CN110137455B - 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法 - Google Patents

一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法 Download PDF

Info

Publication number
CN110137455B
CN110137455B CN201910373343.5A CN201910373343A CN110137455B CN 110137455 B CN110137455 B CN 110137455B CN 201910373343 A CN201910373343 A CN 201910373343A CN 110137455 B CN110137455 B CN 110137455B
Authority
CN
China
Prior art keywords
alkali metal
metal sulfide
nano
sulfide
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910373343.5A
Other languages
English (en)
Other versions
CN110137455A (zh
Inventor
王治宇
邱介山
于明亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910373343.5A priority Critical patent/CN110137455B/zh
Publication of CN110137455A publication Critical patent/CN110137455A/zh
Application granted granted Critical
Publication of CN110137455B publication Critical patent/CN110137455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法,属于纳米材料与能源领域。所述的碱金属硫化物/碳复合正极材料由均匀镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的纳米碳颗粒组成。制备方法包括:1)将无机碱金属盐、锌盐或钴盐、有机咪唑酯在溶剂中混合反应获得内部包含无机碱金属盐分子团簇的有序金属有机分子笼,将之在惰性气氛或氢氩混合气中煅烧,即可获得成分、结构、尺寸可控的碱金属硫化物基正极材料。本发明获得的碱金属硫化物正极材料克服了碱金属硫化物纳米结构难以制备、氧化还原反应活性差、价格昂贵等基础性难题,为基于碱金属硫化物正极的高比能量、高安全性二次电池开发创制奠定了基础。

Description

一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合 正极材料及其合成方法
技术领域
本发明属于纳米材料与能源领域,涉及一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法。
背景技术
基于碱金属与硫之间可逆氧化还原反应的二次电池因具有高能量密度、低成本、绿色环保等优势,成为近年来可再生能源存储领域的研究热点之一。但此类电池体系中活泼碱金属负极枝晶生长刺穿电池隔膜导致的电池失效短路问题与火灾、爆炸等安全风险,使之难以走向实际应用。
碱金属硫化物在电化学能源存储领域具有诸多优势:(1)理论比容量高(Li2S:1166mA h g-1,Na2S:678mA h g-1,K2S:487mA h g-1),数倍于传统嵌锂金属氧化物正极材料;(2)初始结构富含碱金属,无充放电体积膨胀效应;(3)可与不含活泼碱金属的高容量负极材料(如硅、锡基材料等)匹配构建的高比能量、高安全性二次电池。但碱金属硫化物正极的性能受限于其电子离子绝缘性、在有机电解液中的溶解流失与穿梭效应等诸多问题。商业化碱金属硫化物高昂的价格、高熔点以致纳米结构难以制备等难题亦极大限制了其实际应用。
发明内容
针对碱金属硫化物正极价格高昂、导电性差、在有机电解液中利用率低、难以实现均匀纳米结构制备等问题,本发明提出一种均匀镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的碱金属硫化物/碳复合正极材料及其合成方法。基于金属有机分子笼对廉价无机锂盐的纳米空间限域效应,制备均匀镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的碱金属硫化物/碳复合正极材料。克服了碱金属硫化物在应用中面临的如下问题:(1)因碱金属硫化物导电性差导致的充电性能下降;(2)在电解液中溶解与穿梭效应导致的活性物质流失;(3)因碱金属硫化物高熔点难以实现结构纳米化;(4)碱金属硫化物较差的电化学氧化还原反应活性;(5)商业化碱金属硫化物高昂的成本。解决了困扰碱金属硫化物正极性能发挥与应用的基础性难题,所得碱金属硫化物正极在二次电池中表现出优异的电化学性能。该合成方法绿色环保,能耗低、易控制且具有通用性,可用于规模化生产。
为了达到上述目的,本发明的技术方案为:
一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料,所述的碱金属硫化物/碳复合正极材料由均匀镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的纳米碳颗粒组成,尺寸在100-500nm之间;碱金属硫化物与氧化还原催化剂的的尺寸均在5nm以下,负载量分别在50-70wt.%与5-25wt.%之间;所述的氧化还原催化剂包括硫化锌或钴单质中至少一种。
一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,包括以下步骤:
1)将无机碱金属盐、锌盐或钴盐、有机咪唑酯混合加入到溶剂中,20-30℃温度下反应2-24h,获得内部包含无机碱金属盐分子团簇的有序金属有机分子笼复合结构。
所述的无机碱金属盐为锂、钠、钾的硫酸盐或其水合物中至少一种,浓度为0.8-2.0M。
所述的锌盐为乙酸锌或其水合物、硝酸锌或其水合物、氯化锌或其水合物中至少一种,浓度为0.05-0.25M。
所述的钴盐为乙酸钴或其水合物、硝酸钴或其水合物、氯化钴或其水合物中至少一种,其浓度为0.1-0.25M。
所述的有机咪唑酯为2-甲基咪唑,其浓度为0.5-3.0M。
所述的有机咪唑酯与锌或钴盐的摩尔比为2-12:1。
所述的溶剂为水、甲醇、乙醇中至少一种。
2)将步骤1)中得到的复合结构在保护气氛中于700-800℃煅烧2-8h,获得镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的碱金属硫化物/碳复合正极材料;
所述的煅烧气氛为氩气或氢/氩混合气中至少一种。
与现有技术相比,本发明解决了困扰碱金属硫化物正极性能发挥与应用的基础性难题,其有益效果为:
1)基于金属有机分子笼对无机锂盐的纳米空间限域效应,实现了碱金属硫化物的结构纳米化,超细碱金属硫化物纳米颗粒与金属有机分子笼衍生碳的原位耦合提升电极导电性与稳定性;
2)基于金属有机分子笼与无机锂盐在分子尺度上的均匀混合,实现了超细碱金属硫化物纳米颗粒、碳载体与氧化还原催化剂纳米颗粒的均匀混合与分布,提升电极的氧化还原反应活性、动力学速率与可逆性;
3)此策略以廉价无机锂盐为起始原料,降低碱金属硫化物正极的制备成本。材料制备过程简便易行、环境友好,利于规模化应用。
附图说明
图1是本发明实施例1中镶嵌硫化锂纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳颗粒的扫描电镜照片;
图2是本发明实施例1中镶嵌硫化锂纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳颗粒的透射电镜照片;
图3是本发明实施例2中镶嵌硫化锂纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳颗粒的扫描电镜照片;
图4是本发明实施例3中镶嵌硫化钾纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳颗粒的扫描电镜照片;
图5是本发明实施例4中镶嵌硫化锂纳米颗粒与钴单质催化剂纳米颗粒的纳米碳颗粒的扫描电镜照片;
图6是本发明实施例5中镶嵌硫化钠纳米颗粒与钴单质催化剂纳米颗粒的纳米碳颗粒的扫描电镜照片。
具体实施方式
针对现有技术的诸多缺陷,本案发明人经长期研究和大量实践,提出本发明的技术方案,如下将对该技术方案、其实施过程及原理等作进一步的解释说明。但是,应当理解,在本发明范围内,本发明的上述各技术特征和在下文(实施例)中具体描述的各技术特征之间都可以相互结合,从而构成新的或者优选的技术方方案。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1镶嵌硫化锂纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳颗粒的制备方法
1)将Li2SO4.H2O(0.8M)、Zn(Ac)2.2H2O(0.05M)和2-甲基咪唑(0.5M)在去离子水中混合后静置反应2小时,反应温度为20℃。反应结束后,用乙醇洗涤离心3次,冷冻干燥获得白色粉体;
2)将步骤1)中得到的复合结构在氢/氩混合气中煅烧,煅烧温度为700℃,煅烧时间为2h。获得产物为平均尺寸约300-400nm,镶嵌硫化锂超细纳米颗粒与硫化锌催化剂纳米颗粒的多孔纳米碳,硫化锂与硫化锌纳米颗粒的大小在5纳米以下,负载量分别为53wt.%(硫化锂)和25wt.%(硫化锌)。
实施例2镶嵌硫化锂纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳制备方法
1)将Li2SO4.H2O(1.5M)、Zn(NO3)2.2H2O(0.25M)和2-甲基咪唑(0.5M)在去离子水中混合后静置反应2小时,反应温度为20℃。反应结束后,用乙醇洗涤离心3次,冷冻干燥获得白色粉体;
2)将步骤1)中得到的复合结构在氢/氩混合气中煅烧,煅烧温度为700℃,煅烧时间为2h。获得产物为平均尺寸约400-500nm,镶嵌硫化锂超细纳米颗粒与硫化锌催化剂纳米颗粒的多孔纳米碳,硫化锂与硫化锌纳米颗粒的大小在5纳米以下,负载量分别为70wt.%(硫化锂)和5.0wt.%(硫化锌)。
实施例3镶嵌硫化钾纳米颗粒与硫化锌催化剂纳米颗粒的纳米碳的制备方法
1)将K2SO4(0.8M)、ZnCl2.2H2O(0.25M)和2-甲基咪唑(3.0M)在去离子水、甲醇混合溶剂中混合后静置反应2小时,反应温度为20℃。反应结束后,用乙醇洗涤离心3次,冷冻干燥获得白色粉体;
2)将步骤1)中得到的复合结构在氢/氩混合气中煅烧,煅烧温度为800℃,煅烧时间为2h。获得产物为平均尺寸约200-400nm,镶嵌硫化锂超细纳米颗粒与硫化锌催化剂纳米颗粒的多孔纳米碳,硫化锂与硫化锌纳米颗粒的大小在5纳米以下,负载量分别为51wt.%(硫化锂)和18wt.%(硫化锌)。
实施例4镶嵌硫化锂纳米颗粒与钴单质催化剂纳米颗粒的纳米碳的制备方法
1)将Li2SO4.H2O(2.0M)、Co(Ac)2.6H2O(0.1M)和2-甲基咪唑(1.0M)在去离子水中混合后静置反应12小时,反应温度为30℃。反应结束后,用乙醇洗涤离心3次,冷冻干燥获得紫色粉体;
2)将步骤1)中得到的复合结构在氢/氩混合气中煅烧,煅烧温度为700℃,煅烧时间为4h。获得产物为平均尺寸约100-300nm,镶嵌硫化锂超细纳米颗粒与钴单质催化剂纳米颗粒的多孔纳米碳,硫化锂与硫化锌纳米颗粒的大小在5纳米以下,负载量分别为63wt.%(硫化钠)和8.0wt.%(钴)。
实施例5镶嵌硫化钠纳米颗粒与钴单质催化剂纳米颗粒的纳米碳的制备方法
1)将Na2SO4.H2O(2.0M)、Co(NO3)2.6H2O(0.25M)和2-甲基咪唑(3.0M)在去离子水、乙醇混合溶剂中混合后静置反应24小时,反应温度为30℃。反应结束后,用乙醇洗涤离心3次,冷冻干燥获得紫色粉体;
2)将步骤1)中得到的复合结构在氩气中煅烧,煅烧温度为800℃,煅烧时间为8h。获得产物为平均尺寸约400-500nm,镶嵌硫化钠超细纳米颗粒与钴单质催化剂纳米颗粒的多孔纳米碳,硫化锂与硫化锌纳米颗粒的大小在5纳米以下,负载量分别为69wt.%(硫化钠)和17wt.%(钴)。
应当理解的是,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的碱金属硫化物/碳复合正极材料由均匀镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的纳米碳颗粒组成;尺寸在100-500nm之间;碱金属硫化物与氧化还原催化剂的尺寸均在5nm以下,负载量分别在50-70wt.%与5-25wt.%之间;
所述的合成方法,包括以下步骤:
1)将无机碱金属盐、锌盐或钴盐、有机咪唑酯加入溶剂中,搅拌后在20-30℃温度下反应2-24h,获得内部包含无机碱金属盐分子团簇的有序金属有机分子笼复合结构;其中,无机碱金属盐的浓度为0.8-2.0M;锌或钴盐的浓度为0.05-0.25M;有机咪唑酯的浓度为0.5-3.0M;有机咪唑酯与锌或钴盐的摩尔比为2-12:1;
2)将步骤1)中得到的复合结构在保护气氛中于700-800℃煅烧2-8h,获得镶嵌碱金属硫化物超细纳米颗粒与氧化还原催化剂纳米颗粒的碱金属硫化物/碳复合正极材料。
2.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的氧化还原催化剂包括硫化锌、钴单质中至少一种。
3.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的无机碱金属盐为锂、钠、钾的硫酸盐或其水合物中至少一种。
4.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的锌盐为乙酸锌或其水合物、硝酸锌或其水合物、氯化锌或其水合物中至少一种,钴盐为乙酸钴或其水合物、硝酸钴或其水合物、氯化钴或其水合物中至少一种。
5.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的有机咪唑酯为2-甲基咪唑。
6.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述的溶剂为水、甲醇、乙醇中至少一种。
7.根据权利要求1所述的一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料的合成方法,其特征在于,所述煅烧的气氛为氩气或氢/氩混合气中至少一种。
CN201910373343.5A 2019-05-07 2019-05-07 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法 Active CN110137455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910373343.5A CN110137455B (zh) 2019-05-07 2019-05-07 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910373343.5A CN110137455B (zh) 2019-05-07 2019-05-07 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法

Publications (2)

Publication Number Publication Date
CN110137455A CN110137455A (zh) 2019-08-16
CN110137455B true CN110137455B (zh) 2022-02-15

Family

ID=67576372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910373343.5A Active CN110137455B (zh) 2019-05-07 2019-05-07 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法

Country Status (1)

Country Link
CN (1) CN110137455B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293295B (zh) * 2020-01-13 2021-08-03 博尔特新材料(银川)有限公司 废旧橡胶材料基二次电池用电极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336308A (zh) * 2017-01-20 2018-07-27 华为技术有限公司 一种锂硫电池正极保护材料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990615B1 (ko) * 2015-09-23 2019-06-18 주식회사 엘지화학 금속 나노입자를 포함하는 양극 활물질 및 양극, 이를 포함하는 리튬-황 전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336308A (zh) * 2017-01-20 2018-07-27 华为技术有限公司 一种锂硫电池正极保护材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li 2 S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries ";Zhiyu Wang等;《Journal of Energy Chemistry》;20190327;第37卷;全文 *
"Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery";Jing Xua等;《Nano Energy》;20180614;第51卷;全文 *

Also Published As

Publication number Publication date
CN110137455A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
CN103715424B (zh) 一种核壳结构正极材料及其制备方法
CN111362254B (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN110571416B (zh) 一种过渡金属硒硫复合物及其制备方法
CN103000864A (zh) 一种硫复合正极材料及其制备方法
CN111193014B (zh) 蛋壳-蛋黄结构的四氧化三钴-氮掺杂碳/碳纳米笼复合材料及其制备方法和应用
CN109378491A (zh) 一种锂空气电池及其制备方法
CN107293743A (zh) 一种含铁酸镍多孔纳米管的钠离子电池正极材料及其制备方法
CN107394178B (zh) 一种钠离子电池负极用碳酸钴/石墨烯复合材料及其制备方法与应用
Li et al. ZnSe/SnSe2 hollow microcubes as cathode for high performance aluminum ion batteries
CN114933293A (zh) 氟磷酸钒钠的制备和在钠离子电池中的应用
CN103606700A (zh) 一种充放电性能良好的锂离子电池
Guo et al. Nitrogen doped carbon nanosheets encapsulated in situ generated sulfur enable high capacity and superior rate cathode for Li-S batteries
CN113540428A (zh) 一种3DOM类石墨烯碳担载的单分散NiO纳米晶材料、制备及应用
Xing et al. CeO2/Ce2S3 modified carbon nanotubes as efficient cathode materials for lithium-sulfur batteries
CN105977487B (zh) 手风琴状vs2材料及其制备方法和应用
CN111933904A (zh) 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池
Huang et al. A multifunctional LaFeO3 nanocages modified separator for propelling polysulfides chemisorption and catalytic conversion in Li-S batteries
CN109671937B (zh) 一种过渡型金属氧化物/石墨烯复合材料的原位合成方法
CN104183827A (zh) 一种磷酸铁锂纳米棒及其制备方法
CN110137455B (zh) 一种基于金属有机分子笼构筑的纳米碱金属硫化物/碳复合正极材料及其合成方法
CN110649263A (zh) 镍离子电池磷酸钒锂正极材料及溶胶凝胶制备方法与应用
CN110197902B (zh) 一种多孔结构开口核桃壳状钠离子电池正极材料及其制备方法
CN107317019A (zh) 一种钠离子电池负极用碳酸亚铁/石墨烯复合材料及其制备方法与应用
CN108448082B (zh) 电极材料和其花瓣状多孔结构铁基复合氧化物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant