CN110118760A - 一种快速表征土壤中溶解性有机质的方法 - Google Patents
一种快速表征土壤中溶解性有机质的方法 Download PDFInfo
- Publication number
- CN110118760A CN110118760A CN201910392816.6A CN201910392816A CN110118760A CN 110118760 A CN110118760 A CN 110118760A CN 201910392816 A CN201910392816 A CN 201910392816A CN 110118760 A CN110118760 A CN 110118760A
- Authority
- CN
- China
- Prior art keywords
- soil
- dissolved organic
- organic matter
- fluorescence spectrum
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种快速表征土壤中溶解性有机质的方法,本发明的目的在于克服当前表征土壤中溶解性有机质方法过程复杂的问题,土壤经采集后风干过筛,用水土震荡法提取土壤中的溶解性有机质,通过总有机碳测定可以衡量溶解性有机质含量,紫外可见光谱可以研究溶解性有机质结构,三维荧光光谱用于快速表征土壤中溶解性有机质类别,根据总有机碳仪器测量的溶解性有机碳浓度来稀释三维荧光光谱上机测量的溶液,保持其溶解性有机碳含量均小于15 mg/L,有利于三维荧光光谱谱图的绘制,采用三维荧光光谱和平行因子分析的结合技术来综合分析土壤中的溶解性有机质的来源和组成。三者相结合可以准确、快速地表征土壤中的溶解性有机质,是一项非常有创新的技术方案。
Description
技术领域
本发明涉及一种土壤学技术领域的方法,具体是利用总有机碳仪器、紫外可见光谱和三维荧光光谱相结合快速表征土壤中溶解性有机质的方法。
背景技术
溶解性有机质以极其活跃的地球化学特性,广泛分布于地球各个圈层中,在土壤中虽然所占含量较小(约3% ~ 6%)但却是一类物理化学性质丰富的有机组分。土壤溶解性有机质中的溶解性有机氮、溶解性有机磷通过地下水或地表径流进入水体,使得水中氮、磷含量增加,加剧水环境中富营养化风险;随着土壤溶解性有机氮含量增加,各类微生物或酶活性增强,加速有机氮、磷、硫等元素的分解,产生二氧化碳、含氮气体、二氧化硫等散发到空气中,影响空气质量以及全球碳循环。溶解性有机质对土壤各种生物地球化学循环都有着广泛而深刻的影响,是值得我们深入研究的重点。
发明内容
本发明的目的在于克服当前表征土壤中溶解性有机质方法过程复杂的问题,通过总有机碳测定可以衡量溶解性有机质含量,紫外可见光谱可以研究溶解性有机质结构,三维荧光光谱用于快速表征土壤中溶解性有机质类别,三者相结合可以准确、快速地表征土壤中的溶解性有机质,是一项非常有创新的技术方案,具体包括如下步骤:(1)土壤经采集后风干过筛,用水土震荡法提取土壤中的溶解性有机质,采用水土震荡法,水土比为1:10,150 r/min下震荡24 h,然后4000 r/min离心30 min,取上清液过0.45μm滤膜;(2)分别在总有机碳仪器上测量溶解性有机碳,在紫外可见光谱上进行光谱扫描,在三维荧光光谱上分析荧光强度信息;根据总有机碳仪器测量的溶解性有机碳浓度来稀释三维荧光光谱上机测量的溶液,保持其溶解性有机碳含量均小于15 mg/L ,有利于三维荧光光谱谱图的绘制,采用三维荧光光谱和平行因子分析的结合技术来综合分析土壤中的溶解性有机质的来源和组成。
附图说明
下面结合附图对本发明进一步说明:
图1为土壤中溶解性有机碳的浓度,在不同土壤类型下有不同含量;
图2为土壤中溶解性有机质的紫外可见光谱曲线;
图3为土壤中溶解性有机质在平行因子分析下解析出的三维荧光光谱图,表示土壤中含有类蛋白物质和富里酸类物质;
图4为土壤中溶解性有机质在平行因子分析下解析出的三维荧光光谱图,表示土壤中含有腐殖酸类物质和富里酸类物质。
具体实施方式一
以下对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述的实施例。
图1~4是以采集某地土壤,提取并表征溶解性有机质的实例。溶解性有机碳含量如图1所示,在不用类型土壤下含量变化较大,并有一定规律,林地溶解性有机碳比耕地高,春季溶解性有机碳含量比秋季低;紫外可见光谱的光谱扫描如图2所示;三维荧光光谱结合平行因子分析的图如图3、4所示, 可以明显的发现土壤中含有的类富里酸物质,类蛋白物质和类腐殖酸物质。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
Claims (4)
1.本发明的目的在于克服当前表征土壤中溶解性有机质方法过程复杂的问题,通过总有机碳测定可以衡量溶解性有机质含量,紫外可见光谱可以研究溶解性有机质结构,三维荧光光谱用于快速表征土壤中溶解性有机质类别,三者相结合可以准确、快速地表征土壤中的溶解性有机质,是一项非常有创新的技术方案;其特征在于,具体包括如下步骤:(1)土壤经采集后风干过筛,用水土震荡法提取土壤中的溶解性有机质;(2)分别在总有机碳仪器上测量溶解性有机碳,在紫外可见光谱上进行光谱扫描,在三维荧光光谱上分析荧光强度信息。
2.根据权利要求1所述的一种快速表征土壤中溶解性有机质的方法,其特征在于:提取土壤中溶解性有机质时,采用水土震荡法,水土比为1:10,150 r/min下震荡24 h,然后4000r/min离心30 min,取上清液过0.45μm滤膜。
3.根据权利要求1所述的一种快速表征土壤中溶解性有机质的方法,其特征在于:根据总有机碳仪器测量的溶解性有机碳浓度来稀释三维荧光光谱上机测量的溶液,保持其溶解性有机碳含量均小于15 mg/L ,有利于三维荧光光谱谱图的绘制。
4.根据权利要求1(2)所述的一种快速表征土壤中溶解性有机质的方法,其特征在于:采用三维荧光光谱和平行因子分析的结合技术来综合分析土壤中的溶解性有机质的来源和组成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910392816.6A CN110118760A (zh) | 2019-05-13 | 2019-05-13 | 一种快速表征土壤中溶解性有机质的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910392816.6A CN110118760A (zh) | 2019-05-13 | 2019-05-13 | 一种快速表征土壤中溶解性有机质的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110118760A true CN110118760A (zh) | 2019-08-13 |
Family
ID=67522182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910392816.6A Pending CN110118760A (zh) | 2019-05-13 | 2019-05-13 | 一种快速表征土壤中溶解性有机质的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110118760A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590471A (zh) * | 2012-01-17 | 2012-07-18 | 南京大学 | 一种矿质土壤中Cd(II)溶解态和吸附态的确定方法 |
CN104267008A (zh) * | 2014-09-04 | 2015-01-07 | 中国科学院南京土壤研究所 | 基于三维荧光光谱的土壤溶解性有机质的优化提取方法 |
CN106769363A (zh) * | 2017-02-22 | 2017-05-31 | 中国环境科学研究院 | 溶解性有机质的定量检测方法 |
CN109520983A (zh) * | 2018-11-20 | 2019-03-26 | 山东船舶技术研究院 | 一种基于dom的水质评价方法及装置 |
-
2019
- 2019-05-13 CN CN201910392816.6A patent/CN110118760A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590471A (zh) * | 2012-01-17 | 2012-07-18 | 南京大学 | 一种矿质土壤中Cd(II)溶解态和吸附态的确定方法 |
CN104267008A (zh) * | 2014-09-04 | 2015-01-07 | 中国科学院南京土壤研究所 | 基于三维荧光光谱的土壤溶解性有机质的优化提取方法 |
CN106769363A (zh) * | 2017-02-22 | 2017-05-31 | 中国环境科学研究院 | 溶解性有机质的定量检测方法 |
CN109520983A (zh) * | 2018-11-20 | 2019-03-26 | 山东船舶技术研究院 | 一种基于dom的水质评价方法及装置 |
Non-Patent Citations (2)
Title |
---|
沈烁 等: "南淝河不同排口表层沉积物DOM光谱特征", 《中国环境科学》 * |
虞敏达等: "河北洨河溶解性有机物光谱学特性", 《环境科学》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Impacts of biochar addition on soil dissolved organic matter characteristics in a wheat-maize rotation system in Loess Plateau of China | |
Strosser | Methods for determination of labile soil organic matter: an overview | |
Ramnarine et al. | Contributions of carbonates to soil CO2 emissions | |
Scharnweber et al. | Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence—a dendrochemical study | |
Santos et al. | Possible source of ancient carbon in phytolith concentrates from harvested grasses | |
Zhong et al. | Glomalin amount and compositional variation, and their associations with soil properties in farmland, northeastern China | |
Rantala et al. | Sources and controls of organic carbon in lakes across the subarctic treeline | |
Li et al. | Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China | |
Paetsch et al. | A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition | |
Battipaglia et al. | Effects of associating Quercus robur L. and Alnus cordata Loisel. on plantation productivity and water use efficiency | |
Dettmann et al. | Analysis of peat soil organic carbon, total nitrogen, soil water content and basal respiration: Is there a ‘best’drying temperature? | |
Zhang et al. | Structural evidence for soil organic matter turnover following glucose addition and microbial controls over soil carbon change at different horizons of a Mollisol | |
Liu et al. | Mercury isotopic compositions of mosses, conifer needles, and surface soils: Implications for mercury distribution and sources in Shergyla Mountain, Tibetan Plateau | |
Santos et al. | Performance evaluation of a portable laser-induced fluorescence spectroscopy system for the assessment of the humification degree of the soil organic matter | |
Antibus et al. | Effects of liming a red pine forest floor on mycorrhizal numbers and mycorrhizal and soil acid phosphatase activities | |
Bai et al. | Newly assimilated carbon allocation in grassland communities under different grazing enclosure times | |
Santos et al. | Conversion of Brazilian savannah to agricultural land affects quantity and quality of labile soil organic matter | |
CN108181300A (zh) | 一种土壤样品中有效磷含量的测定方法 | |
Salgado et al. | Stable carbon in soils under rubber tree (Hevea brasiliensis) agroforestry systems in the south of Bahia, Brazil | |
CN108562571A (zh) | 土壤中有效硫的测定方法 | |
Hobbie et al. | Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment | |
Mirbakhsh et al. | The impact of Persian clover (Trifolium resupinatum L.) on soil health | |
Gontijo et al. | Multi-proxy approach involving ultrahigh resolution mass spectrometry and self-organising maps to investigate the origin and quality of sedimentary organic matter across a subtropical reservoir | |
CN110118760A (zh) | 一种快速表征土壤中溶解性有机质的方法 | |
CN105738516A (zh) | 一种以生物胺为特征标志物鉴别蜂毒种类的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190813 |