CN110124687A - 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用 - Google Patents

一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用 Download PDF

Info

Publication number
CN110124687A
CN110124687A CN201910408361.2A CN201910408361A CN110124687A CN 110124687 A CN110124687 A CN 110124687A CN 201910408361 A CN201910408361 A CN 201910408361A CN 110124687 A CN110124687 A CN 110124687A
Authority
CN
China
Prior art keywords
composite material
ldh
ruthenium
doping
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910408361.2A
Other languages
English (en)
Inventor
宋宇飞
师蓉
陈伟
安赛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910408361.2A priority Critical patent/CN110124687A/zh
Publication of CN110124687A publication Critical patent/CN110124687A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/007Mixed salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用。本发明利用水滑石与氧化石墨烯具有静电相互作用,通过一步回流法制备钌掺杂的LDH/rGO复合材料。本发明将水滑石负载在大表面积的石墨烯上除了增强其导电性外,其锚定作用还有利于避免水滑石团聚,增大活性比表面积,暴露更多活性位点。本发明制备的复合材料具有钴、钌两个电催化活性位点,二者协同作用,降低了电催化反应的能量壁垒,从而显著降低了电催化过电势。由于Ru的掺杂改变了复合材料表面的电子状态,氧缺陷增多,助力于反应活性位点对中间体的吸附,加快水电解,提高析氢性能。

Description

一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应 上的应用
技术领域
本发明属于电催化材料制备技术领域,特别涉及一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用。
背景技术
能源短缺和环境污染是人类社会实现不断续发展面临的现实难题。电解水技术能够分解水制氢,将电能转换为氢能。产生的氢能作为燃料和能量载体,不但具有高的燃烧热值,高能量密度,而且全程对环境无污染。因此,电催化材料与技术是当前世界上公认的能够“同时解决环境和能源问题”的领域中最具有应用前景的新技术之一。全水解由析氢反应(Hydrogen evolution reaction)和析氧反应 (Oxygen evolution reaction)两个半反应构成,其中阴极发生的析氢反应由于存在较高过电位导致能耗较大,选择恰当的电催化剂有利于降低反应过电位,从而提高能量利用率。因为具有优异电催化性能的铂基贵金属催化剂存在价格较昂贵,资源稀缺的缺点,所以探索替代铂基贵金属析氢催化剂和具有高效、稳定,价格低廉的析氢催化剂引起科学家的广泛关注。研究表明,增加催化材料的固有活性和提高活性位点数目,通过负载导电基底提高材料的电子导电率,降低物质传输阻力,以上措施都有利于提高催化材料电催化性能。
过渡金属钴地壳含量较为丰富,成本较有优势,且作为电催化反应的活性中心具有丰富的电子态,因此成为制氢催化剂的研究热点。水滑石具有二维层状纳米片结构,超大比表面积,因此可以通过调节其形态,组成,嵌入离子和剥离等策略来提升其电催化性能。正是由于其二维纳米片结构赋予的这些独特的优势,让LDH及其衍生物(如氧化物,硫化物,金属氢氧化物和羟基氧化物等)在电化学储能和转化应用中显示出巨大的潜力。然而水滑石本身团聚现象严重,导电性较差,严重影响制氢催化剂的催化转换率并引起大的过电势。而氧化石墨烯作为一种石墨烯材料的衍生物,由于其片层的表面和边缘存在大量的含氧官能团具有锚定作用,在水中分散性良好,组装能力和功能化强,导电性强,因此已被广泛用于制备电化学储能、催化材料的导电基底。
发明内容
本发明的目的是提供一种钌掺杂的水滑石和还原氧化石墨烯复合材料的制备方法及其在析氢反应上的应用。本发明利用水滑石与氧化石墨烯具有静电相互作用,通过一步回流法制备钌掺杂的LDH/rGO复合材料。通过调变复合材料中层板上金属元素Ru的含量,并控制复合材料的形貌,拓展了提升双金属氢氧化物电催化活性的新方法。
本发明所述的钌掺杂的LDH/rGO复合材料的组成包含钌掺杂的钴基水滑石和还原氧化石墨烯,该复合材料为纳米片阵列结构,纳米片尺寸为100nm;该复合材料具有钴、钌两个电催化活性位点。
本发明所述的钌掺杂的LDH/rGO复合材料的制备方法为:将氧化石墨烯超声分散在硝酸钴水溶液中,然后加入RuCl3水溶液,超声分散后加入持续通入纯氧气的氨水溶液中,在30-60℃下搅拌反应12-36小时,洗涤干燥得到钌掺杂的LDH/rGO 复合材料。
所述的氧化石墨烯的制备方法为:将石墨粉加入到浓H2SO4与浓H3PO4的混合溶液中,再加入KMnO4,升温至40-60℃并搅拌反应6-20h;加入冰冷却至室温后加入双氧水,离心过滤,再依次用水、盐酸和乙醇洗涤,最后用去离子水洗涤至中性,冷冻干燥,即得氧化石墨烯。
将上述制备得到的钌掺杂的LDH/rGO复合材料作为催化剂应用于电解水析氢反应中。该反应具体条件为:
(1)将钌掺杂的LDH/rGO复合材料与导电剂炔黑以质量比0.2-20的比例混合均匀,加入乙醇后超声,再加入Nafion溶液,混合均匀后涂覆于导电碳纸集流体上,室温下干燥得到析氢反应电极;
(2)将制备好的析氢反应电极置于碱溶液中,采用三电极体系进行反应,所用三电极体系的参比电极为银/氯化银电极,辅助电极为石墨电极。
本发明的优点如下:
1)本发明制备得到的钌掺杂的LDH/rGO复合材料的析氢催化剂具有钴、钌两个电催化活性位点,二者协同作用,降低了电催化反应的能量壁垒,从而显著降低了电催化过电势。
2)本发明制备得到的钌掺杂的LDH/rGO复合材料的析氢催化剂具有纳米片阵列结构,使其具有较大的活性比表面积,充分暴露电催化活性位点,构成的丰富的网状结构也有利于电解液与活性位充分接触,加快反应速率。
3)本发明制备得到的钌掺杂的LDH/rGO复合材料的析氢催化剂将水滑石负载在大表面积的石墨烯上除了增强其导电性外,其锚定作用还有利于避免水滑石团聚,增大活性比表面积,暴露更多活性位点。
4)本发明制备得到的钌掺杂的LDH/rGO复合材料的析氢催化剂由于Ru的掺杂改变了复合材料表面的电子状态,氧缺陷增多,助力于反应活性位点对中间体的吸附,加快水电解能力增强,提高析氢性能。
5),本发明制备得到的钌掺杂的LDH/rGO复合材料,其中水滑石中钌和钴的原子比为0.0943的复合材料作为析氢催化剂,在10mA/cm2的电流密度下,其过电位能够低至60mv,塔菲尔斜率为74mv/dec。
附图说明
图1是本发明实施例得到的不同钌含量的钌掺杂的LDH/rGO复合材料和对比例得到的LDH/rGO复合材料的析氢反应线扫图。
图2是本发明实施例得到的不同钌含量的钌掺杂的LDH/rGO复合材料的 XRD图。
具体实施方式
实施例1
1、3.0g石墨粉加入到浓H2SO4与浓H3PO4按9:1体积比的混合溶液中,再将18.0gKMnO4缓慢加入到上述混合溶液中,升温至50℃并搅拌12h;加入400mL 冰冷却至室温,然后加入3mL 30%H2O2,过滤,将滤液离心(4000rpm,10分钟),去除上清液后,依次用水(200mL),30%HCl水溶液(200mL)和乙醇(200mL) 洗涤,最后用去离子水将产物洗涤至中性,冷冻干燥,即得氧化石墨烯。
2、称取步骤1所得到的300mg GO分散于20.0ml的0.25M Co(NO3)2澄清溶液中超声12h,分别加入1.5,3,5,7,9,11mL浓度为12.238mg/mL的RuCl3水溶液,超声12h,然后快速加入至持续通入纯氧气的100ml的0.125M氨水溶液中,在40℃下搅拌24小时,洗涤干燥得到钌掺杂的LDH/rGO复合材料,分别记为S-1,S-2,S-3,S-4,S-5,S-6。
对比例1
将实施例1制备的GO 300mg分散于20.0ml的0.25M Co(NO3)2澄清溶液中超声12h,然后快速加入至持续通入纯氧气的100ml的0.125M氨水溶液中,在 40℃下搅拌24小时,洗涤干燥得到LDH/rGO复合材料,记为S-0。
应用实施例
1.取实施例1制备的钌掺杂的LDH/rGO复合材料9mg与0.1mg导电剂炔黑混合均匀,加入1mL乙醇后超声,再加入50μL的5wt%Nafion溶液,涂覆于1×1 cm2的导电碳纸上,室温下干燥24h,得到析氢反应电极;
2.将制备好的析氢反应电极置于1mol/L的KOH溶液中,采用三电极体系进行测试,参比电极为银/氯化银电极电极,辅助电极为石墨电极,其线扫曲线见附图1。
对照实施例
1.取对比例1制备的LDH/rGO复合材料9mg与0.1mg导电剂炔黑混合均匀,加入1mL乙醇后超声,再加入50μL的5wt%Nafion溶液,涂覆于1×1cm2的导电碳纸上,室温下干燥24h,得到析氢反应电极;
2.将制备好的析氢反应电极置于1mol/L的KOH溶液中,采用三电极体系进行测试,参比电极为银/氯化银电极电极,辅助电极为石墨电极,其线扫曲线见附图1。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也为本发明的保护范围。

Claims (5)

1.一种钌掺杂的LDH/rGO复合材料,其特征在于,该复合材料的组成包含钌掺杂的钴基水滑石和还原氧化石墨烯,该复合材料为纳米片阵列结构,纳米片尺寸为100nm;该复合材料具有钴、钌两个电催化活性位点。
2.一种钌掺杂的LDH/rGO复合材料的制备方法,其特征在于,该制备方法为:将氧化石墨烯超声分散在硝酸钴水溶液中,然后加入RuCl3水溶液,超声分散后加入持续通入纯氧气的氨水溶液中,在30-60℃下搅拌反应12-36小时,洗涤干燥得到钌掺杂的LDH/rGO复合材料。
3.根据权利要求2所述的制备方法,其特征在于,所述的氧化石墨烯的制备方法为:将石墨粉加入到浓H2SO4与浓H3PO4的混合溶液中,再加入KMnO4,升温至40-60℃并搅拌反应6-20h;加入冰冷却至室温后加入双氧水,离心过滤,再依次用水、盐酸和乙醇洗涤,最后用去离子水洗涤至中性,冷冻干燥,即得氧化石墨烯。
4.根据权利要求1-3任一所述的方法制备得到的钌掺杂的LDH/rGO复合材料作为催化剂在电解水析氢反应中的应用。
5.根据权利要求4所述的应用,其特征在于,所述的电解水析氢反应的具体操作条件为:
(1)将钌掺杂的LDH/rGO复合材料与导电剂炔黑以质量比0.2-20的比例混合均匀,加入乙醇后超声,再加入Nafion溶液,混合均匀后涂覆于导电碳纸集流体上,室温下干燥得到析氢反应电极;
(2)将制备好的析氢反应电极置于碱溶液中,采用三电极体系进行反应,所用三电极体系的参比电极为银/氯化银电极,辅助电极为石墨电极。
CN201910408361.2A 2019-05-16 2019-05-16 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用 Pending CN110124687A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910408361.2A CN110124687A (zh) 2019-05-16 2019-05-16 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910408361.2A CN110124687A (zh) 2019-05-16 2019-05-16 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用

Publications (1)

Publication Number Publication Date
CN110124687A true CN110124687A (zh) 2019-08-16

Family

ID=67574633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910408361.2A Pending CN110124687A (zh) 2019-05-16 2019-05-16 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用

Country Status (1)

Country Link
CN (1) CN110124687A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113089015A (zh) * 2021-03-29 2021-07-09 西北大学 一种氮掺杂的碳量子点及其制备方法,以及还原氧化石墨烯及其制备方法和应用
KR102291269B1 (ko) * 2020-02-21 2021-08-18 광운대학교 산학협력단 에어로졸 열분해법을 이용한 산소발생반응용 루테늄 코발트 산화물 촉매 제조방법
CN113304765A (zh) * 2020-02-26 2021-08-27 南京理工大学 一种锑纳米片和类石墨相氮化碳纳米片复合材料及其制备方法
CN113769759A (zh) * 2021-09-23 2021-12-10 深圳市康弘环保技术有限公司 室温催化氧化甲醛复合材料及其制备方法、空气净化器
CN114917926A (zh) * 2022-04-24 2022-08-19 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN117816147A (zh) * 2024-03-05 2024-04-05 中山大学 一种Al2O3-ZnSn水滑石及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668763B2 (en) * 2002-03-11 2003-12-30 The University Of Chicago Process for in-situ production of hydrogen (H2) by alcohol decomposition for emission reduction from internal combustion engines
CN104588034A (zh) * 2014-12-17 2015-05-06 北京化工大学 一种石墨烯基负载贵金属材料及其制备方法
CN109686585A (zh) * 2018-12-21 2019-04-26 山东大学 一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668763B2 (en) * 2002-03-11 2003-12-30 The University Of Chicago Process for in-situ production of hydrogen (H2) by alcohol decomposition for emission reduction from internal combustion engines
CN104588034A (zh) * 2014-12-17 2015-05-06 北京化工大学 一种石墨烯基负载贵金属材料及其制备方法
CN109686585A (zh) * 2018-12-21 2019-04-26 山东大学 一种基于NiCo-LDH/rGO和rGO的水系非对称超级电容器及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAN LI ET AL.: "Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
WEI MA ET AL.: "A Superlattice of Alternately Stacked Ni-Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water", 《ACSNANO》 *
YINLING WANG ET AL.: "Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen", 《ELECTROCHIMICA ACTA》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291269B1 (ko) * 2020-02-21 2021-08-18 광운대학교 산학협력단 에어로졸 열분해법을 이용한 산소발생반응용 루테늄 코발트 산화물 촉매 제조방법
CN113304765A (zh) * 2020-02-26 2021-08-27 南京理工大学 一种锑纳米片和类石墨相氮化碳纳米片复合材料及其制备方法
CN113304765B (zh) * 2020-02-26 2022-08-16 南京理工大学 一种锑纳米片和类石墨相氮化碳纳米片复合材料及其制备方法
CN113089015A (zh) * 2021-03-29 2021-07-09 西北大学 一种氮掺杂的碳量子点及其制备方法,以及还原氧化石墨烯及其制备方法和应用
CN113769759A (zh) * 2021-09-23 2021-12-10 深圳市康弘环保技术有限公司 室温催化氧化甲醛复合材料及其制备方法、空气净化器
CN114917926A (zh) * 2022-04-24 2022-08-19 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN114917926B (zh) * 2022-04-24 2023-10-20 湖南大学 负载单原子钌的ldh催化剂及其制备方法和在病原菌消杀中的应用
CN117816147A (zh) * 2024-03-05 2024-04-05 中山大学 一种Al2O3-ZnSn水滑石及其制备方法和应用

Similar Documents

Publication Publication Date Title
Liu et al. Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@ MoZn22 core-shell structures
CN110124687A (zh) 一种钌掺杂的LDH/rGO复合材料的制备方法及其在析氢反应上的应用
Ding et al. Mesoporous Ni-P nanocatalysts for alkaline urea electrooxidation
Zheng et al. Three-dimensional NiCu layered double hydroxide nanosheets array on carbon cloth for enhanced oxygen evolution
Shi et al. FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells
CN107871875B (zh) 一种析氧反应电催化剂、其制备方法及应用
Kumar et al. Co-Ni based hybrid transition metal oxide nanostructures for cost-effective bi-functional electrocatalytic oxygen and hydrogen evolution reactions
CN108707923A (zh) 一种以泡沫镍为载体的镍铁氢氧化物/还原氧化石墨烯电化学析氧催化剂及其制备方法
CN110380062A (zh) 基于zif-67和导电石墨烯的硫掺杂的双功能氧催化剂的制备方法
Guo et al. Synergistic effect of Co and Fe bimetallic oxides/hydroxides composite structure as a bifunctional electrocatalyst for enhancing overall water splitting performance
Zhao et al. Built-in electric field in bifunctional electrocatalyst (Ni3S2@ Ni9S8) for high-efficiency OER and overall water splitting performance
CN105957728B (zh) 一种镍‑钴双氢氧化物/NiCo2S4复合纳米材料、其制备方法及作为超级电容器电极材料的应用
CN103480406A (zh) 一种氮掺杂石墨烯/氮掺杂碳纳米管/四氧化三钴复合纸及其制备方法
Ambriz-Peláez et al. Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries
CN105719850A (zh) 石墨烯聚吡咯/双金属氢氧化物纳米线三元复合材料及其制备方法和应用
Qian et al. Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction
Zhang et al. Highly efficient ethylene glycol electrocatalytic oxidation based on bimetallic PtNi on 2D molybdenum disulfide/reduced graphene oxide nanosheets
Qin et al. MXene supported rhodium nanocrystals for efficient electrocatalysts towards methanol oxidation
CN109767924A (zh) 一种ldh基超级电容器复合电极材料及制备方法与用途
Yang et al. Metal–organic framework derived CoS2/FeS-MOF with abundant heterogeneous interface as bifunctional electrocatalyst for electrolysis of water
Tan et al. Improved energy conversion and storage performance enabled by hierarchical zigzag-like P-doped CuCo2O4 nanosheets based 3D electrode materials
Du et al. Efficient anodic biochar oxidation over three-dimensional self-support nickel-iron nanosheet on nickel foam in biochar-assisted water electrolysis for hydrogen production
Zhang et al. Efficiently catalyzed sea urchin-like mixed phase SmMn2O5/MnO2 for oxygen reduction reaction in zinc-air battery
Liu et al. Ru/MoO2 decorated on CNT networks as an efficient electrocatalyst for boosting hydrogen evolution reaction
CN110433810A (zh) 氧化铜掺杂镍铁类水滑石纳米片/石墨烯双功能水分解催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816