CN110129775B - 一种在硅纳米线阵列上形成Ag颗粒的方法 - Google Patents

一种在硅纳米线阵列上形成Ag颗粒的方法 Download PDF

Info

Publication number
CN110129775B
CN110129775B CN201910413412.0A CN201910413412A CN110129775B CN 110129775 B CN110129775 B CN 110129775B CN 201910413412 A CN201910413412 A CN 201910413412A CN 110129775 B CN110129775 B CN 110129775B
Authority
CN
China
Prior art keywords
silicon nanowire
nanowire array
particles
array substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910413412.0A
Other languages
English (en)
Other versions
CN110129775A (zh
Inventor
张志东
张彦军
张斌珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201910413412.0A priority Critical patent/CN110129775B/zh
Publication of CN110129775A publication Critical patent/CN110129775A/zh
Application granted granted Critical
Publication of CN110129775B publication Critical patent/CN110129775B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1642Substrates other than metallic, e.g. inorganic or organic or non-conductive semiconductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/10Etching in solutions or melts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种在硅纳米线阵列上形成Ag颗粒的方法,包括如下步骤:步骤一、制备硅纳米线阵列,然后将制备好的硅纳米线阵列放置在培养皿中;步骤二、将放置有硅纳米线阵列基板的培养皿移至振荡台,设定振动参数;步骤三、将硝酸盐溶液均匀滴加在硅纳米线阵列基板上;步骤四、持续将氨水均匀滴加在硅纳米线阵列基板上;步骤五、将乙醛均匀滴加在硅纳米线阵列基板上;步骤六、使用清洗液清洗硅纳米线阵列基板,该在硅纳米线阵列上形成Ag颗粒的方法,操作简单,使用的仪器简单,制备环境要求低,对材料的要求低,而且制备时间短。

Description

一种在硅纳米线阵列上形成Ag颗粒的方法
技术领域
本发明属于红外探测技术领域,具体涉及一种在硅纳米线阵列上形成Ag颗粒的方法。
背景技术
纳米材料受到极大的关注,主要是由于其特殊的物理性质。因为当材料的尺寸减小至纳米级别的时候,小尺寸效应、量子尺寸效应、宏观量子隧道效应、库仑阻塞效应、表面效应等块体材料并不具备的特殊物理性质便会表现出来。作为地球上元素含量排行第二的硅,是极其重要的半导体材料,在当下的信息时代已被广泛的应用于各种通讯器材及微电子元件之中。然而硅的禁带宽度仅有1.12eV,非常的窄小,这使得其在器件应用过程当中受到了限制。如果将半导体材料硅尺寸纳米化,使其具有纳米材料特有的优异物理性能,这无疑将使得其产生更高的应用价值。
硅纳米线是一种新型的一维半导体纳米材料,线体直径一般在10nm左右,内晶核是单晶硅,外层有一SiO2包覆层,由于自身所特有的光学、电学性质如量子限制效应及库仑阻塞效应引起了科技界的广泛关注,在微电子电路中的逻辑门和计数器、场发射器件等纳米电子器件、纳米传感器及辅助合成其它纳米材料的模板中的应用研究已取得了一定的进展。
硅纳米线阵列上形成银颗粒具有很好的红外隐身作用,红外隐身技术在单兵目标、地面武器、空中战机等领域有非常重要应用。传统涂层、屏蔽和遮挡等方法因缺乏有效的能量转换或转移途径而存在红外暴露风险。通过对硅纳米线阵列修饰银纳米粒子,借助其表面等离激元共振(SPR)增强光热转换,可以提升结构隐身性能。如何在硅纳米线上设置Ag颗粒对于隐身技术发展有重要的意义。
发明内容
本发明的目的是提供一种在硅纳米线阵列上形成Ag颗粒的方法,包括如下步骤:
步骤一、制备硅纳米线阵列,然后将制备好的硅纳米线阵列放置在培养皿中;
步骤二、将放置有硅纳米线阵列基板的培养皿移至振荡台,设定振动参数;
步骤三、将硝酸盐溶液均匀滴加在硅纳米线阵列基板上;
步骤四、持续将氨水均匀滴加在硅纳米线阵列基板上;
步骤五、将乙醛均匀滴加在硅纳米线阵列基板上;
步骤六、使用清洗液清洗硅纳米线阵列基板。
所述步骤一中制备硅纳米线阵列的体积为1cm×1cm。
所述步骤三中的硝酸盐溶液的浓度为0.001mol/L。
所述步骤三中的硝酸盐溶液的滴入量为0.5ml。
所述步骤四中使用的氨水是体积比为2%的氨水。
所述步骤三中的硝酸盐溶液为AgNO3溶液。
所述步骤二中设定振动参数是振动位移为2mm,振动频率为100Hz。
所述步骤六中清洗硅纳米线阵列基板使用的清洗液为去离子水。
所述硅纳米线阵列的基板为聚酰亚胺制成。
本发明的有益效果:本发明提供的这种在硅纳米线阵列上形成Ag颗粒的方法,操作简单,使用的仪器简单,制备环境要求低,对材料的要求低,而且制备时间短。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是在硅纳米线阵列上形成Ag颗粒的示意图。
图2是硅纳米线阵列形成的Ag颗粒效果图。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明如下。
实施例1
本实施例提供了一种如图1所示的在硅纳米线阵列上形成Ag颗粒的方法,包括如下步骤:
步骤一、制备硅纳米线阵列,然后将制备好的硅纳米线阵列放置在培养皿中,其中,制备硅纳米线阵列的体积为1cm×1cm;
步骤二、将放置有硅纳米线阵列基板的培养皿移至振荡台,设定振动参数,设定振动参数是振动位移为2mm,振动频率为100Hz;整个制备过场一直处于振动状态,这样,一方面,可以使得下述的制备过程,能够充分反应硝酸盐溶液中的Ag离子,另一方面,使得所生产的Ag颗粒能够附着于硅纳米线的中下部;
步骤三、将硝酸盐溶液均匀滴加在硅纳米线阵列基板上,硝酸盐溶液为AgNO3溶液,AgNO3溶液的浓度为0.001mol/L,滴入量为0.5ml,硝酸盐溶液的滴入量尤为重要,如果过量会产生大片的银层附着于硅纳米线上,而不是Ag颗粒附着于硅纳米线上;
步骤四、持续将氨水均匀滴加在硅纳米线阵列基板上,所滴加的氨水是体积比为2%的氨水,滴加氨水首先会出现浑浊的沉淀物,继续滴加氨水,沉淀物会慢慢溶解,持续滴加氨水,知道沉淀物完全溶解为止;
步骤五、将乙醛均匀滴加在硅纳米线阵列基板上,所加入的乙醛的溶液的浓度0.001mol/L,滴入量为0.25ml;
步骤六、使用清洗液清洗硅纳米线阵列基板,清洗硅纳米线阵列基板使用的清洗液为去离子水。
如图2所示为使用上述方法制备的硅纳米线阵列形成的Ag颗粒最终效果图。
另外需要说明的是,硅纳米线可以通过下述方式进行制备:将单晶硅片清洗干净后放入浓度为5%的HF溶液中浸泡3min后,接着置于银沉积液中浸泡60S,接着再置于蚀刻液中浸泡30min,其中银沉积液和蚀刻液中的HF浓度均为4.8mol/L,蚀刻液中H2O2浓度为0.4mol/L,银沉积液中的AgNO3浓度为0.01mol/L HF的浓度为4.8mol/L。
综上所述,该在硅纳米线阵列上形成Ag颗粒的方法,操作简单,使用的仪器简单,制备环境要求低,对材料的要求低,而且制备时间短。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于,包括如下步骤:
步骤一、制备硅纳米线阵列,然后将制备好的硅纳米线阵列放置在培养皿中;
步骤二、将放置有硅纳米线阵列基板的培养皿移至振荡台,设定振动参数;
步骤三、将硝酸盐溶液均匀滴加在硅纳米线阵列基板上;其中,硝酸盐溶液具体为AgNO3溶液;
步骤四、持续将氨水均匀滴加在硅纳米线阵列基板上;
步骤五、将乙醛均匀滴加在硅纳米线阵列基板上;
步骤六、使用清洗液清洗硅纳米线阵列基板。
2.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤一中制备硅纳米线阵列的体积为1cm×1cm。
3.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤三中的硝酸盐溶液的浓度为0.001mol/L。
4.如权利要求3所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤三中的硝酸盐溶液的滴入量为0.5ml。
5.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤四中使用的氨水是体积比为2%的氨水。
6.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤二中设定振动参数是振动位移为2mm,振动频率为100Hz。
7.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述步骤六中清洗硅纳米线阵列基板使用的清洗液为去离子水。
8.如权利要求1所述的一种在硅纳米线阵列上形成Ag颗粒的方法,其特征在于:所述硅纳米线阵列的基板为聚酰亚胺制成。
CN201910413412.0A 2019-05-17 2019-05-17 一种在硅纳米线阵列上形成Ag颗粒的方法 Expired - Fee Related CN110129775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910413412.0A CN110129775B (zh) 2019-05-17 2019-05-17 一种在硅纳米线阵列上形成Ag颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910413412.0A CN110129775B (zh) 2019-05-17 2019-05-17 一种在硅纳米线阵列上形成Ag颗粒的方法

Publications (2)

Publication Number Publication Date
CN110129775A CN110129775A (zh) 2019-08-16
CN110129775B true CN110129775B (zh) 2021-02-23

Family

ID=67575022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910413412.0A Expired - Fee Related CN110129775B (zh) 2019-05-17 2019-05-17 一种在硅纳米线阵列上形成Ag颗粒的方法

Country Status (1)

Country Link
CN (1) CN110129775B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113406147B (zh) * 2021-05-08 2022-11-29 中北大学 一种氢气敏感元件及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017173A2 (en) * 2009-07-28 2011-02-10 Bandgap Engineering Inc. Silicon nanowire arrays on an organic conductor
CN103337449B (zh) * 2013-04-28 2016-01-06 中国科学院合肥物质科学研究院 硅纳米线阵列的移植及其简单器件制备的方法
CN104630820A (zh) * 2015-02-12 2015-05-20 重庆市环境科学研究院 金属银致电导增强的二硫化钼修饰硅纳米线阵列光电化学析氢电极的制备方法
KR101789213B1 (ko) * 2016-06-03 2017-10-26 (주)바이오니아 화학환원법을 이용한 코어-쉘 구조의 은 코팅 구리 나노 와이어의 제조방법
CN109095782B (zh) * 2018-07-27 2021-10-01 五邑大学 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法

Also Published As

Publication number Publication date
CN110129775A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
Xu et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments
Chen et al. Hydrothermally grown ZnO micro/nanotube arrays and their properties
Sun et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone)
Zou et al. Fe3O4 nanocrystals with novel fractal
Zhang et al. Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence
US20100084628A1 (en) Branched nanowire and method for fabrication of the same
Erkoç et al. Structural and electronic properties of single-wall ZnO nanotubes
Zhou et al. Kinetics study of ZnO nanorod growth in solution
CN102732885B (zh) 一种磁场辅助的硅微纳加工工艺及装备
CN108919391A (zh) 基于金属薄膜-核壳等离子体结构的宽带完美吸收体
Lockett et al. Influence of seeding layers on the morphology, density, and critical dimensions of ZnO nanostructures grown by chemical bath deposition
CN103050640A (zh) 一种氧化锌纳米颗粒/二氧化硅复合结构纳米棒的制备方法
CN103342337A (zh) 金属纳米颗粒辅助刻蚀法制备介孔硅纳米线的方法
CN111908417B (zh) 一种钙钛矿单晶纳米环及其制备方法与应用
CN110129775B (zh) 一种在硅纳米线阵列上形成Ag颗粒的方法
Zhu et al. Template-free synthesis of zinc oxide hollow microspheres in aqueous solution at low temperature
Yang et al. Hierarchical three-dimensional ZnO and their shape-preserving transformation into hollow ZnAl2O4 nanostructures
Vayssieres An aqueous solution approach to advanced metal oxide arrays on substrates
KR101087266B1 (ko) 실리콘 나노와이어/징크옥사이드 코어/쉘 나노복합체의 제조방법 및 상기 나노복합체를 포함하는 태양전지
KR101532262B1 (ko) 산화아연 나노와이어 및 ito 입자를 이용한 면상 발열체 및 그 제조방법
CN105555705A (zh) 硅纳米线阵列的制备方法
CN106348244B (zh) 一种石墨烯基纳米线复合结构及其制备方法
CN105067524A (zh) 一种微型荧光分子荧光增强器件
CN107460462B (zh) 硅片上银纳米颗粒致密层的制备方法
CN104254925A (zh) 氧化锌凹凸结构的形成方法及利用其的太阳能电池的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210223

CF01 Termination of patent right due to non-payment of annual fee