CN110132893A - 一种基于光纤结构的气体探测器 - Google Patents

一种基于光纤结构的气体探测器 Download PDF

Info

Publication number
CN110132893A
CN110132893A CN201910405595.1A CN201910405595A CN110132893A CN 110132893 A CN110132893 A CN 110132893A CN 201910405595 A CN201910405595 A CN 201910405595A CN 110132893 A CN110132893 A CN 110132893A
Authority
CN
China
Prior art keywords
optical fiber
noble metal
metal nano
nano particles
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910405595.1A
Other languages
English (en)
Other versions
CN110132893B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU KEXIN PHOTOELECTRIC SCIENCE & TECHNOLOGY Co.,Ltd.
Original Assignee
Xi'an Colette Mdt Infotech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Colette Mdt Infotech Ltd filed Critical Xi'an Colette Mdt Infotech Ltd
Priority to CN201910405595.1A priority Critical patent/CN110132893B/zh
Publication of CN110132893A publication Critical patent/CN110132893A/zh
Application granted granted Critical
Publication of CN110132893B publication Critical patent/CN110132893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N2021/258Surface plasmon spectroscopy, e.g. micro- or nanoparticles in suspension

Abstract

本发明涉及一种基于光纤结构的气体探测器,包括光纤和贵金属纳米颗粒,其中光纤上开有凹槽,贵金属纳米颗粒附着在凹槽壁上。当该气体探测器置于所要探测的气体中时,气体改变贵金属纳米颗粒的共振频率,从而改变光纤的透射特性,进而探测气体的折射率和达到探测气体的目的。因为贵金属纳米颗粒距离光纤中心的距离小,贵金属纳米颗粒中的表面等离激元共振与光纤中传播的基膜耦合强,所以该发明具有探测灵敏度高等优点。

Description

一种基于光纤结构的气体探测器
技术领域
本发明涉及光电子技术领域,具体涉及一种基于光纤结构的气体探测器。
背景技术
气体探测,尤其是基于折射率的气体探测器,在工程实践中具有重要的应用。近年来,在光纤表面设置贵金属纳米颗粒,当气体折射率发生变化时,贵金属纳米颗粒的表面等离激元共振波长发生移动,这使得光纤的透射光谱中的透射谷发生移动,通过探测透射谷的移动,识别出气体折射率的变化,从而实现探测气体的目的。但是,在这种探测器中,光纤中的主要能量分布在光纤中心,这些能量与贵金属纳米颗粒的耦合弱,探测灵敏度低。
发明内容
针对上述问题,本发明提供了一种基于光纤结构的气体探测器,该气体探测器包括光纤和贵金属纳米颗粒,其中光纤上开有凹槽,贵金属纳米颗粒附着在凹槽侧壁上。
所述凹槽的截面为矩形。
所述凹槽的截面为V形。
所述凹槽为两个,并且凹槽的侧壁平行。
所述两凹槽侧壁间的距离小于100纳米。
所述贵金属纳米颗粒为金纳米颗粒或银纳米颗粒。
所述贵金属纳米颗粒的尺寸为10纳米至50纳米。
本发明的有益效果:本发明提供的这种基于光纤结构的气体探测器中,贵金属纳米颗粒附着在凹槽侧壁上,如此以来,贵金属纳米颗粒与光纤中心的距离近,光纤中传播的主要能量与贵金属纳米颗粒容易耦合在一起,所以探测灵敏度高。另外,对于V形凹槽,贵金属纳米颗粒间的距离小,对置于相邻纳米颗粒间气体的折射率的变化更加敏感,更进一步地提高了探测的灵敏度。此外,凹槽还可以为两个,两凹槽间的距离较小,如此以来,两凹槽侧壁上的贵金属纳米颗粒上的表面等离激元共振可以耦合在一起,相当于在贵金属纳米颗粒的两侧都存在气体一样,更进一步提高了探测的灵敏度。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是基于光纤结构的气体探测器示意图一。
图2是基于光纤结构的气体探测器示意图二。
图3是基于光纤结构的气体探测器示意图三。
图中:1、光纤;2、凹槽;3、贵金属纳米颗粒。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明如下。
实施例1
提高提高基于光纤结构对气体探测的灵敏度,本发明提供了一种如图1所示的基于光纤结构的气体探测器,该探测器包括光纤1和贵金属纳米颗粒3,其中光纤1表面设有凹槽2,贵金属纳米颗粒3附着在凹槽2的侧壁上。光纤1为光学芯,为二氧化硅材料。贵金属纳米颗粒可以为金纳米颗粒或者银纳米颗粒。凹槽的形状为矩形。一般来说,光纤1中传播的能量的主要部分为其基膜,能量主要分布在光纤1的中心,分布在光纤1表面的能量少,在光纤1的表面设有凹槽2,在凹槽2的侧壁及底部设有贵金属纳米颗粒3,这样以来,贵金属纳米颗粒3与在光纤中传播的能量更容易产生耦合,从而使得贵金属纳米颗粒3上更容易产生表面等离激元共振,探测器更容易探测到由表面等离激元共振引起的光纤1的透射光谱的变化,所以提高了探测的灵敏度。贵金属纳米颗粒3的尺寸在10纳米至50纳米间,这样以来,贵金属纳米颗粒3的共振波长在可见光至近红外波段。在探测器结构制备方法,凹槽2可以由离子束刻蚀技术制备而得。将具有凹槽2的光纤1置于含有贵金属纳米颗粒的溶液中,然后从溶液中取出光纤1,待溶液干燥后,贵金属纳米颗粒将附着在凹槽2的侧壁及底部。另外光纤1表面的其他部位也将附着有贵金属纳米颗粒,可以通过应用柔性材料将其移除。
实施例2
在实施例1的基础上,如图2所示,凹槽2还可以为V形。也就是说,凹槽2的底部窄,顶部宽。如此以来,对于附着在凹槽2底部的贵金属纳米颗粒3,相邻贵金属纳米颗粒3间的距离小。当该探测器置于气体中时,气体将处于相邻贵金属纳米颗粒3间。由于当发生表面等离激元共振时,相邻贵金属纳米颗粒间的电场强度高,该表面等离激元共振对相邻贵金属纳米颗粒间的环境更敏感,这使得该探测器的灵敏度更高。此外,对于V形凹槽2,凹槽2的底部面积小,对光纤1中传播的电磁模式破坏小,光纤1中的强电场将围绕在V形凹槽2的底部,这样以来,更有利于V形凹槽2中的贵金属纳米颗粒2与光纤1中传播的电场模式间的耦合,更有利于提高探测的灵敏度。在实验中,可以应用离子束刻蚀的方法制备V形凹槽2。在应用离子束刻蚀时,控制对离子束的加速电压。在水平移动离子束的过程中,加速电压由小变大,再由大变小。这样离子束的能量也是由小变大,再由大变小。从而产生V形凹槽2。采用与实施例1中相同的方法在V形凹槽侧壁上附着贵金属纳米颗粒3。
实施例3
在实施例1的基础上,如图3所示,矩形凹槽2还可以为两个,两矩形凹槽2的侧壁平行,矩形凹槽2的两侧壁和底部附着有贵金属纳米颗粒3,两矩形凹槽2相邻侧壁的距离小于100纳米。这样以来,附着在不同凹槽2侧壁上的贵金属纳米颗粒3的表面等离激元共振可以耦合到一起。表面等离激元耦合到一起效果:一方面相当于在贵金属纳米颗粒3的两侧都围绕着待检测气体,从而提高了检测灵敏度;另一方面调节了表面等离激元的共振波长,也就是将表面等离激元共振波长红移,这样以来,可以在不改变贵金属纳米颗粒尺寸的情况下,在更长的波长实现表面等离激元共振,有利于使用针对不同波段的探测器进行探测。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (7)

1.一种基于光纤结构的气体探测器,包括光纤和贵金属纳米颗粒,其特征在于:光纤上开有凹槽,贵金属纳米颗粒附着在凹槽侧壁上。
2.如权利要求1所述基于光纤结构的气体探测器,其特征在于:所述凹槽的截面为矩形。
3.如权利要求1所述的基于光纤结构的气体探测器,其特征在于:所述凹槽的截面为V形。
4.如权利要求2所述的基于光纤结构的气体探测器,其特征在于:所述凹槽为两个,并且凹槽的侧壁平行。
5.如权利要求4所述的基于光纤结构的气体探测器,其特征在于:所述两凹槽侧壁间的距离小于100纳米。
6.如权利要求1-5中任一项权利要求所述的基于光纤结构的气体探测器,其特征在于:所述贵金属纳米颗粒为金纳米颗粒或银纳米颗粒。
7.如权利要求6所述的基于光纤结构的气体探测器,其特征在于:所述贵金属纳米颗粒的尺寸为10纳米至50纳米。
CN201910405595.1A 2019-05-16 2019-05-16 一种基于光纤结构的气体探测器 Active CN110132893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910405595.1A CN110132893B (zh) 2019-05-16 2019-05-16 一种基于光纤结构的气体探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910405595.1A CN110132893B (zh) 2019-05-16 2019-05-16 一种基于光纤结构的气体探测器

Publications (2)

Publication Number Publication Date
CN110132893A true CN110132893A (zh) 2019-08-16
CN110132893B CN110132893B (zh) 2021-12-28

Family

ID=67574336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910405595.1A Active CN110132893B (zh) 2019-05-16 2019-05-16 一种基于光纤结构的气体探测器

Country Status (1)

Country Link
CN (1) CN110132893B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272714A (zh) * 2020-03-03 2020-06-12 电子科技大学中山学院 一种光学谐振腔原理的金属氧化物气体传感器
WO2023006966A1 (en) * 2021-07-30 2023-02-02 Centre National De La Recherche Scientifique Method for operando characterization of chemical species within a battery using infrared evanescent wave spectroscopy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987425A (zh) * 2005-12-20 2007-06-27 周礼君 表面电浆共振感测系统及方法
US20110069316A1 (en) * 2009-09-22 2011-03-24 National Chung Cheng University Localized plasmon resonance sensing device and fiber optic structure
US20110090506A1 (en) * 2009-10-20 2011-04-21 National Chung Cheng University Self-referencing fiber-optic localized plasmon resonance sensing device and system thereof
CN102607607A (zh) * 2012-02-24 2012-07-25 河南科技大学 一种h形微纳米光纤表面等离激元传感器及其制备方法
CN103335741A (zh) * 2013-06-19 2013-10-02 暨南大学 一种基于石墨烯的光纤温度传感器及其制作方法
CN105092535A (zh) * 2015-07-09 2015-11-25 哈尔滨工程大学 分布式表面等离子体共振光纤传感器
CN105651738A (zh) * 2016-03-10 2016-06-08 哈尔滨工程大学 一种螺旋芯光纤spr传感器
CN105866070A (zh) * 2016-05-27 2016-08-17 哈尔滨工程大学 基于光纤表面等离子体共振的分布式液体折射率传感装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987425A (zh) * 2005-12-20 2007-06-27 周礼君 表面电浆共振感测系统及方法
US20110069316A1 (en) * 2009-09-22 2011-03-24 National Chung Cheng University Localized plasmon resonance sensing device and fiber optic structure
US20110090506A1 (en) * 2009-10-20 2011-04-21 National Chung Cheng University Self-referencing fiber-optic localized plasmon resonance sensing device and system thereof
CN102607607A (zh) * 2012-02-24 2012-07-25 河南科技大学 一种h形微纳米光纤表面等离激元传感器及其制备方法
CN103335741A (zh) * 2013-06-19 2013-10-02 暨南大学 一种基于石墨烯的光纤温度传感器及其制作方法
CN105092535A (zh) * 2015-07-09 2015-11-25 哈尔滨工程大学 分布式表面等离子体共振光纤传感器
CN105651738A (zh) * 2016-03-10 2016-06-08 哈尔滨工程大学 一种螺旋芯光纤spr传感器
CN105866070A (zh) * 2016-05-27 2016-08-17 哈尔滨工程大学 基于光纤表面等离子体共振的分布式液体折射率传感装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄茜 等: "纳米 Ag 材料表面等离子体激元引起的表面增强拉曼散射光谱研究", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272714A (zh) * 2020-03-03 2020-06-12 电子科技大学中山学院 一种光学谐振腔原理的金属氧化物气体传感器
WO2023006966A1 (en) * 2021-07-30 2023-02-02 Centre National De La Recherche Scientifique Method for operando characterization of chemical species within a battery using infrared evanescent wave spectroscopy

Also Published As

Publication number Publication date
CN110132893B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN110132893A (zh) 一种基于光纤结构的气体探测器
CN109374591B (zh) 基于全介质人工微结构超表面的荧光增强芯片
JP2012530945A (ja) 完全なフォトニック、電子又はフォノニックバンドギャップを有する非結晶材料
JP2013148421A (ja) 試料分析素子および検出装置
Mokri et al. Numerical design of a plasmonic nano-tweezer for realizing high optical gradient force
WO2018005044A1 (en) Photonic apparatus, methods, and applications
CN111879728B (zh) 一种提高折射率传感器件品质因数的结构及测试方法
CN105973846B (zh) 一种可实现三次Fano共振的MIM型纳米棒二聚体
CN103247861A (zh) 一种可以产生法诺共振增强的多层不对称超材料
US9841367B2 (en) Methods and devices for optical sorting of microspheres based on their resonant optical properties
Zhang et al. Plasmon-induced-transparency in subwavelengthstructures
Masoudian Saadabad et al. Structured light excitation of toroidal dipoles in dielectric nanodisks
Li et al. Mapping the magnetic field intensity of light with the nonlinear optical emission of a silicon nanoparticle
Li et al. Metamaterial-based strain sensors
Li et al. A bright single-photon source from nitrogen-vacancy centers in diamond nanowires
CN109752798B (zh) 基于同轴双波导光纤的光学纳米天线探测器及其制备方法
Tanaka et al. Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes
CN101799566A (zh) 半球型多层膜结构纳米透镜
CN110361362A (zh) 一种基于介质纳米天线生物传感器、制备方法及应用
CN107293846B (zh) 调控多个随机不相干单光子发射器辐射的蘑菇状纳米天线
Meng et al. Mapping the near-field distribution of magnetic fields using a silicon nanoparticle at optical frequencies
CN106546566B (zh) 一种提高荧光物质远场发光效率的金属通道结构
Üstün et al. Investigation of nanoantenna geometries for maximum field enhancements at optical frequencies
CN108020873B (zh) 一种光子集成电路中八边形金属纳米光学天线
Valero et al. Bianisotropic exceptional points in an isolated dielectric nanoparticle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211210

Address after: 212000 No. 138, Zhenxing Road, Danyang City, Zhenjiang City, Jiangsu Province

Applicant after: JIANGSU KEXIN PHOTOELECTRIC SCIENCE & TECHNOLOGY Co.,Ltd.

Address before: 710000 room 10401-276, unit 1, building 1, Liren Science Park, Gaoxin Sixth Road, high tech Zone, Xi'an, Shaanxi

Applicant before: XI'AN KELAITE INFORMATION TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant