CN110124108B - 一种双层人工血管及其制备方法 - Google Patents

一种双层人工血管及其制备方法 Download PDF

Info

Publication number
CN110124108B
CN110124108B CN201810106544.4A CN201810106544A CN110124108B CN 110124108 B CN110124108 B CN 110124108B CN 201810106544 A CN201810106544 A CN 201810106544A CN 110124108 B CN110124108 B CN 110124108B
Authority
CN
China
Prior art keywords
layer
blood vessel
mirnas
artificial blood
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810106544.4A
Other languages
English (en)
Other versions
CN110124108A (zh
Inventor
陆树洋
王春生
朱同贺
王尧
洪涛
匡海珠
莫秀梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Hospital Fudan University
Original Assignee
Zhongshan Hospital Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Hospital Fudan University filed Critical Zhongshan Hospital Fudan University
Priority to CN201810106544.4A priority Critical patent/CN110124108B/zh
Publication of CN110124108A publication Critical patent/CN110124108A/zh
Application granted granted Critical
Publication of CN110124108B publication Critical patent/CN110124108B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/42Anti-thrombotic agents, anticoagulants, anti-platelet agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管及其制备方法。该血管的内层为介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维层,外层为大孔纳米纤维层,且所述介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维由纤维丝纺成,所述纤维丝由芯层和皮层组成,所述芯层的成分为miRNAs控释纳米球和肝素,所述皮层的材质为可降解纳米纤维。本发明内层通过同轴技术制备纤维内包裹miRNAs控释纳米球和肝素的功能性纳米纤维,该内层与血液接触,起到快速内皮化的目的,外层由通过热致相分离技术制备的大孔层组成。本发明提供的双层人工血管具有很好的组织相容性和生物力学性能。

Description

一种双层人工血管及其制备方法
技术领域
本发明涉及一种功能化的双层人工血管,尤其涉及基于静电纺丝技术和热致相分离技术的一种新型介孔miRNAs控释纳米球/肝素复合修饰的双层人造血管及其制备方法。
背景技术
人造血管在临床上应用越来越普遍,在口径大于6mm的人造血管应用方面不如小口径人造血管面临的问题多,小口径血管在诸如冠状动脉和外周血管病变等心血管疾病治疗方面需求量很大。目前小口径人造血管面临的最主要的问题是不易随宿主周围环境进行适应性调整匹配,很容易导致血栓。通过组织工程与再生医学技术制备内层能够快速内皮化、外层具有能够促使平滑肌细胞长入的微观结构同时又具有很好的力学顺应性的血管支架,才能够满足临床上对小口径血管支架生物相容性、通畅性优异的力学性能的要求。
CN104921841A公开了一种双层结构的人工血管,该血管是由取向微米纤维内层和无规纳米纤维外层组成,但是单纯的合成高分子材料制备的血管有很多缺点,如:容易形成血栓、内膜增生、钙化及引起慢性炎症,同时不具有生长的潜能。
静电纺丝技术被广泛应用于制备组织工程支架,如CN102764171A公开了一种静电纺丝复合血管支架,而热致相分离技术被应用与制备人工血管的报道也已有文献报道,如CN104689382A公开了一种编织增强的纳米纤维小口径血管支架,采用了热致相分离法制备。由于热致相分离技术在制备三维支架时,获得的大部分是大孔结构的材料,同时其可选择的材料有限制,虽不如静电纺丝技术那么广泛应用,但与其他材料共混制备人造血管领域也有很好的应用。
但迄今为止,尚无采用静电纺丝技术和热致相分离技术结合的方法制备人工血管的报道。因此通过此此两种技术结合血管的功能化修饰制备出一种成熟的集力学性能和生物相容性于一体的多级功能化结构管状支架,将具有巨大的经济效益。
发明内容
为了克服上述现有技术的不足,本发明提供了一种介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管及其制备方法。
本发明一方面提供了一种双层人工血管,该血管的内层为介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维层,外层为大孔纳米纤维层。
其中,大孔纳米纤维层中的所述大孔的孔径介于20~150μm,优选为20~100μm。
进一步,所述介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维由纤维丝纺成,所述纤维丝由芯层和皮层组成,所述芯层的成分为miRNAs控释纳米球和肝素,所述皮层的材质为可降解纳米纤维。
优选地,所述介孔miRNAs控释纳米球的粒径在120~150nm之间。
进一步,所述皮层的材质为可纺聚合物;可优选自C-PEUU(聚氨酯脲酯)、PLGA(聚乳酸-羟基乙酸共聚物)、PLLA(聚左旋乳酸)、PLCL(聚L-丙交酯-己内酯)、PDLA(聚右旋乳酸)中的一种或几种。
在本发明的一种优选实施方式中,外层的所述大孔纳米纤维层的材质为可降解的C-PEUU,孔径为20~100μm;在本发明的另一种优选实施方式中,外层的所述大孔纳米纤维层的材质为不可降解的TPU(热塑性聚氨酯),孔径为20~150μm。
进一步,上述双层人工血管为小口径人工血管;本发明所述小口径是指血管内径小于等于6mm;优选地,所述人工血管的内径小于等于5mm,且管壁厚度小于等于1.5mm;进一步优选地,所述人工血管的内径为1~3mm,且所述管壁厚度为0.6~1.0mm。
优选地,所述内层由同轴静电纺丝法制成。
优选地,所述外层由热致相分离法制成。
本发明另一方面提供了上述双层人工血管的制备方法,包括以下步骤:
1)制备介孔miRNAs控释纳米球;
2)将介孔miRNAs控释纳米球与肝素钠混合制成药物溶液;
3)将步骤2)中获得的药物溶液作为芯层,可降解聚合物纺丝液作为皮层,用同轴静电纺丝法纺得双层人工血管内层;
4)用热致相分离法将外层聚合物材料制成双层人工血管的外层。
优选地,所述miRNAs为miRNA200a、miRNA21中的任意一种或两种。
进一步,所述介孔miRNAs控释纳米球的制备方法的包括以下具体步骤:
A)将一定量的羧基化的介孔硅(MSNs-COOH)均匀分散到二甲基亚砜(DMSO)中制成分散液一;
B)称取一定量的EDC、NHS加入到上述分散液一中活化MSNs-COOH上的羧基;
C)将聚乙烯亚胺(PEI)水溶液滴加入步骤B)获得的经羧基活化后的分散液一中,然后恒温振荡反应获得产物MSNs-PEI,清洗所述产物;
D)将miRNAs溶于一定量的N,N-二甲基甲酰胺(DMF)中,加入一定量的EDC、NHS活化;
E)将步骤C)获得的MSNs-PEI分散到DMF中制成分散液二;
F)将活化的miRNAs溶液加入到分散液二中,然后恒温振荡反应,获得产物miRNAs@MSNs纳米球。
其中,EDC为1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐,NHS为N-羟基琥珀酰亚胺。
优选地,步骤A)中所述羧基化的介孔硅粒径在120~150nm之间,纳米硅表面羧基密度为3.0×10-2nmol/mg~3.5×10-2nmol/mg。
优选地,步骤B)和步骤D)中加入EDC与NHS的摩尔比为2~3:1,最佳为2.5:1。
优选地,步骤C)中聚乙烯亚胺的重均分子量为1800,每个聚乙烯亚胺分子上含有40个氨基(-NH2),聚乙烯亚胺水溶液的浓度为50~80mg/mL,恒温振荡反应的温度优选为37℃。
优选地,步骤C)中MSNs-COOH与PEI反应中羧基与氨基的摩尔投料比为1:1.2~1:1.5。
优选地,步骤D)中的miRNAs为荧光染料标记Cy5标记的miRNAs。
优选地,步骤E)制得的分散液二中MSNs-PEI的浓度为5~10mg/mL。
优选地,步骤F)中MSNs-PEI与miRNAs的摩尔投料比为比为1:1~1:2.5,恒温振荡反应的温度优选为37℃。
优选地,步骤3)中同轴静电纺丝法中芯层的推进速度为0.02~0.1mL/h,芯层针头的内径范围优选为0.20~0.45mm,例如国标6号针头,皮层溶液推进速度为1.0~2.0mL/h,皮层针头的内径范围优选为0.50~0.70mm,例如国标9号针头。
进一步,步骤3)中可降解聚合物纺丝液的浓度根据不同的聚合物相适应,优选的溶质质量(g)/溶剂体积(mL)浓度为5%~10%。
进一步,步骤4)中外层的制备方法具体为:将大孔纳米纤维层的聚合物材料的热熔液浇铸至已装配好内层介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维层的聚四氟乙烯模具中,然后低温冷冻、干燥一段时间后脱模,得到所述介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管。
优选地,所述聚合物材料的热熔液的浓度根据不同的聚合物相适应,优选的溶质质量(g)/溶剂体积(mL)浓度为1%~18%。
优选地,所述低温冷冻、干燥的步骤为先在-80℃下冷冻2~4小时,再在4℃下干燥1~3天。
在本发明的一种优选实施方式中,所述聚合物材料的热熔液采用如下重量份数的原料制备:
二甲基亚砜(DMSO) 100份;
聚氨酯脲酯(C-PEUU) 1~10份。
在本发明的另一种优选实施方式中,所述聚合物材料的热熔液采用如下重量份数的原料制备:
1,4-二氧六环(DIOX) 60~98份;
超纯水 2~40份;
热塑性聚氨酯(TPU) 1~10份。
本发明通过同轴技术制备纤维内包裹miRNAs控释纳米球和肝素的功能性纳米纤维作为与血液接触的内层起到快速内皮化的目的,外层由通过热致相分离技术制备的大孔层组成。图1所示为本发明所述双层人工血管的具体制备流程图。图2中A所示为电纺纳米纤维人工血管的照片(中间)及其放大图(左边为表面纤维放大图,右边为截面纤维放大图),B为热致相分离大孔人工血管的照片(中间)及其放大图(左边为表面纤维放大图,右边为截面纤维放大图),C为本发明所述介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管的截面放大图。
与现有技术相比,本发明的有益效果是载有miRNAs控释纳米球和肝素的纳米纤维具有优良的力学性能且对内皮细胞的黏附、增殖和迁移有很好的促进作用,其中肝素起到前期抗凝的作用,miRNAs控释纳米球具有显著的促进内皮细胞增殖分化和调节炎性因子表达的作用,更有利于内皮细胞快速长满人工支架,从而实现快速内皮化;外层为热致相分离制备的大孔纳米纤维层,引导、促进平滑肌快速生长,从而达到仿生。这种具有很好的组织相容性和生物力学性能的复合型组织工程血管的制备为发展小口径血管支架提供了一种简单且有效的制备技术思路。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1为本发明的制备流程图;
图2为本发明制备的介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管(C)和电纺纳米纤维人工血管(A)、热致相分离大孔人工血管(B)的比较图;
图3为实施例一制备的介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管的轴向力-形变图;
图4为载有miRNA21的纳米硅扫描电镜照片;
图5为载有miRNA21控释纳米球和肝素的纳米纤维扫描电镜照片。
具体实施方式
实施例1
1)将50mg表面羧基化的介孔硅(MSNs-COOH)分散到50mL二甲基亚砜(DMSO)中,超声使其分散均匀;
2)称取总量为0.8g的摩尔比为2.5:1的EDC、NHS加入到上述分散液中,32℃搅拌2小时活化MSNs-COOH上的羧基;
3)将50mL浓度为80mg/mL聚乙烯亚胺(PEI)水溶液逐滴加入到羧基被活化的MSNs-COOH分散液中,先搅拌12小时,后放入恒温摇床37℃振荡12小时,最后产物经过离心,用乙醇和去离子水分别交替重复清洗各3次,得产物MSNs-PEI;
4)将4mg的miRNAs溶于15mL的N,N-二甲基甲酰胺(DMF)中,再加入总量为0.3g的摩尔比为2.5:1的EDC、NHS,32℃搅拌2小时活化;
5)将步骤3)中制备的MSNs-PEI分散到DMF中配制一定浓度的分散液;
6)将活化的miRNAs溶液加入到MSNs-PEI分散液中,先搅拌12小时,后放入恒温摇床37℃振荡12小时,最后产物经过离心,用乙醇和去离子水分别交替重复清洗各3次,得产物miRNAs@MSNs纳米球(图4);
7)将肝素钠0.1g和20mg步骤6)中制备的miRNAs@MSNs纳米球溶于20%乙醇水溶液中得内层负载的药物溶液;
8)以内层负载的药物溶液为芯层,溶质质量(g)/溶剂体积(mL)浓度为8%的PLCL可降解聚合物纺丝液为皮层,同轴静电纺丝得内径为2mm的血管支架内层;其中,芯层溶液推进速度为0.05mL/h,皮层溶液推进速度为1.5mL/h,纺丝时间1小时,制得的纳米纤维如图5所示;
9)将步骤8)中所得的内径为2mm的血管支架内层装配到轴心直径为2.1mm的聚四氟乙烯模具轴心上,向模具内浇铸溶质质量(g)/溶剂体积(mL)浓度为5%的C-PEUU/DMSO热溶液;
10)-80℃冷冻3小时,放入冷冻干燥机内48小时后取出脱掉模具,得到内径为2mm、管壁厚为0.8mm的介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管。
实施例2
1)将50mg表面羧基化的介孔硅(MSNs-COOH)分散到50mL二甲基亚砜(DMSO)中,超声使其分散均匀;
2)称取总量为0.8g摩尔比为2.5:1的EDC、NHS加入到上述分散液中,32℃搅拌2小时活化MSNs-COOH上的羧基;
3)将50mL浓度为80mg/mL聚乙烯亚胺(PEI)水溶液逐滴加入到羧基被活化的MSNs-COOH分散液中,先搅拌12小时,后放入恒温摇床37℃振荡12小时;最后产物经过离心,用乙醇和去离子水分别交替重复清洗各3次,得产物MSNs-PEI;
4)将4mg的miRNAs溶于15mL的N,N-二甲基甲酰胺(DMF)中,再加入总量为0.3g的摩尔比为2.5:1的EDC、NHS,32℃搅拌2小时活化;
5)将步骤3)中制备的MSNs-PEI分散到DMF中配制一定浓度的分散液;
6)将活化的miRNAs溶液加入到MSNs-PEI分散液中,先搅拌12小时,后放入恒温摇床37℃振荡12小时,最后产物经过离心,用乙醇和去离子水分别交替重复清洗各3次,得产物miRNAs@MSNs纳米球;
7)将肝素钠0.1g和20mg步骤6)中制备的miRNAs@MSNs纳米球溶于20%乙醇水溶液中得内层负载的药物溶液;
8)以内层负载的药物溶液为芯层,溶质质量(g)/溶剂体积(mL)浓度为8%PLCL可降解聚合物纺丝液为皮层,同轴静电纺丝得内径为2mm的血管支架内层,内层溶液推进速度为0.05mL/h,皮层溶液推进速度为1.5mL/h,纺丝时间1小时;
9)将步骤8)中所得的内径为2mm的血管支架内层装配到轴心直径为2.1mm的聚四氟乙烯模具轴心上,向模具内浇铸溶质质量(g)/溶剂体积(mL)浓度为3%的体积比为4:1的1,4-二氧六环/水作为溶剂的TPU热溶液;
10)-80℃冷冻3小时,放入冷冻干燥机内48小时后取出脱掉模具,得到内径为2mm、管壁厚为0.8mm的介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管。
实施例3
测试实施例1制得的介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管的轴向力学数据,其结果如下表所示:
表1
Figure BDA0001567919960000061
测试其轴向力-形变图谱如图3所示。图中第一个峰点(5.05N,25.5mm)处为外层相分离得到的大孔层材料拉断的点,第二个峰点(Peak点)为内层纳米纤维材料拉断的点。
应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种双层人工血管的制备方法,其特征在于,包括步骤:
1)制备介孔miRNAs控释纳米球;
2)将介孔miRNAs控释纳米球与肝素钠混合制成药物溶液;
3)将步骤2)中获得的药物溶液作为芯层,可降解聚合物纺丝液作为皮层,用同轴静电纺丝法纺得双层人工血管内层;
4)用热致相分离法将外层聚合物材料制成双层人工血管的外层;
步骤1)进一步包括以下步骤:
A)将一定量的MSNs-COOH均匀分散到DMSO中制成分散液一;
B)称取一定量的EDC、NHS加入到上述分散液一中活化MSNs-COOH上的羧基;
C)将PEI水溶液滴加入步骤B)获得的经羧基活化后的分散液一中,然后恒温振荡反应获得产物MSNs-PEI,清洗所述产物;
D)将miRNAs溶于一定量的DMF中,加入一定量的EDC、NHS活化;
E)将步骤C)获得的MSNs-PEI分散到DMF中制成分散液二;
F)将活化的miRNAs溶液加入到分散液二中,然后恒温振荡反应,获得产物miRNAs@MSNs纳米球。
2.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤A)中所述羧基化的介孔硅粒径在120~150nm之间,纳米硅表面羧基密度为3.0×10-2nmol/mg~3.5×10- 2nmol/mg。
3.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤B)和步骤D)中加入EDC与NHS的摩尔比为2~3:1。
4.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤C)中聚乙烯亚胺的重均分子量为1800,每个聚乙烯亚胺分子上含有40个氨基(-NH2),聚乙烯亚胺水溶液的浓度为50~80mg/mL,恒温振荡反应的温度为37℃;MSNs-COOH与PEI反应中羧基与氨基的摩尔投料比为1:1.2~1:1.5。
5.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤D)中的miRNAs为荧光染料标记Cy5标记的miRNAs。
6.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤E)制得的分散液二中MSNs-PEI的浓度为5~10mg/mL。
7.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤F)中MSNs-PEI与miRNAs的摩尔投料比为比为1:1~1:2.5,恒温振荡反应的温度为37℃。
8.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤3)中同轴静电纺丝法中芯层的推进速度为0.02~0.1mL/h,芯层针头的内径范围为0.20~0.45mm,皮层溶液推进速度为1.0~2.0mL/h,皮层针头的内径范围为0.50~0.70mm。
9.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤3)中可降解聚合物纺丝液的浓度根据不同的聚合物相适应,溶质质量(g)/溶剂体积(mL)浓度为5%~10%。
10.如权利要求1所述的双层人工血管的制备方法,其特征在于,步骤4)中外层的制备方法具体为:将大孔纳米纤维层的聚合物材料的热熔液浇铸至已装配好内层介孔miRNAs控释纳米球/肝素复合修饰的可降解纳米纤维层的聚四氟乙烯模具中,然后低温冷冻、干燥一段时间后脱模,得到介孔miRNAs控释纳米球/肝素复合修饰的双层人工血管。
CN201810106544.4A 2018-02-02 2018-02-02 一种双层人工血管及其制备方法 Active CN110124108B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810106544.4A CN110124108B (zh) 2018-02-02 2018-02-02 一种双层人工血管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810106544.4A CN110124108B (zh) 2018-02-02 2018-02-02 一种双层人工血管及其制备方法

Publications (2)

Publication Number Publication Date
CN110124108A CN110124108A (zh) 2019-08-16
CN110124108B true CN110124108B (zh) 2021-11-12

Family

ID=67567102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810106544.4A Active CN110124108B (zh) 2018-02-02 2018-02-02 一种双层人工血管及其制备方法

Country Status (1)

Country Link
CN (1) CN110124108B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111000661B (zh) * 2020-02-14 2023-10-10 上海畅迪医疗科技有限公司 一种复合型人造血管及其制备方法
CN111714248A (zh) * 2020-05-08 2020-09-29 南开大学 一种促进细胞快速增殖及促进其细胞外基质沉积的血管支架及脱细胞基质人工血管
CN114306750B (zh) * 2021-12-08 2022-08-26 扬州大学 一种h-cnc多取向同轴人工血管及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687632A (zh) * 2008-01-10 2010-03-31 延世大学校产学协力团 多孔中空二氧化硅纳米颗粒、所述二氧化硅纳米颗粒的制备方法以及包含所述二氧化硅纳米颗粒的药物载体和药物组合物
CN103127553A (zh) * 2013-03-05 2013-06-05 青岛大学 一种纳米微米结构共存壳聚糖双层支架的制备方法
CN104382672A (zh) * 2014-11-14 2015-03-04 东华大学 一种双层多通道神经导管及其制备方法
WO2015093018A1 (ja) * 2013-12-16 2015-06-25 エーザイ・アール・アンド・ディー・マネジメント株式会社 血管再生用移植材料
CN105233339A (zh) * 2015-11-06 2016-01-13 东华大学 一种肝素与双生因子协同调控的p(lla-cl)/胶原蛋白双层血管支架的制备方法
CN105363076A (zh) * 2015-09-30 2016-03-02 东华大学 一种聚乳酸己内酯-胶原蛋白双层仿生血管支架的制备方法
CN106474488A (zh) * 2015-08-27 2017-03-08 天津大学 一种负载三甲基化壳聚糖-聚乙二醇-redv/核酸的超细纤维膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974542B2 (en) * 2006-06-27 2015-03-10 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US20160090603A1 (en) * 2014-09-30 2016-03-31 Sandia Corporation Delivery platforms for the domestication of algae and plants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687632A (zh) * 2008-01-10 2010-03-31 延世大学校产学协力团 多孔中空二氧化硅纳米颗粒、所述二氧化硅纳米颗粒的制备方法以及包含所述二氧化硅纳米颗粒的药物载体和药物组合物
CN103127553A (zh) * 2013-03-05 2013-06-05 青岛大学 一种纳米微米结构共存壳聚糖双层支架的制备方法
WO2015093018A1 (ja) * 2013-12-16 2015-06-25 エーザイ・アール・アンド・ディー・マネジメント株式会社 血管再生用移植材料
CN104382672A (zh) * 2014-11-14 2015-03-04 东华大学 一种双层多通道神经导管及其制备方法
CN106474488A (zh) * 2015-08-27 2017-03-08 天津大学 一种负载三甲基化壳聚糖-聚乙二醇-redv/核酸的超细纤维膜及其制备方法
CN105363076A (zh) * 2015-09-30 2016-03-02 东华大学 一种聚乳酸己内酯-胶原蛋白双层仿生血管支架的制备方法
CN105233339A (zh) * 2015-11-06 2016-01-13 东华大学 一种肝素与双生因子协同调控的p(lla-cl)/胶原蛋白双层血管支架的制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
A mesoporous silica nanoparticle - PEI - Fusogenic peptide system for siRNA delivery in cancer therapy;Li X等;《Biomaterials》;20130131;第34卷(第4期);全文 *
Approaches to Fabricating Multiple-Layered Vascular Scaffolds Using Hybrid Electrospinning and Thermally Induced Phase Separation Methods;Hao-Yang Mi等;《INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH》;20160203;第55卷(第4期);第2.3.1节、第3.1.1节 *
Electrospun Bilayer Composite Vascular Graft with an Inner Layer Modified by Polyethylene Glycol and Haparin to Regenerate the Blood Vessel;Kuang HZ;《Journal Of Biomedical Nanotechnology》;20191031;第15卷(第1期);全文 *
Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration;Zhou F等;《Acta Biomaterialia》;20161001;第43卷;全文 *
Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery;Neeraj Prabhakar等;《International Journal of Nanomedicine》;20161208(第11期);Abstract、Introduction、MSN nanocarrier preparation and Characterization小节 *
介孔硅纳米成骨释放系统的构筑及骨修复应用;周小军;《中国博士学位论文全文数据库 医药卫生科技辑》;20170315(第3期);全文 *
双层小口径纳米纤维血管支架的相分离制备与生物学评价;王伟忠;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140915(第9期);全文 *
可降解聚氨酯弹性体的合成、改性及其用于血管组织再生;朱同贺;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20190515(第5期);全文 *
皮/芯结构的丝素/聚己内酯纤维及其双层血管再生支架;刘桂阳;《中国博士学位论文全文数据库 医药卫生科技辑》;20151115(第11期);全文 *

Also Published As

Publication number Publication date
CN110124108A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
Wang et al. Artificial small-diameter blood vessels: Materials, fabrication, surface modification, mechanical properties, and bioactive functionalities
Wang et al. Heparin and vascular endothelial growth factor loaded poly (L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment
Jeffries et al. Highly elastic and suturable electrospun poly (glycerol sebacate) fibrous scaffolds
Huang et al. Triple-layer vascular grafts fabricated by combined E-Jet 3D printing and electrospinning
Tan et al. Composite vascular grafts with high cell infiltration by co-electrospinning
CN110124108B (zh) 一种双层人工血管及其制备方法
Jia et al. Sustained release of VEGF by coaxial electrospun dextran/PLGA fibrous membranes in vascular tissue engineering
Wang et al. Electrospun tubular scaffold with circumferentially aligned nanofibers for regulating smooth muscle cell growth
CN105457101B (zh) 一种三层结构小口径血管支架的制备方法
US20220001076A1 (en) A degradable complex of sythetic polymer and natural extracellular matrix for vascular grafts with related preparation methods
EP3607117A1 (en) Nanofibers comprising fibroin as well as system comprising hydrogel and said nanofibers
CN101781814B (zh) 一种装载粉末型药物的聚乳酸纤维的制备方法
Guo et al. Facile preparation of a controlled-release tubular scaffold for blood vessel implantation
Zhai et al. Coaxial electrospinning of P (LLA‐CL)/heparin biodegradable polymer nanofibers: Potential vascular graft for substitution of femoral artery
Zha et al. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering
CN110755684A (zh) 负载外泌体和生长因子的微球/纳米纱复合支架及其制备方法
Kim et al. A cell-laden hybrid fiber/hydrogel composite for ligament regeneration with improved cell delivery and infiltration
US9683216B2 (en) Method for preparation of artificial blood vessel using tube-type porous biodegradable scaffold having a double-layered structure and stem cell, and artificial blood vessel made by the same
Kuang et al. Electrospun bilayer composite vascular graft with an inner layer modified by polyethylene glycol and haparin to regenerate the blood vessel
Meng et al. Heterogeneous porous PLLA/PCL fibrous scaffold for bone tissue regeneration
Ghasemkhah et al. Potential core–shell designed scaffolds with a gelatin‐based shell in achieving controllable release rates of proteins for tissue engineering approaches
Almasi-Jaf et al. Fabrication of heparinized bi-layered vascular graft with PCL/PU/gelatin co-electrospun and chitosan/silk fibroin/gelatin freeze-dried hydrogel for improved endothelialization and enhanced mechanical properties
Cao et al. Biodegradable highly porous interconnected poly (ε‐caprolactone)/poly (L‐lactide‐co‐ε‐caprolactone) scaffolds by supercritical foaming for small‐diameter vascular tissue engineering
Hu et al. Preparation and optimization of a biomimetic triple-layered vascular scaffold based on coaxial electrospinning
Gupta et al. Nanofiber structures for medical biotextiles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant