CN110106321A - 一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺 - Google Patents

一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺 Download PDF

Info

Publication number
CN110106321A
CN110106321A CN201910350429.6A CN201910350429A CN110106321A CN 110106321 A CN110106321 A CN 110106321A CN 201910350429 A CN201910350429 A CN 201910350429A CN 110106321 A CN110106321 A CN 110106321A
Authority
CN
China
Prior art keywords
steel
sa336f11
temperature
forging
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910350429.6A
Other languages
English (en)
Inventor
于慎君
张广威
石如星
孔玉婷
林乙丑
陈明
郎庆斌
殷立涛
李雪
鲁博
代博杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITIC Heavy Industries Co Ltd
Original Assignee
CITIC Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITIC Heavy Industries Co Ltd filed Critical CITIC Heavy Industries Co Ltd
Priority to CN201910350429.6A priority Critical patent/CN110106321A/zh
Publication of CN110106321A publication Critical patent/CN110106321A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Abstract

一种改善低温性能的加氢筒体用SA336F11 CL3钢及其热处理工艺,对SA336F11 CL3钢中多种元素的含量进行合理控制,并在SA336F11 CL3钢中添加了Al、Ni、Nb等有益元素,使SA336F11 CL3钢在温度低至零度以下等低温工作情况下的性能得到提升,能够有效避免SA336F11 CL3钢在低温时出现低温冲击及韧性指标偏低的问题,并且还提供了能够保证SA336F11 CL3钢低温性能的热处理工艺,能够提升加氢筒体锻件的性能,消除加氢筒体寿命降低等隐患,利于推广运用。

Description

一种改善低温性能的加氢筒体用SA336F11 CL3钢及其热处理 工艺
技术领域
本发明涉及加氢筒体用合金钢领域,尤其涉及一种改善低温性能的加氢筒体用SA336F11 CL3钢及其热处理工艺。
背景技术
随着国内外压力容器向超大规格、超大壁厚市场的发展,加氢筒体等压力容器的主体材料机械性能指标要求也在不断提高,不仅要求具有高的强度,还逐渐提高了对低温性能指标的要求;SA336F11 CL3钢属于低碳合金钢,指的是符合ASEM SA-336/SA-336M《高温承压件用合金钢锻件》标准中的3类合金钢,已在加氢筒体等压力容器中得到广泛应用,但是SA336F11 CL3钢所制成的加氢筒体的使用过程中,在温度低至零度以下等低温工作的情况下,容易出现低温冲击及韧性指标偏低的现象,影响加氢筒体锻件的性能,并且会造成加氢筒体寿命降低等多种隐患。
发明内容
为解决现有的SA336F11 CL3钢低温性能不足的问题,本发明提供了一种改善低温性能的加氢筒体用SA336F11 CL3钢及其热处理工艺。
本发明为解决上述技术问题所采用的技术方案是:一种改善低温性能的加氢筒体用SA336F11 CL3钢,所述的SA336F11 CL3钢的化学成分按重量百分比包括:0.13-0.15%的C,0.50-0.60%的Si,0.60-0.68%的Mn,1.40-1.50%的Cr,0.15-0.20%的Ni,0.55-0.65%的Mo,0.030-0.040%的Nb,0.015-0.025%的Al,≤0.025%的P,并控制以下元素的含量:S≤0.025%,As≤0.010%,Sn≤0.010%,Sb≤0.003%,Cu≤0.20%,H≤0.0002%,O≤0.0020%,N≤0.008%,余量为Fe及杂质。
优选的,所述的SA336F11 CL3钢的化学成分按重量百分比包括:0.14%的C,0.56%的Si,0.62%的Mn,1.44%的Cr,0.16%的Ni,0.58%的Mo,0.038%的Nb,0.025%的Al,0.0047%的P,0.0008%的S,0.0069%的As,0.0019%的Sn,0.0024%的Sb,0.037%的Cu,0.00017%的H,0.0017%的O,0.0064%的N,余量为Fe及杂质。
优选的,所述的SA336F11 CL3钢的化学成分按重量百分比包括:0.14%的C,0.54%的Si,0.60%的Mn,1.46%的Cr,0.16%的Ni,0.58%的Mo,0.042%的Nb,0.022%的Al,0.0052%的P,0.001%的S,0.0075%的As,0.0013%的Sn,0.0020%的Sb,0.035%的Cu,0.00012%的H,0.0015%的O,0.0060%的N,余量为Fe及杂质。
本发明的SA336F11 CL3钢的各化学成分含量均符合ASEM SA-336/SA-336M《高温承压件用合金钢锻件》标准中所规定的含量,其中,Si元素会阻滞锻件内部组织的贝氏体转变,并且会与P元素配合作用而促进P在钢中的脆化,导致锻件的韧性下降,所以对Si的含量按照《高温承压件用合金钢锻件》标准中的下限进行控制;Ni元素具有提高钢的淬透性及提高钢的低温韧性的效应,所以控制钢中含有适量的Ni;Mo元素能提高钢的淬透性,并且能减轻钢的回火脆性,所以Mo的含量按照《高温承压件用合金钢锻件》标准中的上限进行控制;Nb元素对于C元素具有极高的亲和力,使钢中形成稳定的碳化物,起到细化晶粒提高韧性的作用,但如果Nb含量过高则会使钢加重偏析并产生较多液析碳化物,所以控制钢中含有适量的Nb; Al元素能细化钢的晶粒,提高钢的强度,并且,Al能够与钢中的N结合形成AlN并在钢中起到钉扎位错的作用,可有效的增强钢在低温时的韧性等性能;对于钢中的有害元素As、Sn、Sb、Cu,以及气体元素H、O、N,本发明均对其含量进行了限制,并且根据限制后钢中的N元素含量,控制Al元素的含量在适当的范围,从而既保证了Al元素和AlN对钢低温性能的增强作用,也避免了钢中N含量过高而影响钢的性能。
本发明还提供了一种改善低温性能的加氢筒体用SA336F11 CL3钢的热处理工艺,包括以下步骤:
一、预备热处理
步骤1、将SA336F11 CL3钢锻件加热至600-650℃,保温3-6h;
步骤2、将步骤1保温后的锻件以≤60℃/h的升温速率加热至900-940℃并保温,保温时间(h)=(1.5~2.5)×锻件壁厚(mm)/100;
步骤3、将步骤2保温后的锻件空冷至280-320℃,保温6-10h;
步骤4、将步骤3保温后的锻件以≤60℃/h的升温速率加热至840-900℃并保温,保温时间(h)=(3~4)×锻件壁厚(mm)/100,然后空冷至280℃以下;
步骤5、将步骤4空冷后的锻件以≤60℃/h的升温速率加热至640-660℃并保温12-18h,然后空冷至室温;
二、快速冷却式正火处理
对预备热处理后的SA336F11 CL3钢锻件进行加工以去除表面黑皮,然后将锻件加热至300-350℃并保温3-6h,再以≤80℃/h的升温速率加热至600-650℃并保温4-8h,再加热至900-940℃并保温6-10h,出炉水冷至表面温度低于60℃,水冷过程中控制水温不超过25℃,然后锻件出水并空冷至室温;
三、最终回火处理
将出水并空冷至室温的锻件加热至300-350℃并保温3-6h,再以≤50℃/h的升温速率加热至680-720℃并保温10-14h,空冷至室温,即完成SA336F11 CL3钢锻件的热处理。
本发明中先对SA336F11 CL3钢锻件进行预备热处理,具体为先对锻件进行预热,然后对锻件先后进行了两次正火+回火的组合处理,其中第一次正火将锻件加热至900-940℃,采用了较高的奥氏体化温度,目的是打断原始晶粒与新形核晶粒之间的相互关系,使锻件中重新结晶奥氏体均匀化;第二次正火将锻件加热至840-900℃,采用了较低的奥氏体化温度,目的是在锻件中获得较细的晶粒;再通过回火使锻件内部组织转变为相对稳定状态,降低硬度便于切削加工;然后本发明对锻件进行了快速冷却式正火处理,在对锻件进行正火后,通过水冷方式并控制水温不超过25℃,从而保证了对锻件进行水冷的速度,使锻件快速降温冷却,以防止锻件内在高温状态下析出铁素体,再对锻件进行最终回火处理,全面提升锻件的内部组织性能,即可获得改善低温性能的加氢筒体用SA336F11 CL3钢锻件。
根据上述技术方案,本发明的有益效果是:
本发明提供的一种改善低温性能的加氢筒体用SA336F11 CL3钢,通过对SA336F11 CL3钢中多种元素的含量进行合理控制,并在SA336F11 CL3钢中添加了Al、Ni、Nb等有益元素,使SA336F11 CL3钢在温度低至零度以下等低温工作情况下的性能得到提升,能够有效避免SA336F11 CL3钢在低温时出现低温冲击及韧性指标偏低的问题,并且还提供了能够保证SA336F11 CL3钢低温性能的热处理工艺,所以本发明能够提升加氢筒体锻件的性能,消除加氢筒体寿命降低等隐患,利于推广运用。
具体实施方式
实施例1:一种改善低温性能的加氢筒体用SA336F11 CL3钢,其化学成分按重量百分比包括:0.14%的C,0.56%的Si,0.62%的Mn,1.44%的Cr,0.16%的Ni,0.58%的Mo,0.038%的Nb,0.025%的Al,0.0047%的P,0.0008%的S,0.0069%的As,0.0019%的Sn,0.0024%的Sb,0.037%的Cu,0.00017%的H,0.0017%的O,0.0064%的N,余量为Fe及杂质。
实施例2:一种改善低温性能的加氢筒体用SA336F11 CL3钢,其化学成分按重量百分比包括:0.14%的C,0.54%的Si,0.60%的Mn,1.46%的Cr,0.16%的Ni,0.58%的Mo,0.042%的Nb,0.022%的Al,0.0052%的P,0.001%的S,0.0075%的As,0.0013%的Sn,0.0020%的Sb,0.035%的Cu,0.00012%的H,0.0015%的O,0.0060%的N,余量为Fe及杂质。
对采用实施例1及实施例2的SA336F11 CL3钢制成的加氢筒体锻件采用相同的热处理工艺,具体步骤如下:
一、预备热处理
步骤1、将加氢筒体锻件加热至600-650℃,保温4h;
步骤2、将步骤1保温后的锻件以≤60℃/h的升温速率加热至930℃并保温,保温时间(h)=2×锻件壁厚(mm)/100;
步骤3、将步骤2保温后的锻件空冷至280-320℃,保温8h;
步骤4、将步骤3保温后的锻件以≤60℃/h的升温速率加热至880℃并保温,保温时间(h)=4×锻件壁厚(mm)/100,然后空冷至280℃以下;
步骤5、将步骤4空冷后的锻件以≤60℃/h的升温速率加热至650℃并保温15h,然后空冷至室温;
二、快速冷却式正火处理
对预备热处理后的SA336F11 CL3钢锻件进行加工以去除表面黑皮,然后将锻件加热至350℃并保温4h,再以≤80℃/h的升温速率加热至650±10℃并保温6h,再加热至915℃并保温8h,出炉采用快速冷却式水冷至表面温度低于60℃,水冷过程中控制水温不超过25℃,然后锻件出水并空冷至室温;
三、最终回火处理
将出水并空冷至室温的锻件加热至350℃并保温4h,再以≤50℃/h的升温速率加热至690±10℃并保温10h,空冷至室温,即完成SA336F11 CL3钢锻件的热处理,得到增强了低温性能的SA336F11 CL3钢加氢筒体锻件,性能如下表所示,可知实施例1及实施例2制成的锻件均具有优异的性能,能够满足加氢筒体的使用要求。

Claims (4)

1.一种改善低温性能的加氢筒体用SA336F11 CL3钢,其特征在于:所述的SA336F11CL3钢的化学成分按重量百分比包括:0.13-0.15%的C,0.50-0.60%的Si,0.60-0.68%的Mn,1.40-1.50%的Cr,0.15-0.20%的Ni,0.55-0.65%的Mo,0.030-0.040%的Nb,0.015-0.025%的Al,≤0.025%的P,并控制以下元素的含量:S≤0.025%,As≤0.010%,Sn≤0.010%,Sb≤0.003%,Cu≤0.20%,H≤0.0002%,O≤0.0020%,N≤0.008%,余量为Fe及杂质。
2.根据权利要求1所述的一种改善低温性能的加氢筒体用SA336F11 CL3钢,其特征在于:所述的SA336F11 CL3钢的化学成分按重量百分比包括:0.14%的C,0.56%的Si,0.62%的Mn,1.44%的Cr,0.16%的Ni,0.58%的Mo,0.038%的Nb,0.025%的Al,0.0047%的P,0.0008%的S,0.0069%的As,0.0019%的Sn,0.0024%的Sb,0.037%的Cu,0.00017%的H,0.0017%的O,0.0064%的N,余量为Fe及杂质。
3.根据权利要求1所述的一种改善低温性能的加氢筒体用SA336F11 CL3钢,其特征在于:所述的SA336F11 CL3钢的化学成分按重量百分比包括:0.14%的C,0.54%的Si,0.60%的Mn,1.46%的Cr,0.16%的Ni,0.58%的Mo,0.042%的Nb,0.022%的Al,0.0052%的P,0.001%的S,0.0075%的As,0.0013%的Sn,0.0020%的Sb,0.035%的Cu,0.00012%的H,0.0015%的O,0.0060%的N,余量为Fe及杂质。
4.根据权利要求1所述的一种改善低温性能的加氢筒体用SA336F11 CL3钢的热处理工艺,其特征在于,包括以下步骤:
一、预备热处理
步骤1、将SA336F11 CL3钢锻件加热至600-650℃,保温3-6h;
步骤2、将步骤1保温后的锻件以≤60℃/h的升温速率加热至900-940℃并保温,保温时间(h)=(1.5~2.5)×锻件壁厚(mm)/100;
步骤3、将步骤2保温后的锻件空冷至280-320℃,保温6-10h;
步骤4、将步骤3保温后的锻件以≤60℃/h的升温速率加热至840-900℃并保温,保温时间(h)=(3~4)×锻件壁厚(mm)/100,然后空冷至280℃以下;
步骤5、将步骤4空冷后的锻件以≤60℃/h的升温速率加热至640-660℃并保温12-18h,然后空冷至室温;
二、快速冷却式正火处理
对预备热处理后的SA336F11 CL3钢锻件进行加工以去除表面黑皮,然后将锻件加热至300-350℃并保温3-6h,再以≤80℃/h的升温速率加热至600-650℃并保温4-8h,再加热至900-940℃并保温6-10h,出炉水冷至表面温度低于60℃,水冷过程中控制水温不超过25℃,然后锻件出水并空冷至室温;
三、最终回火处理
将出水并空冷至室温的锻件加热至300-350℃并保温3-6h,再以≤50℃/h的升温速率加热至680-720℃并保温10-14h,空冷至室温,即完成SA336F11 CL3钢锻件的热处理。
CN201910350429.6A 2019-04-28 2019-04-28 一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺 Pending CN110106321A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910350429.6A CN110106321A (zh) 2019-04-28 2019-04-28 一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910350429.6A CN110106321A (zh) 2019-04-28 2019-04-28 一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺

Publications (1)

Publication Number Publication Date
CN110106321A true CN110106321A (zh) 2019-08-09

Family

ID=67487206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910350429.6A Pending CN110106321A (zh) 2019-04-28 2019-04-28 一种改善低温性能的加氢筒体用sa336f11 cl3钢及其热处理工艺

Country Status (1)

Country Link
CN (1) CN110106321A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713054A (zh) * 2009-12-28 2010-05-26 舞阳钢铁有限责任公司 大厚度加氢反应器卷筒设备用钢板及其生产方法
CN105861941A (zh) * 2016-04-19 2016-08-17 江阴兴澄特种钢铁有限公司 一种临氢设备用超大厚度钢板及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713054A (zh) * 2009-12-28 2010-05-26 舞阳钢铁有限责任公司 大厚度加氢反应器卷筒设备用钢板及其生产方法
CN105861941A (zh) * 2016-04-19 2016-08-17 江阴兴澄特种钢铁有限公司 一种临氢设备用超大厚度钢板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张艳召 等: ""超大型加氢筒体用钢SA-336F11CL3的冶炼方法研究"", 《大型铸锻件》 *

Similar Documents

Publication Publication Date Title
CN105624550B (zh) 核岛设备用大厚度SA738GrB钢板及生产方法
CN103131962B (zh) 一种高韧性的低合金高强度钢及其调质热处理方法
CN105239017B (zh) 一种渗碳轴承钢及其制备方法
CN102102163B (zh) 一种马氏体不锈钢及其制造方法
CN101613835A (zh) 一种合金热轧钢板及用其制造高压气瓶的方法
CN109457081A (zh) 一种稀土微合金化轴承钢及其制备方法
CN108546878B (zh) 一种厚规格核电蒸汽发生器支承用钢及生产方法
CN100447279C (zh) 一种耐海水腐蚀钢及其生产方法
CN110129676A (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN104294160A (zh) 一种高硬度高韧性低碳马氏体不锈钢及其制造方法
CN108396240A (zh) 一种耐热耐磨钢板及其生产方法
CN102330031A (zh) 一种高韧性-130℃低温钢及其制造方法
CN102191438A (zh) 一种高压无缝气瓶用钢板及其制造方法
CN103710638A (zh) 一种马氏体不锈钢及其制造方法
CN113528953B (zh) 一种耐液态铅/铅铋腐蚀的马氏体耐热钢
CN110079737B (zh) 一种孪晶强化的含铝奥氏体耐热不锈钢及其制备方法和应用
CN103667912B (zh) 一种低合金钢板及钢板的热处理方法
CN104451421B (zh) 一种高强韧性双金属带锯条背材用钢及其制备方法
CN104561837A (zh) 一种压力容器钢ASTMA387CL11Gr2钢板及其生产方法
CN105177446A (zh) 600℃中温核电压力容器用钢及其制造方法
CN102839331A (zh) 一种高韧性耐腐蚀钢及其制造方法
CN114622133B (zh) 一种超超临界汽轮机转子锻件用耐热钢及其制备方法
CN115181913A (zh) 一种低锰含量中锰钢的制备方法
CN108467929A (zh) 一种发动机护罩热处理工艺
CN106555129A (zh) 一种含氮不锈轴承钢及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190809

RJ01 Rejection of invention patent application after publication