CN110115997B - 一种处理金原子簇表面有机配体的方法 - Google Patents

一种处理金原子簇表面有机配体的方法 Download PDF

Info

Publication number
CN110115997B
CN110115997B CN201810123449.5A CN201810123449A CN110115997B CN 110115997 B CN110115997 B CN 110115997B CN 201810123449 A CN201810123449 A CN 201810123449A CN 110115997 B CN110115997 B CN 110115997B
Authority
CN
China
Prior art keywords
gold
organic ligand
ligand
cluster
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810123449.5A
Other languages
English (en)
Other versions
CN110115997A (zh
Inventor
李杲
李志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201810123449.5A priority Critical patent/CN110115997B/zh
Publication of CN110115997A publication Critical patent/CN110115997A/zh
Application granted granted Critical
Publication of CN110115997B publication Critical patent/CN110115997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种处理金原子簇表面有机配体的方法,该方法可以绿色环保、简单高效地处理金纳米颗粒表面稳定剂配体,以使其暴露不饱和配位原子,从而大幅度提高催化活性。该方法主要是通过在反应气氛中通入水,活化Au‑S键,温和条件下将有机配体脱除。傅里叶红外光谱和X射线光电子能谱中可以很直观地观察到水处理前后振动峰和吸收峰位置的变化,这些变化和DFT计算的结果也是吻合的。

Description

一种处理金原子簇表面有机配体的方法
技术领域
本发明属于纳米材料技术领域,特别涉及金原子簇表面有机配体去除的一种新方法。
背景技术
近年来,贵金属纳米材料独特的光、电、催化等特性及其在新能源研究、光电信息存储、生物医疗等领域的应用受到相关研究领域的广泛关注。贵金属原子簇由于其精确的原子组成及能量量子化,在催化方面展示出独特的性能。然而,贵金属原子簇的合成往往需要一定的有机配体进行保护。这些稳定剂配体在阻止贵金属原子之间相互作用发生不可逆团聚方面起到了很重要的作用。但一旦贵金属纳米粒子沉积在衬底上,这些配位饱和的金属粒子因为配体的存在严重降低其催化活性等一些应用方面。金原子簇最常用的保护剂为硫醇配体,硫物种的存在对环境有害,且硫物种常常使催化剂中毒。
截至目前,处理金原子簇表面有机配体的方法依然存在着一些问题。单纯通过高温和氧化的方式处理配体的同时,也会改变颗粒的大小及形貌,使其由原子簇团聚生长为大的纳米颗粒,进一步影响其催化活性。2011年Hutchings课题组提出了用溶剂萃取的方法来去除Au–PVA的配体PVA。然而,此种方法并不适用于切除像Au-S之间强的共价键。本专利针对此问题,发明了用水处理金原子簇表面有机配体的方法。
发明内容
本发明的目的是提供了一个处理金原子簇表面有机配体的新方法。该方法操作简单,主要是通过在反应气氛中通入水,活化Au-S等键,温和条件下将有机配体脱除,不破坏金原子簇的尺寸大小,能够显著提高其催化活性。
本发明目的是通过以下方式实现的:
一种处理金原子簇表面有机配体的方法,所述金原子簇为被有机配体保护的金原子团簇,所述方法是将金原子簇置于CO反应气氛中,并通入水蒸气,在100-140℃温度下,处理10min-5h。
水去除表面配体需要在一定的温度下进行,随着温度升高,去除的更彻底。
所述的被有机配体保护的金原子团簇的结构包括Au-PVP、Au-C2H、Aun(SR)m或Aun(PPh3)mCl3等,其中,SR为各种硫醇配体,n=15-200,m=13-100。
所述CO反应气氛为CO、O2和He(或N2等惰性气体),气体体积比可选为1.67:3.33:95、1:20:79或2:1:97等一系列比例。
处理时间优选为1h。
所述方法,在处理时控制水蒸气与反应气的体积比为10-20%。
所述通入水蒸汽的方法可以用鼓泡法(蒸汽压计量)或泵压入法。
以Au25(SR)18(SR为巯基配体)负载于CeO2为例,通过在反应气中通入水去除其配体,提高CO氧化活性。具体包括以下实验步骤:以HAuCl4·4H2O为反应原料,将其置于50ml的三口圆底烧瓶中,溶于一定量的四氢呋喃(THF)体系中,加入四辛基溴化铵(TOAB),搅拌一定时间,加入适量的十二烷硫醇(C12H25SH),待溶液为无色透明后,一次性加入还原剂硼氢化钠(NaBH4),反应过夜即可得到,用甲醇和正己烷洗,用丙酮萃取,旋蒸后用二氯甲烷溶解,加入CeO2,过夜搅拌得到的Au25(SR)18/CeO2催化剂,通过紫外可见分光光度计(UV)和基质辅助激光解吸附电离质谱技术(MADLI-MS)来表征Au25(SR)18的纯度,并用红外、紫外、拉曼光谱作对比实验来观察水其对Au25(SR)18/CeO2的作用。傅里叶红外光谱和X射线光电子能谱中可以很直观地观察到水处理前后振动峰和吸收峰位置的变化,这些变化和DFT计算的结果也是吻合的。
本发明有益效果在于:
1、本发明所提供的处理金原子簇方法不仅适用于弱的相互作用力,更适用于这些强的Au-S共价键。
2、本发明所提供的处理金原子簇方法不需要对金原子簇进行高温加热或氧化,并没有大幅度地破坏其结构及尺寸。
3、本发明所提供的处理金原子簇方法中所使用水广泛存在、绿色环保无污染,操作步骤简单。
4、采用本发明所提供的处理金原子簇的方法处理金原子簇后,催化活性明显改善。
总之,本发明方法可以绿色、简单、高效地处理金纳米颗粒表面稳定剂配体,以使其暴露不饱和配位原子,从而大幅度提高催化活性。
附图说明
图1为实施例1制备的Au25(SR)18扫描透射电镜图。
图2为实施例1制备的Au25(SR)18紫外可见光谱图。
图3为实施例1制备的Au25(SR)18质谱图。
图4为实施例2、实施例3和实施例4中不同温度水处前后的催化剂傅里叶红外谱图。
图5为实施例2和实施例4中不同温度水处前后的催化剂X射线光电子能谱图。
图6为实施例2和实施例4中不同温度水处前后的拉曼光谱图。
图7实施例3和实施例4催化剂对CO氧化的催化性能。
具体实施方式
下面结合附图及具体实施案例来对本发明作进一步的详细说明。
实施例1 Au25(SR)18的合成
称量60mg的HAuCl4·4H2O加入到50mL三口瓶中,加入15mL THF,溶液为金黄色。加入TOAB 92mg(TOAB:Au=1.16mol:1mol),溶液由金黄色慢慢加深为橙红色。搅拌30min后,加入C12H25SH 177μL(C12H25SH:Au=5mol:1mol),溶液颜色逐渐变浅至无色时,加入NaBH4(4mL冰水)55mg(NaBH4:Au=10mol:1mol)。过夜搅拌,停止反应。用正己烷和甲醇洗产物,沉淀用丙酮溶解,去除不溶物,干燥后得到Au25(SR)18
如图1为实施例1制备的金原子簇扫描透射电镜图,尺寸为1.5nm左右。
如图2为实施例1制备的金原子簇紫外可见光谱图,在680nm处有比较强的吸收峰。
如图3为实施例1制备的金原子簇质谱图,图中分别对应Au25(C12H25S)18和其碎片峰Au21(SC12H25)14的分子量。
实施例2 Au25(SR)18/CeO2催化剂的合成
室温条件下,用10mL二氯甲烷溶解10mg Au25(C12H25S)18,加入到分散在40和mL二氯甲烷的CeO2中(2g),过夜搅拌后离心干燥,得到无处理样品。
如图4、5、6中分别为无处理样品的傅里叶红外谱图、X射线光电子能谱图和拉曼光谱图
实施例3样品在反应气中加热处理
将50mg Au25(SR)18/CeO2催化剂置于固定床反应管中,通入气体混合气1.67CO/3.33O2/He 12.5mL。分别升温至100℃、120℃、140℃、200℃处理1h。
如图4中为不同处理温度样品的傅里叶红外谱图。
如图7中为不同处理温度样品的CO氧化的催化性能。
实施例4样品在反应气中通水加热处理
将50mg Au25(SR)18/CeO2催化剂置于固定床反应管中,通入气体混合气1.67CO/3.33O2/He 12.5mL,并用泵通入20%水。分别升温至100℃、120℃、140℃、200℃处理1h。
如图4为各个处理条件下催化剂的傅里叶红外谱图,从图中可以看出,水的存在,随着处理温度的升高,各伸缩振动峰都在减弱,金原子簇表面配体更易脱除。
如图5为各个处理条件下催化剂的X射线光电子能谱,从图中可以看出,水处理后的催化剂,随着处理温度的升高,各吸收峰的结合能向高能区偏移,证明金原子簇表面配体正在逐步脱除。
如图6为各个处理条件下催化剂的拉曼光谱,从图中可以看出,水处理后的催化剂,金原子簇表面配体更易脱除。
如图7中为不同处理温度样品的CO氧化的催化性能,从图中可以看出,通入水蒸气后催化活性明显提高,到120℃后转化率达到100%。

Claims (3)

1.一种处理金原子簇表面有机配体的方法,所述金原子簇为被有机配体保护的金原子团簇,所述方法是将金原子簇置于CO反应气氛中,并通入水蒸气,在100-140℃温度下,处理10min-5h;在处理时控制水蒸气与反应气的体积比为10-20%;
所述的被有机配体保护的金原子团簇的结构为Aun(SR)m,其中,SR为硫醇配体,n=15-200,m=13-100;
所述CO反应气氛为CO、O2和He、或者为CO、O2和N2,气体体积比为1.67:3.33:95、1:20:79或2:1:97。
2.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:处理时间为1h。
3.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:通入水蒸汽的方法为鼓泡法或泵压入法。
CN201810123449.5A 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法 Active CN110115997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810123449.5A CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810123449.5A CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Publications (2)

Publication Number Publication Date
CN110115997A CN110115997A (zh) 2019-08-13
CN110115997B true CN110115997B (zh) 2020-11-27

Family

ID=67520120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810123449.5A Active CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Country Status (1)

Country Link
CN (1) CN110115997B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408366B (zh) * 2020-03-03 2023-02-14 合肥枡水新能源科技有限公司 一种碳负载金属纳米团簇催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379253A (zh) * 2012-06-12 2015-02-25 公立大学法人首都大学东京 金团簇催化剂及其制造方法
CN106807935A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种被有机配体保护的金纳米颗粒的活化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379253A (zh) * 2012-06-12 2015-02-25 公立大学法人首都大学东京 金团簇催化剂及其制造方法
CN106807935A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种被有机配体保护的金纳米颗粒的活化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation;Weili Li et al;《Nanoscale》;20160111;第8卷;第2379页左栏第1段、右栏第2段,Table 1 *

Also Published As

Publication number Publication date
CN110115997A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
Alshehri et al. Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation
Atrak et al. Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes
Goswami et al. Green synthesis of silver nanoparticles supported on cellulose and their catalytic application in the scavenging of organic dyes
Goswami et al. Synthesis of cellulose impregnated copper nanoparticles as an efficient heterogeneous catalyst for CN coupling reactions under mild conditions
Wang et al. Bimetallic Fe/Ti‐Based Metal–Organic Framework for Persulfate‐Assisted Visible Light Photocatalytic Degradation of Orange II
Solymosi et al. An infrared study of the influence of carbon monoxide chemisorption on the topology of supported rhodium
CN111450819A (zh) 生物炭改性钒酸铋催化剂、制备方法及其应用
Rao et al. Deactivation and activation mechanism of TiO2 and rGO/Er3+-TiO2 during flowing gaseous VOCs photodegradation
Shen et al. Efficient Degradation of Phenol and 4‐Nitrophenol by Surface Oxygen Vacancies and Plasmonic Silver Co‐Modified Bi2MoO6 Photocatalysts
Uruş et al. Synthesis and catalytic activities of silica-supported multifunctional azo-containing schiff base complexes with Cu (II), Co (II), Ni (II) and Mn (II)
CN104307515B (zh) 一种Au-Pd/石墨烯催化剂及其制备方法和应用
Wang et al. Oxygen vacancy‐rich anatase TiO2 hollow spheres via liquid nitrogen quenching process for enhanced photocatalytic hydrogen evolution
Soni et al. Palladium‐Nanoparticles‐Intercalated Montmorillonite Clay: A Green Catalyst for the Solvent‐Free Chemoselective Hydrogenation of Squalene
Brahmi et al. New Hybrid Fe‐based MOFs/Polymer Composites for the Photodegradation of Organic Dyes
Nakhate et al. Palladium nanoparticles supported carbon based graphene oxide monolith as catalyst for Sonogashira coupling and hydrogenation of nitrobenzene and alkenes
Farrag Preparation, characterization and photocatalytic activity of size selected platinum nanoclusters
CN110115997B (zh) 一种处理金原子簇表面有机配体的方法
Jang et al. In situ formation of gold nanoparticles within a polymer particle and their catalytic activities in various chemical reactions
CN113600166A (zh) 一种用于高级氧化的生物质基催化剂及其制备方法与应用
Melinte et al. Mineralization versus photoreduction of 4-nitrophenol under the influence of surface functionalized CeO2 nanoparticles, hosted by versatile cellulose supports
Chen et al. Efficient degradation of imidacloprid in wastewater by a novel pn heterogeneous Ag2O/BiVO4/diatomite composite under hydrogen peroxide
Liu et al. Novel Tb2O3/Ag2MO2O7 heterojunction photocatalyst for excellent photocatalytic activity: In-built Tb4+/Tb3+ redox center, proliferated hydroxyl radical yield and promoted charge carriers separation
Cui et al. A recyclable photocatalyst Cu2O/Fe3O4@ C/Cu nanocomposite for efficient photocatalytic reduction of 4-nitrophenol
Reddy et al. Pd/chitosan nanoparticle catalysts prepared by solid mortar grinding for hydrogenation of nitroarenes
Gu et al. One-step solvothermal synthesis of Au-TiO2 loaded electrospun carbon fibers to enhance photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant