第t发射机到第r接收机第n个OFDM块、第k个载波的信道传递函数定义为第r接收机第n个OFDM块、第k'个载波对上的接收信号,进行FFT解调之后表示为:
其中,
为零均值加性噪声分量,同样若使用MR个接收元素,整体用向量标识为:
2.步骤3具体包括:水声信道模型为
其中,分别代表第i路的增益和时延,fk=f0+kΔf代表第k个子载波的频率,设路径增益在相邻的OFDM块之间是慢变的,延迟模型表示为:
其中,at,r=vt,r/c为多普勒比例因子,T'为符号传输时间,设接收设备都被固定在一点,而移动来自于发射机,at,r便简化为at,利用延迟模型将传递函数分解为相位增量和幅度增益的函数用于实现有效的信道追踪。
3.步骤4中所述的信道估计是采用自适应信道估计算法,具体包括:
步骤1.1、判决,
设前一个块结束时,根据估计预测的在当前块n开始时是可用的,SFBC系统中,预测用于形成信道矩阵进行符号判决;
步骤1.2、稀疏信道估计;
步骤1.3、相位追踪,
测量当前块估计值和上一个块过时估计之间的相位偏差并用角度表示为:
由上式获得的相位偏差进行当前块多普勒因子的估计为:
相位迭代更新为:
步骤1.4、信道追踪,
更新被用于补偿的时变相位,信道增益被更新:
其中,波长λ∈(0,1);
步骤1.5、进行下一块的预测,
增益简单预测为:
相位预测为:
对自适应信道估计进行初始化,相位和多普勒因子初始值设为零。
4.所述的稀疏信道估计采用MMP-DCD-CV算法。
5.所述的计算外部对数似然比的方法如下:
其中,
设噪声是均值为0,方差为独立高斯分布,对于任意载波对d(k')有M2种可能的符号取值表示为SS,c(k',i)表示第k'个子载波对,即2k'和2k'+1中某子载波上第i个传输比特,i=1,…,Q,Q表示调制阶数,其中,d(k')=[d(2k'),d(2k'+1)]T,d(2k')和d(2k'+1)分别表示c(2k')和c(2k'+1)对应编码后的传输符号,MR表示接收阵元个数,第mr个阵元对应的接收向量为
本发明是为了解决基于传统算法的MIMO-OFDM通信方法无法有效追踪时变信道及提高传输准确性的问题而提出的。
本发明使用自适应信道估计、稀疏信道估计及频域均衡技术,有效的提高了通信系统的通信效率。和传统的MIMO-OFDM系统相比,本发明可以有效追踪是信道,准确进行稀疏信道估计及均衡,提高了通信性能。
附图说明
图1为SFBC-MIMO-OFDM发射系统框图;
图2为SFBC-MIMO-OFDM接收系统框图;
图3为空频软均衡算法结构。
具体实施方式
下面举例对本发明做更详细的描述。
具体实施方式一:一种基于SFBC利用MMP-DCD-CV信道估计和空频软均衡的自适应MIMO-OFDM水声通信方法,包括下述步骤:
步骤1、信源发送每块长度为K的二进制比特数据包a(n),代表第n个OFDM数据块,对a进行卷积码编码,生成二进制比特数据包b(n),对生成序列进行交织得到二进制比特数据包c(n),对c根据星座符号s={s0,s1,…,sM}进行Q=log2M阶调制,sm∈C,m=1,…,M,得到复数数据包d(n)=[d0(n),d1(n),…,dK-1(n)]T,对d进行类Alamouti空频编码,定义复数数据包dk'(n)=[d2k'(n),d2k'+1(n)]T,其中,k'=0,1,…,K/2-1,两个发射机的发射信号可得:
对发送信号x分别进行OFDM调制后发射,利用IFFT/FFT进行OFDM调制解调。
步骤2、在接收系统中,首先需要同步接收到的信号R,利用FFT对OFDM符号解调得到接收信号y将t发射机到r接收机第n个OFDM块、第k个载波的信道传递函数定义为由于SFBC采用Alamouti的基本思想,以频率为基础进行分组,r接收机第n个OFDM块、第k'个载波对上的接收信号,在进行FFT解调之后表示:
其中,
为零均值加性噪声分量,同样若使用MR个接收元素,整体用向量标识为:
步骤3、利用自适应信道估计跟踪时变信道,稀疏信道估计某时刻信道。水声信道模型为:
其中,分别代表第i路的增益和时延,fk=f0+kΔf代表第k个子载波的频率。假设路径增益在相邻的OFDM块之间是慢变的,延迟模型可表示为:
其中,at,r=vt,r/c为多普勒比例因子,T'为符号传输时间,假设接收设备都被固定在一点,而主要的移动来自于发射机,at,r便可简化为at。在频域上被看做是额外线性相位成分的时延差足够小,导致传递函数的相位在载波间是慢变的。利用延迟模型将传递函数分解为相位增量和幅度增益的函数,并用分别利用这些参数集实现有效的信道追踪。
步骤4、某时刻的接收部分同步、解调之后,进行信道估计和初始化符号估计,初始均衡利用初始符号估计结果计算外部对数似然比Le,再利用MAP译码得到后验对数似然比L和首次均衡得到的信源信息估计值利用均衡后得到的重新编码调制,进行空频编码并重新进行信道估计,得到信道估计结果利用接收后多通道处理得到的接收信号y,MAP译码得到后验对数似然比L和新的信道估计重新进行频域均衡,实现频域均衡迭代。
具体实施方式二:在具体实施方式一的基础上,步骤4中采用自适应信道估计算法,具体如下:
步骤1.1、判决。假设前一个块结束时,根据估计预测的在当前块n开始时是可用的。SFBC系统中,预测用于形成信道矩阵进行符号判决。
步骤1.2、稀疏信道估计。
步骤1.3、相位追踪。为了更新相位,测量当前块估计值和上一个块过时估计之间的相位偏差并用角度表示为:
由上式获得的相位偏差进行当前块多普勒因子的估计为:
相位迭代更新为:
步骤1.4、信道追踪。更新被用于补偿的时变相位,信道增益被更新:
其中,波长λ∈(0,1)。
步骤1.5、进行下一块的预测。增益简单预测为:
相位预测为:
对自适应信道估计进行初始化,相位和多普勒因子初始值设为零。
其它步骤与具体实施方式一相同。
具体实施方式三:在具体实施方式而的基础上,步骤3的具体操作步骤如下:
多径匹配追踪(MMP)算法是一种在多个候选中选择最优解,并利用测量矩阵得到最优恢复信号的算法。MMP将树搜索与贪婪搜索相结合,迭代过程中每次选择若干个候补再以此为父节点扩展多个子节点共同构成新的候选集,并在此基础上进行后续迭代,这样可以有效降低排除最优解得可能性。MMP算法有效的解决了OMP算法候补集单一,可能遗漏最优解的问题,有效改善信道估计性能,因此为解决先验信息未知,避免过拟合,同时减少计算复杂度,使算法更适用于硬件,将CV与DCD算法应用于MMP算法中得到MMP-DCD-CV算法应用于SFBC的自适应MIMO-OFDM水声通信系统。
其它步骤与具体实施方式二相同。
具体实施方式四:在具体实施方式三的基础上,步骤4中的反馈均衡器的均衡器系数向量均采用空频软均衡算法进行更新,具体操作步骤如下:
外信息LLR计算方法如下:
其中,
其中,假设噪声是均值为0,方差为独立高斯分布,对于任意载波对d(k')有M2种可能的符号取值表示为SS,c(k',i)表示第k'个子载波对,即2k'和2k'+1中某子载波上第i个传输比特,i=1,…,Q,Q表示调制阶数,其中,d(k')=[d(2k'),d(2k'+1)]T,d(2k')和d(2k'+1)分别表示c(2k')和c(2k'+1)对应编码后的传输符号。,MR表示接收阵元个数,第mr个阵元对应的接收向量为
为了提高双扩时变水声信道的传输速率和准确性问题。本发明在SFBC自适应MIMO-OFDM水声通信系统中使用MMP-DCD-CV信道估计和空频软均衡,在频域MIMO-OFDM水声通信中,利用SFBC减少双扩水声信道带来的载波间干扰,利用自适应信道估计完成时变信道追踪,利用MMP-DCD-CV完成单OFDM块信道估计并通过空频软均衡进行频域均衡减少码间干扰。本发明适用于水声通信技术领域。

Claims (6)

1.一种自适应多入多出与正交频分复用相结合的水声通信方法,其特征是包括如下步骤:
步骤1、信源发送每块长度为K的二进制比特数据包a(n),进行卷积码编码生成二进制比特数据包b(n),进行交织得到二进制比特数据包c(n),根据星座符号s={s0,s1,…,sM}进行Q=log2M阶调制,sm∈C,m=1,…,M,得到复数数据包d(n)=[d0(n),d1(n),…,dK-1(n)[T,进行类Alamouti空频编码,定义复数数据包dk'(n)=[d2k'(n),d2k'+1(n)]T,其中,k'=0,1,…,K/2-1,得两个发射机的发射信号:
对所述发射信号分别进行OFDM调制后发射;
步骤2、在接收系统中,首先同步接收到的信号R,利用FFT对OFDM符号解调得到接收信号y,利用IFFT/FFT进行OFDM调制解调;
步骤3、利用自适应信道估计跟踪时变信道,稀疏信道估计某时刻信道;
步骤4、某时刻的接收部分同步、解调之后,进行信道估计和初始化符号估计,初始均衡利用初始符号估计结果计算外部对数似然比Le,再利用MAP译码得到后验对数似然比L和首次均衡得到的信源信息估计值利用均衡后得到的重新编码调制,进行空频编码并重新进行信道估计,得到信道估计结果利用接收后多通道处理得到的接收信号y,MAP译码得到后验对数似然比L和新的信道估计重新进行频域均衡,实现频域均衡迭代。
2.根据权利要求1所述的自适应多入多出与正交频分复用相结合的水声通信方法,其特征是步骤2具体包括:
将第t发射机到第r接收机第n个OFDM块、第k个载波的信道传递函数定义为第r接收机第n个OFDM块、第k'个载波对上的接收信号,进行FFT解调之后表示为:
其中,
为零均值加性噪声分量,同样若使用MR个接收元素,整体用向量标识为:
3.根据权利要求2所述的自适应多入多出与正交频分复用相结合的水声通信方法,其特征是步骤3具体包括:水声信道模型为
其中,分别代表第i路的增益和时延,fk=f0+kΔf代表第k个子载波的频率,设路径增益在相邻的OFDM块之间是慢变的,延迟模型表示为:
其中,at,r=vt,r/c为多普勒比例因子,T'为符号传输时间,设接收设备都被固定在一点,而移动来自于发射机,at,r便简化为at,利用延迟模型将传递函数分解为相位增量和幅度增益的函数用于实现有效的信道追踪。
4.根据权利要求3所述的自适应多入多出与正交频分复用相结合的水声通信方法,其特征是步骤4中所述的信道估计是采用自适应信道估计算法,具体包括:
步骤1.1、判决,
设前一个块结束时,根据估计预测的在当前块n开始时是可用的,SFBC系统中,预测用于形成信道矩阵进行符号判决;
步骤1.2、稀疏信道估计;
步骤1.3、相位追踪,
测量当前块估计值和上一个块过时估计之间的相位偏差并用角度表示为:
由上式获得的相位偏差进行当前块多普勒因子的估计为:
相位迭代更新为:
步骤1.4、信道追踪,
更新被用于补偿的时变相位,信道增益被更新:
其中,波长λ∈(0,1);
步骤1.5、进行下一块的预测,
增益简单预测为:
相位预测为:
对自适应信道估计进行初始化,相位和多普勒因子初始值设为零。
5.根据权利要求4所述的自适应多入多出与正交频分复用相结合的水声通信方法,其特征是所述的稀疏信道估计采用MMP-DCD-CV算法。
6.根据权利要求5所述的自适应多入多出与正交频分复用相结合的水声通信方法,其特征是所述的计算外部对数似然比的方法如下:
其中,
设噪声是均值为0,方差为独立高斯分布,对于任意载波对d(k')有M2种可能的符号取值表示为SS,c(k',i)表示第k'个子载波对,即2k'和2k'+1中某子载波上第i个传输比特,i=1,…,Q,Q表示调制阶数,其中,d(k')=[d(2k'),d(2k'+1)]T,d(2k')和d(2k'+1)分别表示c(2k')和c(2k'+1)对应编码后的传输符号,MR表示接收阵元个数,第mr个阵元对应的接收向量为
CN201910366147.5A 2019-05-05 2019-05-05 自适应多入多出与正交频分复用相结合的水声通信方法 Active CN110138461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910366147.5A CN110138461B (zh) 2019-05-05 2019-05-05 自适应多入多出与正交频分复用相结合的水声通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366147.5A CN110138461B (zh) 2019-05-05 2019-05-05 自适应多入多出与正交频分复用相结合的水声通信方法

Publications (2)

Publication Number Publication Date
CN110138461A true CN110138461A (zh) 2019-08-16
CN110138461B CN110138461B (zh) 2021-05-11

Family

ID=67576101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366147.5A Active CN110138461B (zh) 2019-05-05 2019-05-05 自适应多入多出与正交频分复用相结合的水声通信方法

Country Status (1)

Country Link
CN (1) CN110138461B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511471A (zh) * 2021-02-01 2021-03-16 中国人民解放军国防科技大学 基于空频分组码的信道估计方法、装置、设备及介质
CN114567341A (zh) * 2022-01-12 2022-05-31 中国电子科技集团公司第十研究所 多模高灵敏度高速信号接收电路

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034480A (zh) * 2010-12-16 2011-04-27 厦门大学 一种水下数字语音的通信方法
WO2011133522A2 (en) * 2010-04-19 2011-10-27 University Of Delaware High data rate acoustic multiple-input/multiple-output (mimo) communication apparatus and system for submersibles
CN102624666A (zh) * 2012-03-05 2012-08-01 哈尔滨工程大学 稀疏信道模型下多路收发的正交多载波水声通信循环译码方法
CN102857468A (zh) * 2012-09-17 2013-01-02 哈尔滨工业大学 基于map均衡的sc-fde系统及该系统中导频结构的构建方法
CN104780128A (zh) * 2015-04-14 2015-07-15 哈尔滨工程大学 一种水声ofdma上行通信稀疏信道估计与导频优化方法
CN105323203A (zh) * 2015-11-12 2016-02-10 哈尔滨工程大学 基于正交载波扫扩技术的抗多途水声通信方法
CN105490974A (zh) * 2015-12-15 2016-04-13 江苏科技大学 一种mimo-ofdm水声通信系统的多普勒估计方法
CN106100692A (zh) * 2016-08-29 2016-11-09 东南大学 Mimo‑ofdm水声通信系统多普勒扩展估计方法
CN107359899A (zh) * 2017-06-24 2017-11-17 苏州桑泰海洋仪器研发有限责任公司 稀疏信道条件下正交频分复用扩频水声通信无导频判决反馈信道估计方法
CN107426120A (zh) * 2017-07-24 2017-12-01 哈尔滨工程大学 一种基于最小均方误差的水声ofdm‑mfsk信道均衡方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011133522A2 (en) * 2010-04-19 2011-10-27 University Of Delaware High data rate acoustic multiple-input/multiple-output (mimo) communication apparatus and system for submersibles
CN102034480A (zh) * 2010-12-16 2011-04-27 厦门大学 一种水下数字语音的通信方法
CN102624666A (zh) * 2012-03-05 2012-08-01 哈尔滨工程大学 稀疏信道模型下多路收发的正交多载波水声通信循环译码方法
CN102857468A (zh) * 2012-09-17 2013-01-02 哈尔滨工业大学 基于map均衡的sc-fde系统及该系统中导频结构的构建方法
CN104780128A (zh) * 2015-04-14 2015-07-15 哈尔滨工程大学 一种水声ofdma上行通信稀疏信道估计与导频优化方法
CN105323203A (zh) * 2015-11-12 2016-02-10 哈尔滨工程大学 基于正交载波扫扩技术的抗多途水声通信方法
CN105490974A (zh) * 2015-12-15 2016-04-13 江苏科技大学 一种mimo-ofdm水声通信系统的多普勒估计方法
CN106100692A (zh) * 2016-08-29 2016-11-09 东南大学 Mimo‑ofdm水声通信系统多普勒扩展估计方法
CN107359899A (zh) * 2017-06-24 2017-11-17 苏州桑泰海洋仪器研发有限责任公司 稀疏信道条件下正交频分复用扩频水声通信无导频判决反馈信道估计方法
CN107426120A (zh) * 2017-07-24 2017-12-01 哈尔滨工程大学 一种基于最小均方误差的水声ofdm‑mfsk信道均衡方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511471A (zh) * 2021-02-01 2021-03-16 中国人民解放军国防科技大学 基于空频分组码的信道估计方法、装置、设备及介质
CN114567341A (zh) * 2022-01-12 2022-05-31 中国电子科技集团公司第十研究所 多模高灵敏度高速信号接收电路

Also Published As

Publication number Publication date
CN110138461B (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
CN113866752B (zh) 一种svd预编码的mimo-otfs雷达目标检测方法
JP2005124125A (ja) Ofdm伝送方式におけるキャリアの配置方法、送信装置及び受信装置
Ganesh et al. Channel estimation analysis in MIMO-OFDM wireless systems
CN110138461B (zh) 自适应多入多出与正交频分复用相结合的水声通信方法
KR100539924B1 (ko) 직교 주파수 분할 다중 방식을 사용하는 이동 통신시스템에서 채널 추정 시스템 및 방법
Kumari et al. Two choice hard thresholding pursuit (TCHTP) for delay-Doppler channel estimation in OTFS
CN109067674B (zh) 一种基于选择性叠加导频的信道估计方法
Singh et al. Channel estimation with ISFLA based pilot pattern optimization for MIMO OFDM system
Bhoyar et al. Leaky least mean square (LLMS) algorithm for channel estimation in BPSK-QPSK-PSK MIMO-OFDM system
WO2008038110A2 (en) Wireless transceiver
Tolba et al. A meta learner autoencoder for channel state information feedback in massive MIMO systems
CN106856462A (zh) 空间调制多径衰落信道下的检测方法
Liu et al. A distributed detection algorithm for uplink massive MIMO systems
Zhang et al. Dynamic sparse channel estimation over doubly selective channels for large-scale MIMO systems
Yun et al. MIMO-OFDM channel estimation based on distributed compressed sensing and Kalman filter
Kumar et al. Performance comparison of MIMO-STBC systems with adaptive semiblind channel estimation scheme
JP5367474B2 (ja) 受信装置及び受信方法
Gencel et al. Scaling wideband distributed transmit beamforming via aggregate feedback
Someya et al. SAGE algorithm for channel estimation and data detection with tracking the channel variation in MIMO system
Gupta et al. Deep Learning-Based Receiver Design for IoT Multi-User Uplink 5G-NR System
Wang et al. MIMO-OFDM channel estimation via probabilistic data association based TOAs
CN111277306B (zh) 一种高速环境下mimo-fsk空分复用检测方法
Akbarpour-Kasgari et al. Mimo-OFDM Compressed Channel Estimation Using Forward-Backward Pursuit
JP4829953B2 (ja) Ofdm伝送方式におけるキャリアの配置方法
Qu et al. Training sequence design and parameter estimation of MIMO channels with carrier frequency offsets

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210401

Address after: 572024 Intellectual Property Office of science and Technology Department of Harbin Engineering University, 145 Nantong street, Nangang District, Sanya City, Hainan Province

Applicant after: Nanhai innovation and development base of Sanya Harbin Engineering University

Address before: 150001 Intellectual Property Office, Harbin Engineering University science and technology office, 145 Nantong Avenue, Nangang District, Harbin, Heilongjiang

Applicant before: HARBIN ENGINEERING University

GR01 Patent grant
GR01 Patent grant