CN110115997A - 一种处理金原子簇表面有机配体的方法 - Google Patents

一种处理金原子簇表面有机配体的方法 Download PDF

Info

Publication number
CN110115997A
CN110115997A CN201810123449.5A CN201810123449A CN110115997A CN 110115997 A CN110115997 A CN 110115997A CN 201810123449 A CN201810123449 A CN 201810123449A CN 110115997 A CN110115997 A CN 110115997A
Authority
CN
China
Prior art keywords
gold atom
atom cluster
processing
organic ligands
surface organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810123449.5A
Other languages
English (en)
Other versions
CN110115997B (zh
Inventor
李杲
李志敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201810123449.5A priority Critical patent/CN110115997B/zh
Publication of CN110115997A publication Critical patent/CN110115997A/zh
Application granted granted Critical
Publication of CN110115997B publication Critical patent/CN110115997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种处理金原子簇表面有机配体的方法,该方法可以绿色环保、简单高效地处理金纳米颗粒表面稳定剂配体,以使其暴露不饱和配位原子,从而大幅度提高催化活性。该方法主要是通过在反应气氛中通入水,活化Au‑S键,温和条件下将有机配体脱除。傅里叶红外光谱和X射线光电子能谱中可以很直观地观察到水处理前后振动峰和吸收峰位置的变化,这些变化和DFT计算的结果也是吻合的。

Description

一种处理金原子簇表面有机配体的方法
技术领域
本发明属于纳米材料技术领域,特别涉及金原子簇表面有机配体去除的一种新方法。
背景技术
近年来,贵金属纳米材料独特的光、电、催化等特性及其在新能源研究、光电信息存储、生物医疗等领域的应用受到相关研究领域的广泛关注。贵金属原子簇由于其精确的原子组成及能量量子化,在催化方面展示出独特的性能。然而,贵金属原子簇的合成往往需要一定的有机配体进行保护。这些稳定剂配体在阻止贵金属原子之间相互作用发生不可逆团聚方面起到了很重要的作用。但一旦贵金属纳米粒子沉积在衬底上,这些配位饱和的金属粒子因为配体的存在严重降低其催化活性等一些应用方面。金原子簇最常用的保护剂为硫醇配体,硫物种的存在对环境有害,且硫物种常常使催化剂中毒。
截至目前,处理金原子簇表面有机配体的方法依然存在着一些问题。单纯通过高温和氧化的方式处理配体的同时,也会改变颗粒的大小及形貌,使其由原子簇团聚生长为大的纳米颗粒,进一步影响其催化活性。2011年Hutchings课题组提出了用溶剂萃取的方法来去除Au–PVA的配体PVA。然而,此种方法并不适用于切除像Au-S之间强的共价键。本专利针对此问题,发明了用水处理金原子簇表面有机配体的方法。
发明内容
本发明的目的是提供了一个处理金原子簇表面有机配体的新方法。该方法操作简单,主要是通过在反应气氛中通入水,活化Au-S等键,温和条件下将有机配体脱除,不破坏金原子簇的尺寸大小,能够显著提高其催化活性。
本发明目的是通过以下方式实现的:
一种处理金原子簇表面有机配体的方法,所述金原子簇为被有机配体保护的金原子团簇,所述方法是将金原子簇置于CO反应气氛中,并通入水蒸气,在100-140℃温度下,处理10min-5h。
水去除表面配体需要在一定的温度下进行,随着温度升高,去除的更彻底。
所述的被有机配体保护的金原子团簇的结构包括Au-PVP、Au-C2H、Aun(SR)m或Aun(PPh3)mCl3等,其中,SR为各种硫醇配体,n=15-200,m=13-100。
所述CO反应气氛为CO、O2和He(或N2等惰性气体),气体体积比可选为1.67:3.33:95、1:20:79或2:1:97等一系列比例。
处理时间优选为1h。
所述方法,在处理时控制水蒸气与反应气的体积比为10-20%。
所述通入水蒸汽的方法可以用鼓泡法(蒸汽压计量)或泵压入法。
以Au25(SR)18(SR为巯基配体)负载于CeO2为例,通过在反应气中通入水去除其配体,提高CO氧化活性。具体包括以下实验步骤:以HAuCl4·4H2O为反应原料,将其置于50ml的三口圆底烧瓶中,溶于一定量的四氢呋喃(THF)体系中,加入四辛基溴化铵(TOAB),搅拌一定时间,加入适量的十二烷硫醇(C12H25SH),待溶液为无色透明后,一次性加入还原剂硼氢化钠(NaBH4),反应过夜即可得到,用甲醇和正己烷洗,用丙酮萃取,旋蒸后用二氯甲烷溶解,加入CeO2,过夜搅拌得到的Au25(SR)18/CeO2催化剂,通过紫外可见分光光度计(UV)和基质辅助激光解吸附电离质谱技术(MADLI-MS)来表征Au25(SR)18的纯度,并用红外、紫外、拉曼光谱作对比实验来观察水其对Au25(SR)18/CeO2的作用。傅里叶红外光谱和X射线光电子能谱中可以很直观地观察到水处理前后振动峰和吸收峰位置的变化,这些变化和DFT计算的结果也是吻合的。
本发明有益效果在于:
1、本发明所提供的处理金原子簇方法不仅适用于弱的相互作用力,更适用于这些强的Au-S共价键。
2、本发明所提供的处理金原子簇方法不需要对金原子簇进行高温加热或氧化,并没有大幅度地破坏其结构及尺寸。
3、本发明所提供的处理金原子簇方法中所使用水广泛存在、绿色环保无污染,操作步骤简单。
4、采用本发明所提供的处理金原子簇的方法处理金原子簇后,催化活性明显改善。
总之,本发明方法可以绿色、简单、高效地处理金纳米颗粒表面稳定剂配体,以使其暴露不饱和配位原子,从而大幅度提高催化活性。
附图说明
图1为实施例1制备的Au25(SR)18扫描透射电镜图。
图2为实施例1制备的Au25(SR)18紫外可见光谱图。
图3为实施例1制备的Au25(SR)18质谱图。
图4为实施例2、实施例3和实施例4中不同温度水处前后的催化剂傅里叶红外谱图。
图5为实施例2和实施例4中不同温度水处前后的催化剂X射线光电子能谱图。
图6为实施例2和实施例4中不同温度水处前后的拉曼光谱图。
图7实施例3和实施例4催化剂对CO氧化的催化性能。
具体实施方式
下面结合附图及具体实施案例来对本发明作进一步的详细说明。
实施例1 Au25(SR)18的合成
称量60mg的HAuCl4·4H2O加入到50mL三口瓶中,加入15mL THF,溶液为金黄色。加入TOAB 92mg(TOAB:Au=1.16mol:1mol),溶液由金黄色慢慢加深为橙红色。搅拌30min后,加入C12H25SH 177μL(C12H25SH:Au=5mol:1mol),溶液颜色逐渐变浅至无色时,加入NaBH4(4mL冰水)55mg(NaBH4:Au=10mol:1mol)。过夜搅拌,停止反应。用正己烷和甲醇洗产物,沉淀用丙酮溶解,去除不溶物,干燥后得到Au25(SR)18
如图1为实施例1制备的金原子簇扫描透射电镜图,尺寸为1.5nm左右。
如图2为实施例1制备的金原子簇紫外可见光谱图,在680nm处有比较强的吸收峰。
如图3为实施例1制备的金原子簇质谱图,图中分别对应Au25(C12H25S)18和其碎片峰Au21(SC12H25)14的分子量。
实施例2 Au25(SR)18/CeO2催化剂的合成
室温条件下,用10mL二氯甲烷溶解10mg Au25(C12H25S)18,加入到分散在40和mL二氯甲烷的CeO2中(2g),过夜搅拌后离心干燥,得到无处理样品。
如图4、5、6中分别为无处理样品的傅里叶红外谱图、X射线光电子能谱图和拉曼光谱图
实施例3样品在反应气中加热处理
将50mg Au25(SR)18/CeO2催化剂置于固定床反应管中,通入气体混合气1.67CO/3.33O2/He 12.5mL。分别升温至100℃、120℃、140℃、200℃处理1h。
如图4中为不同处理温度样品的傅里叶红外谱图。
如图7中为不同处理温度样品的CO氧化的催化性能。
实施例4样品在反应气中通水加热处理
将50mg Au25(SR)18/CeO2催化剂置于固定床反应管中,通入气体混合气1.67CO/3.33O2/He 12.5mL,并用泵通入20%水。分别升温至100℃、120℃、140℃、200℃处理1h。
如图4为各个处理条件下催化剂的傅里叶红外谱图,从图中可以看出,水的存在,随着处理温度的升高,各伸缩振动峰都在减弱,金原子簇表面配体更易脱除。
如图5为各个处理条件下催化剂的X射线光电子能谱,从图中可以看出,水处理后的催化剂,随着处理温度的升高,各吸收峰的结合能向高能区偏移,证明金原子簇表面配体正在逐步脱除。
如图6为各个处理条件下催化剂的拉曼光谱,从图中可以看出,水处理后的催化剂,金原子簇表面配体更易脱除。
如图7中为不同处理温度样品的CO氧化的催化性能,从图中可以看出,通入水蒸气后催化活性明显提高,到120℃后转化率达到100%。

Claims (6)

1.一种处理金原子簇表面有机配体的方法,所述金原子簇为被有机配体保护的金原子团簇,所述方法是将金原子簇置于CO反应气氛中,并通入水蒸气,在100-140℃温度下,处理10min-5h。
2.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于,所述的被有机配体保护的金原子团簇的结构包括Au-PVP、Au-C2H、Aun(SR)m或Aun(PPh3)mCl3,其中,SR为硫醇配体,n=15-200,m=13-100。
3.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:所述CO反应气氛为CO、O2和He、或者为CO、O2和N2,气体体积比为1.67:3.33:95、1:20:79或2:1:97。
4.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:处理时间为1h。
5.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:所述方法,在处理时控制水蒸气与反应气的体积比为10-20%。
6.根据权利要求1所述的处理金原子簇表面有机配体的方法,其特征在于:通入水蒸汽的方法为鼓泡法或泵压入法。
CN201810123449.5A 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法 Active CN110115997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810123449.5A CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810123449.5A CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Publications (2)

Publication Number Publication Date
CN110115997A true CN110115997A (zh) 2019-08-13
CN110115997B CN110115997B (zh) 2020-11-27

Family

ID=67520120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810123449.5A Active CN110115997B (zh) 2018-02-07 2018-02-07 一种处理金原子簇表面有机配体的方法

Country Status (1)

Country Link
CN (1) CN110115997B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408366A (zh) * 2020-03-03 2020-07-14 合肥枡水新能源科技有限公司 一种碳负载金属纳米团簇催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379253A (zh) * 2012-06-12 2015-02-25 公立大学法人首都大学东京 金团簇催化剂及其制造方法
CN106807935A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种被有机配体保护的金纳米颗粒的活化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104379253A (zh) * 2012-06-12 2015-02-25 公立大学法人首都大学东京 金团簇催化剂及其制造方法
CN106807935A (zh) * 2015-12-01 2017-06-09 中国科学院大连化学物理研究所 一种被有机配体保护的金纳米颗粒的活化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEILI LI ET AL: "Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation", 《NANOSCALE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408366A (zh) * 2020-03-03 2020-07-14 合肥枡水新能源科技有限公司 一种碳负载金属纳米团簇催化剂的制备方法

Also Published As

Publication number Publication date
CN110115997B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
Barroso-Bogeat et al. FT-IR analysis of pyrone and chromene structures in activated carbon
Bhadra et al. Oxidative denitrogenation of liquid fuel over W2N@ carbon catalyst derived from a phosphotungstinic acid encapsulated metal–azolate framework
Fedorak et al. Chloroperoxidase-mediated modifications of petroporphyrins and asphaltenes
Hongkailers et al. Recovery of arenes from polyethylene terephthalate (PET) over a Co/TiO2 catalyst
Bhuyan et al. Design of a Photoactive Bimetallic Cu‐Au@ g‐C3N4 Catalyst for Visible Light Driven Hydroxylation of the Benzene Reaction through C–H Activation
CN108187677A (zh) 一种利用超临界二氧化碳/超临界水热联合法制备脱除氰化氢催化剂的方法
Dong et al. The synthesis of HKUST-1/SiO2 composite material based on 3D printing
CN110115997A (zh) 一种处理金原子簇表面有机配体的方法
CN108097323A (zh) 一种室温下伯胺氧化偶联制备亚胺的方法
CN106807935B (zh) 一种被有机配体保护的金纳米颗粒的活化方法
Stroyuk et al. Photocatalytic selective oxidation of organic compounds in graphitic carbon nitride systems: a review
Sharma et al. Highly active Ru-g-C3N4 photocatalyst for visible light assisted selective hydrogen transfer reaction using hydrazine at room temperature
Doroodmand et al. Sulfonated multiwalled carbon nanotubes (MWCNTs) as a new, efficient, and recyclable heterogeneous nanocatalyst for the synthesis of amines
Grabowska et al. TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies of thermal decomposition for poly (sodium acrylate)/dextrin (PAANa/D)–new binder BioCo3
Esmaeili‐Shahri et al. Click approach to the three‐component synthesis of novel β‐hydroxy‐1, 2, 3‐triazoles catalysed by new (Cu/Cu2O) nanostructure as a ligand‐free, green and regioselective nanocatalyst in water
Gao et al. Preparation and catalytic activity of P4VP–Cu (II) complex supported on silica gel
Kim et al. Catalytic Asymmetric Thioacetalization of Aldehydes
Petro et al. Photoelectron spectroscopy of dithiolatodiironhexacarbonyl models for the active site of [Fe–Fe] hydrogenases: Insight into the reorganization energy of the “rotated” structure in the enzyme
Zhang et al. Iron (II) complexes with hyperbranched salicylaldimine ligands: synthesis, characterization and ethylene oligomerization
Bange et al. Zirconium-catalyzed hydroarsination with primary arsines
Zhou et al. Superhydrophobic polyoxometalate/calixarene inorganic–organic hybrid materials with highly efficient desulfurization ability
Zhang et al. Synthesis of chitosan microsphere-resin supported palladium complex and its catalytic properties for Mizoroki–Heck reaction
Golosnaya et al. Structure and reactivity of gold cluster protected by triphosphine ligands: DFT study
Pomogailo et al. Hybrid Polymer‐Immobilized Nanosized Pd Catalysts for Hydrogenation Reaction Obtained via Frontal Polymerization
Wissing et al. Mixed AuPd Nanoparticles as Highly Active Catalysts for Alkyne Z‐Semihydrogenation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant