CN110124666B - 新型Ti3+复合异质结构纳米材料的制备方法 - Google Patents

新型Ti3+复合异质结构纳米材料的制备方法 Download PDF

Info

Publication number
CN110124666B
CN110124666B CN201910451538.7A CN201910451538A CN110124666B CN 110124666 B CN110124666 B CN 110124666B CN 201910451538 A CN201910451538 A CN 201910451538A CN 110124666 B CN110124666 B CN 110124666B
Authority
CN
China
Prior art keywords
solution
mixed solution
tio
mmol
novel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910451538.7A
Other languages
English (en)
Other versions
CN110124666A (zh
Inventor
张静涛
刘炳坤
王雪莹
于丹丹
袁明明
刘姝瑞
韩晓乐
秦素雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Light Industry
Nanjing Institute of Environmental Sciences MEE
Original Assignee
Zhengzhou University of Light Industry
Nanjing Institute of Environmental Sciences MEE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Light Industry, Nanjing Institute of Environmental Sciences MEE filed Critical Zhengzhou University of Light Industry
Priority to CN201910451538.7A priority Critical patent/CN110124666B/zh
Publication of CN110124666A publication Critical patent/CN110124666A/zh
Application granted granted Critical
Publication of CN110124666B publication Critical patent/CN110124666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种新型Ti3+复合异质结构纳米材料的制备方法,将NaOH加入乙醇溶液中搅拌形成A液;将金属化合物在乙醇溶液中分散形成B液,然后加入钛盐形成C液;将A液滴入C液中,搅拌混匀得到混合溶液;置于反应釜中在160‑240℃下恒温反应至少3 h得到沉淀物;洗涤、干燥后得到Ti3+复合异质结构纳米材料。在材料制备过程中形成的Ti3+和氧空位以及金属单质,使TiO2的太阳能光吸收范围扩宽及抑制电子‑空穴的复合,进而提高材料的光催化性能、抗菌性能和降解性能。本发明采用溶剂热,通过控制反应条件可制备~10 nm的纳米金属单质修饰的Ti3+自掺杂异质结构复合材料,整个制备过程简单,具有实际应用前景。

Description

新型Ti3+复合异质结构纳米材料的制备方法
技术领域
本发明属于能源环境和光催化材料领域,具体涉及一种新型Ti3+复合异质结构纳米材料的制备方法。
背景技术
二氧化钛(TiO2)由于其广泛的应用范围和在基础水平上对表面性质的深入研究,在表面科学领域得到了广泛的研究。这些研究在一定程度上是因为发现TiO2是一种光催化剂,对水的分解和有机物的降解具有较高的效率,并且其化学性质非常稳定、价格低廉,在光催化去除环境中有害微生物和有机物。TiO2的光催化活性往往取决于表面缺陷中心的性质和密度。而 Ti3+被认为是许多吸附剂的重要反应剂,因此许多表面反应都受到这些点缺陷的影响。此外,在实际应用中,纯TiO2并不是一个很好的候选材料,因为它只有在紫外光(UV)照射下才具有活性,且纯的TiO2由于禁带宽度较宽(以锐钛矿为例~3.2 ev)仅能被太阳光中所占比例较少的紫外光(~4%)激发,然而,含有Ti3+的还原TiO2(TiO2−x)已被证明具有可见光吸收。
一般来说,Ti3+自掺杂TiO2光催化活性的增强主要是由于以下原因,其一,TiO2-x中Ti3+的存在增加了其光吸收区域,认为高浓度Ti3+掺杂导致TiO2的带隙变窄,TiO2的光吸收光谱范围通过自掺杂扩展到可见区域。其二,TiO2由Ti3+和氧空位引起的光载流子的高效分离和高导电性也是其增强光催化活性的重要原因。相关实验也证明了还原TiO2在可见光下的活性有所提高,说明引入Ti3+制备可见光响应型TiO2是可行的。因此,全面了解Ti3+生成制备的方法和技术是非常重要的。
为了使新型Ti3+复合异质结构纳米材料能够大规模的生产和实际应用,需要解决上述问题。
发明内容
本发明要解决的技术问题是针对纯TiO2宽禁带宽度导致的低吸收范围和电子-空穴易复合导致的催化效率等两大突出缺点,本发明提供一种新型Ti3+复合异质结构纳米材料的制备方法,利用简便的方法改善TiO2这一性质。一是通过Ti3+自掺杂拓宽改性TiO2的光吸收范围,得到具良好可见光响应的复合材料,二是通过合成中得到的金属单质抑制电子-空穴的复合。
复合材料制备后发现不仅含有Ti3+,而且还含有金属单质的纳米复合材料。进行材料测试的时候发现合成的纳米复合材料具有很强的协同效应,这是由于金属纳米粒子对二氧化钛进行修饰,可以改变体系中的电子分布,显著影响二氧化钛表面的光化学性质,进而提高其光催化活性,此外,Ti3+的存在增加了其光吸收区域,由Ti3+和氧空位引起的光载流子的高效分离和高导电性也是其增强光催化活性的重要原因。两者相互作用能有效提高所制备材料的杀菌性能,基于此提出了一种新型Ti3+复合异质结构纳米材料的制备方法。
为解决上述技术问题,本发明采用如下的技术方案:
一种新型Ti3+复合异质结构纳米材料的制备方法,包括以下步骤:
(1)将NaOH加入乙醇溶液中搅拌形成A液;
(2)将金属化合物在乙醇溶液中分散形成B液,然后加入钛盐形成C液;
(3)将A液滴入C液中,搅拌混匀得到混合溶液;
(4)将步骤(3)的混合液倒入反应釜中在温度160-240℃下恒温反应至少3 h,得到沉淀物;
(5)将步骤(4)的沉淀物用乙醇和水洗涤,干燥后得到Ti3+复合异质结构纳米材料。
进一步,所述金属化合物为PdCl2、PtCl2、NiCl2、CuCl2、RhCl3或RuCl3
进一步,所述混合溶液中金属化合物的摩尔浓度为0.001 M。
进一步,所述钛盐为TiCl4,混合溶液中钛盐的摩尔浓度为0.1-0.5 M,优选0.1 M。
进一步,所述混合溶液中NaOH的摩尔浓度为0.4-0.6 M,优选0.4M。
进一步,所述步骤(4)中反应时间为3-10 h。
本发明给出具体反应体系中钛盐的摩尔浓度范围和金属离子(如:PdCl2、PtCl2、NiCl2、CuCl2、RhCl3、RuCl3等)浓度范围,在范围中都可以得到异质复合材料,在进一步给出的优化范围中,可以得到Ti3+信号较强的异质复合材料。本发明中的异质复合材料在可见光下具有响应,关键因素在于所使用的金属离子(如:PdCl2、PtCl2、NiCl2、CuCl2、RhCl3、RuCl3等)在钛盐中的反应。本发明反应所需的温度条件,低于160℃不能很好的晶化;160℃以上时,可以得到锐钛矿相二氧化钛,温度越高,所得材料晶化越好,高于240℃后,反应危险性增加。所需反应时间,反应时间>3h就可以得到异质复合材料,过多延长时间不有利于反应得完全进行。
本发明设计原理如下:
利用金属离子(如:PdCl2、PtCl2、NiCl2、CuCl2、RhCl3、RuCl3等)与钛在醇溶剂环境中反应,再将含NaOH的醇溶剂滴入含金属离子(如:PdCl2、PtCl2、NiCl2、CuCl2、RhCl3、RuCl3等)与钛的醇溶剂中,通过水热的方法,制备一系列新型Ti3+复合异质结构纳米材料。
本发明具有如下的优点以及技术效果:
1. 本发明利用纳米金属颗粒(如:Pd、Pt、Ni、Cu、Rh、Ru等)抑制电子-空穴的复合,提高材料光催化效率。
2. 本发明引入Ti3+掺杂降低TiO2禁带宽度,拓宽改性TiO2的光吸收范围,得到具良好可见光响应的复合材料。
3. 本发明通过一步溶剂的方法,制备一系列纳米金属颗粒修饰的Ti3+自掺杂新型复合异质结构纳米材料,操作简单,易于控制。
4. 本发明方法制得的复合材料,经生物安全检测无毒、稳定性高、抗菌性能好,适合用于涂料、食品保鲜膜等一系列工艺中,前景广阔。
5. 本发明提供的新型Ti3+复合异质结构纳米材料的制备方法,即一步合成,不需要高温、离子体处理、激光或中子束辐照等,操作简便,安全性高。
附图说明
图1为本发明实施例1制备的Pd/Ti3+-TiO2的XRD照片;
图2为本发明实施例1制备的Pd/Ti3+-TiO2的UV-Vis照片;
图3为本发明实施例1制备的Pd/Ti3+-TiO2的TEM图谱;
图4为本发明实施例1制备的Pd/Ti3+-TiO2的XPS谱图;
图5为本发明实施例1制备的Pd/Ti3+-TiO2的EPR图;
图6为本发明实施例2制备的Pt/Ti3+-TiO2的EPR图;
图7为本发明实施例3制备的Ni/Ti3+-TiO2的EPR图;
图8为本发明实施例4制备的Cu/Ti3+-TiO2的EPR图;
图9为本发明实施例5制备的Rh/Ti3+-TiO2的EPR图;
图10为本发明实施例6制备的Ru/Ti3+-TiO2的EPR图。
具体实施方式
实施例1
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)在室温下,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的PdCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快溶解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中180℃ 4 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为A。
采用德国Bruker公司D8 Advance型X射线衍射仪对得到的样品进行XRD分析。如图1所示为样品的XRD谱图,XRD谱图显示样品为锐钛矿相二氧化钛和立方相氯化银。采用日本日立公司U-3900H紫外可见光固体漫反射仪器对样品光吸收进行分析,如图2所示制备的材料有较好的可见光吸收效果。
采用日本电子JSM-6490LV型扫描电子显微镜和日本电子2100型透射电子显微镜观察得到样品的形貌结构,如图3所示为样品的TEM照片,结果可见,所得Pd/Ti3+-TiO2的尺寸大约为10 nm,相对均匀。
采用美国Thermo公司的ESCALAB 250型X-射线光电子能谱仪进行XPS分析,如图4所示图中Ti2p 谱拟合为459.8 eV、458.6 eV和465.0 eV的三个峰,分别对应Ti2p 3/2- Ti4+、Ti2p 3/2- Ti3+和Ti2p 1/2。采用日本JEOL公司的JES-FA200型的电子自旋共振谱仪测试材料三价钛信号的强弱,如图5所示。
实施例2
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)室温,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的PtCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快融解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中160℃ 8 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为B。
采用实施例1的设备对样品进行检测,样品B的EPR图如图6,所得Pt/Ti3+- TiO2材料含有Ti3+信号。
实施例3
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)室温,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的NiCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快融解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中180℃ 10 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为C。
采用实施例1的设备对样品进行检测,样品C的EPR图如图7,所得Ni/Ti3+- TiO2材料含有Ti3+信号。
实施例4
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)室温,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的CuCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快融解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中200℃ 6 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为D。
采用实施例1的设备对样品进行检测,样品D的EPR图如图8,所得Cu/Ti3+- TiO2材料含有Ti3+信号。
实施例5
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)室温,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的RhCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快融解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中220℃ 4 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为E。
采用实施例1的设备对样品进行检测,样品E的EPR图如图9,所得Rh/Ti3+- TiO2材料含有Ti3+信号。
实施例6
本实施例的新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)室温,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的RuCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快融解完时,将6 mmol(0.66 mL)TiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中240℃ 3 h。待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质。将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末;样品记为F。
采用实施例1的设备对样品进行检测,样品F的EPR图如图10,所得Ru/Ti3+- TiO2材料含有Ti3+信号。
除乙醇外其他醇在本发明中作用相同,它们的性质相近,所制得的材料没有太大差别,故在没有给出实施例的前提下,能够预想得到相同的技术效果。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种新型Ti3+复合异质结构纳米材料的制备方法如下:
(1)在室温下,将24 mmol NaOH加入到30 mL无水乙醇中在密闭条件下持续搅拌形成混合溶液A;
(2)将0.06 mmol的PdCl2溶于30 mL无水乙醇中,在超声波清洗机中超声20 min,以保证氯化钯均匀分散,形成B液,然后待A液中NaOH快溶解完时,将6 mmolTiCl4加入B液形成混合溶液C,将混合液C继续搅拌2~3 min;
(3)将A液缓慢滴入混合液C,搅拌20 min后转移到聚四氟乙烯的不锈钢反应釜中,置于恒温干燥箱中180℃反应 4 h,待反应结束且温度降低至室温时,把得到的沉淀物用去离子水和无水乙醇洗涤,去除未反应的杂质,将洗涤后的产物放入烘箱中60℃烘干过夜,研磨成粉末,得到Ti3+复合异质结构纳米材料。
CN201910451538.7A 2019-05-28 2019-05-28 新型Ti3+复合异质结构纳米材料的制备方法 Active CN110124666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910451538.7A CN110124666B (zh) 2019-05-28 2019-05-28 新型Ti3+复合异质结构纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910451538.7A CN110124666B (zh) 2019-05-28 2019-05-28 新型Ti3+复合异质结构纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN110124666A CN110124666A (zh) 2019-08-16
CN110124666B true CN110124666B (zh) 2022-09-16

Family

ID=67582305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910451538.7A Active CN110124666B (zh) 2019-05-28 2019-05-28 新型Ti3+复合异质结构纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN110124666B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111072493B (zh) * 2019-12-19 2023-07-14 西安近代化学研究所 一种一步法制备1,5-戊二胺的方法
CN111068671B (zh) * 2019-12-19 2023-03-21 西安近代化学研究所 一种高选择性氨基酸脱羧催化剂及其制备方法
CN113680344A (zh) * 2021-08-03 2021-11-23 江苏大学 一种富含氧空位/Ru掺杂的TiO2纳米晶体的制备方法及用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687288A1 (en) * 2012-07-19 2014-01-22 Sociedad española de carburos metalicos, S.A. Method for predicting the efficiency of a TIO2 photocatalyst
CN105921149A (zh) * 2016-05-12 2016-09-07 岭南师范学院 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
CN106732590A (zh) * 2016-11-24 2017-05-31 郑州轻工业学院 一种铜/氧化钛光催化纳米材料的制备方法
CN107737593A (zh) * 2017-11-10 2018-02-27 河北工业大学 一种TiO2纳米管负载的双金属催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2687288A1 (en) * 2012-07-19 2014-01-22 Sociedad española de carburos metalicos, S.A. Method for predicting the efficiency of a TIO2 photocatalyst
CN105921149A (zh) * 2016-05-12 2016-09-07 岭南师范学院 一种溶剂热制备铜修饰二氧化钛纳米棒的方法
CN106732590A (zh) * 2016-11-24 2017-05-31 郑州轻工业学院 一种铜/氧化钛光催化纳米材料的制备方法
CN107737593A (zh) * 2017-11-10 2018-02-27 河北工业大学 一种TiO2纳米管负载的双金属催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances";Huanli Wang,Lisha Zhang et al.;《Chemical Society Reviews》;The Royal Society of Chemistry;20140520;第43卷;5234-5244 *
Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2;Ping Wang,Shunqiu Xu,Feng Chen,Huogen Yu;《Chinese Journal of Catalysis》;Elsevier;20190305;第40卷(第3期);347-348 *

Also Published As

Publication number Publication date
CN110124666A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
Esmat et al. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly
Dong et al. AgBr@ Ag/TiO2 core–shell composite with excellent visible light photocatalytic activity and hydrothermal stability
Yu et al. Highly efficient Bi2O2CO3/BiOCl photocatalyst based on heterojunction with enhanced dye-sensitization under visible light
Yan et al. A hydrothermal route to the synthesis of CaTiO 3 nanocuboids using P25 as the titanium source
CN110124666B (zh) 新型Ti3+复合异质结构纳米材料的制备方法
Liu et al. Ionic liquid-assisted hydrothermal preparation of BiOI/BiOCl heterojunctions with enhanced separation efficiency of photo-generated charge pairs and photocatalytic performance
Qamar et al. Single-pot synthesis of⟨ 001⟩-faceted N-doped Nb2O5/reduced graphene oxide nanocomposite for efficient photoelectrochemical water splitting
Liu et al. Higher visible photocatalytic activities of nitrogen doped In2TiO5 sensitized by carbon nitride
Chen et al. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis
Du et al. Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity
Ren et al. Synthesis of high-activity F-doped TiO 2 photocatalyst via a simple one-step hydrothermal process
Ziarati et al. Designer hydrogenated wrinkled yolk@ shell TiO 2 architectures towards advanced visible light photocatalysts for selective alcohol oxidation
Qaraah et al. Facile route for C–N/Nb 2 O 5 nanonet synthesis based on 2-methylimidazole for visible-light driven photocatalytic degradation of Rhodamine B
Peng et al. Fabrication of fibrous BiVO4/Bi2S3/MoS2 heterojunction and synergetic enhancement of photocatalytic activity towards pollutant degradation
Bao et al. CuWO4-x nanoparticles incorporated brookite TiO2 porous nanospheres: preparation and dramatic photocatalytic activity for light driven H2 generation
Sahoo et al. Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities
Niknam et al. Mg-doped TiO2 nanorods-SrTiO3 heterojunction composites for efficient visible-light photocatalytic degradation of basic yellow 28
Chong et al. Facile synthesis of single crystalline rhenium (VI) trioxide nanocubes with high catalytic efficiency for photodegradation of methyl orange
Kerrami et al. Synergistic effect of Rutile-Anatase Fe-doped TiO2 as efficient nanocatalyst for the degradation of Azucryl Red
Hu et al. Recyclable MoO3 nanobelts for photocatalytic degradation of Rhodamine B by near infrared irradiation
JP2003126695A (ja) ニオブ酸カリウム光触媒およびその製造方法
Liu et al. Enhanced photocatalytic water splitting with surface defective SrTiO 3 nanocrystals
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
Xu et al. In-situ synthesis of Co3O4/NaTaO3 composites by electrostatic attraction from Co-MOF for water splitting
TWI641553B (zh) 產氫材料製備方法及其產物用於有機廢水產氫的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant