CN110104728A - 一种超声波含硫污水处理污油的方法及装置 - Google Patents

一种超声波含硫污水处理污油的方法及装置 Download PDF

Info

Publication number
CN110104728A
CN110104728A CN201910468593.7A CN201910468593A CN110104728A CN 110104728 A CN110104728 A CN 110104728A CN 201910468593 A CN201910468593 A CN 201910468593A CN 110104728 A CN110104728 A CN 110104728A
Authority
CN
China
Prior art keywords
oil
ultrasonic wave
sump oil
sour water
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910468593.7A
Other languages
English (en)
Other versions
CN110104728B (zh
Inventor
苟泽浩
张茂锋
季德伟
王涛
贾中辉
毛金柱
齐杰
张达峰
侯永兴
邱立忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Besso Technology Co Ltd
Original Assignee
Qingdao Besso Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Besso Technology Co Ltd filed Critical Qingdao Besso Technology Co Ltd
Priority to CN201910468593.7A priority Critical patent/CN110104728B/zh
Publication of CN110104728A publication Critical patent/CN110104728A/zh
Priority to PCT/CN2019/125583 priority patent/WO2020238161A1/zh
Priority to PCT/CN2019/125586 priority patent/WO2020238162A1/zh
Application granted granted Critical
Publication of CN110104728B publication Critical patent/CN110104728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G17/00Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge
    • C10G17/09Refining of hydrocarbon oils in the absence of hydrogen, with acids, acid-forming compounds or acid-containing liquids, e.g. acid sludge with acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Abstract

本发明属于污油处理技术领域,具体的涉及一种超声波含硫污水处理污油的方法及装置。污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。采用本发明所述的方法,含硫污水使污油破乳,超声波强化破乳作用,避免使用化学试剂,节省成本费用,达到理想的油、水、渣三相分离效果,达到污油含水率<5%,机械杂质<1%;所述的超声波含硫污水处理污油的装置,可制成撬装装置车载移动,也可工厂现场安装使用,本发明适用于高含水的油水乳化物破乳,尤其适用于油田或炼油厂污油处理。

Description

一种超声波含硫污水处理污油的方法及装置
技术领域
本发明属于污油处理技术领域,具体的涉及一种超声波含硫污水处理污油的方法及装置。
背景技术
污油是产生于油田或炼油厂生产过程中的一类高含水乳化原油。有一些污油称作为重污油,重污油的机械杂质含量高、金属含量高、固体悬浮物颗粒含量高、含水率高、表面活性剂含量高等等,重污油主要来自于原油罐底切水、原油电脱盐切水、设备检修扫线、污水处理隔油池回收等过程的污油;有一些污油称作为老化油,老化油是因为难以处理,污油存放时间长,不能有效的加工和利用,经长时间水热生化作用,处理难度越来越大,所以称作为老化油;污油的来源与性质不完全相同,名称也不完全一样,污油有一个共同的特点,采用常规手段难以处理,也难以有效利用,因此,污油处理是油田生产的一大难题,也是炼油厂生产的一大难题。
在原油自开采至炼制的全过程中,采油-脱水-集输-炼厂预处理-炼厂一次加工-炼厂二次加工等过程中的化学添加物、残留的金属盐、过饱和的采油助剂聚丙烯酰胺颗粒、泥土颗粒物、检修吹扫出的焦炭颗粒等有害杂质最终主要集中富集在污油中,污油中固体物成分复杂,主要成分包含胶质、沥青质、环烷酸皂、石蜡、泥沙、有机污泥、焦炭颗粒、表面活性类物质等等,污油与普通原油相比,污油的酸值、粘度、金属含量、盐含量、水含量是普通原油的数倍或数十倍,且乳化结构稳定,常规方法难以破乳。
在化学破乳工艺中引入超声作用,以化学药剂联合物理超声法实现对污油的高效破乳,CN201610016631-一种高含渣含水污油的处理工艺公开了一种污油的处理方法:先采用NaOH碱液对污油进行洗涤,之后再加入硫酸,使其与环烷酸钠发生反应,将环烷酸钠还原成不具有乳化作用的环烷酸,从而消除其乳化作用,过程中采用超声波辅助药剂碱、酸、破乳剂及絮凝剂对高含渣、含水污油进行破乳脱水与脱渣处理。该方法的缺陷是:不仅采用了强碱、强酸造成生产设备的腐蚀,也采用了大量的破乳剂、絮凝剂,增加了污油的处理成本费用,也增加了脱出污水的处理难度。
处理污油采用大量化学破乳剂具有诸多的生产与环保问题:导致生产成本上升,造成排水的COD值和排水含油值上升,导致排水的BOD值下降,直接影响后续水处理的正常进行和处理后污水的达标排放。CN201610215514-一种超大功率超声波污油破乳脱水方法、CN201610215516-一种超大功率超声波污油破乳脱水装置、CN201610215517-一种超大功率超声波污油破乳脱水控制系统是江苏大轩的三项专利申请,公开了仅采用超大功率超声波处理污油的方法,该方法的不足是:工艺过程复杂,污油脱后含水较高<10%,不能满足污油掺炼加工的含水<5%的指标要求。
因此,亟需探索一种新型的处理污油的方法及装置。
发明内容
本发明的目的是克服现有超声波技术处理污油需要添加化学剂、工艺过程复杂、处理费用高、处理后污油含水率高、脱出水处理难度大等缺陷,提供一种超声波含硫污水处理污油的方法,一方面,避免了现有技术中采用强酸与强碱造成生产设备的腐蚀、降低了添加化学破乳剂与絮凝剂增加的污油处理成本费用、同时降低了脱出污水的处理难度;另一方面,简化了超大功率超声波处理污油工艺过程中反复地对污油进行处理的复杂的工艺过程,且处理后的污油满足了污油掺炼加工的含水<5%的指标要求。
本发明所述的超声波含硫污水处理污油的方法,具体是污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。
采用含硫污水—超声联合处理污油后,再采用管壁伴热保温式沉降罐,可以使污油达到较好的脱水、脱渣效果,脱出污水的含油率也较低。
所述含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,含硫污水满足硫化物(S2-)含量≥2500mg/L,满足溶解氨氮(NH3-N)含量≥2000mg/L。含硫污水的硫化物(S2-)含量、氨氮含量(NH3-N)含量过低,会导致处理污油的效果满足不了污油回炼加工的要求。
含硫污水与污油的质量比例为≤7/10。含硫污水与污油的质量比例大于7/10,会导致污水处理的难度加大,能效降低。
污油与含硫污水混合前预热到50-95℃。
污油与含硫污水混合的混合阀的混合强度50-500KPa。
污油与含硫污水在沉降罐的沉降温度60-95℃。
所述超声波含硫污水处理污油的生产工艺中,含硫污水与污油的比例控制一个最佳值,最佳值的确定需要在实验室先行确定最佳效果的配比,含硫污水与污油性质差别较大,配比值差别较大。
含硫污水能够采用炼油厂焦化含硫污水、加氢含硫污水、常减压含硫污水等各种含硫污水处理污油。
为了不添加碱、酸、化学破乳剂、絮凝剂等常规污油处理试剂,实现减轻设备腐蚀、避免使用化学破乳剂与絮凝剂、降低污油处理成本费用的目的,达到降低脱出污油含水率、降低脱出污水含油量的效果,采用炼油厂焦化含硫污水、加氢含硫污水、常减压含硫污水等各种含硫污水处理污油。
含硫污水的利用和处理是炼油厂的生产问题之一,各炼厂富余的含硫污水均需要寻找回用的途径或进行汽提后寻找回用的途径,采用各种未经汽提处理的含硫污水处理污油,可以消减含硫污水的量,将含硫污水中的硫化氢、氨氮用于处理污油,既节省了含硫污水汽提的处理费用,也实现了硫化氢、氨氮的废物利用,且节省了添加化学剂处理污油的费用。
含硫污水是中性、酸性或碱性中的一种,pH值的范围:3≤pH≤11。
所述含硫污水可以是酸性,也可以是碱性,也可以是中性,含硫污水的酸性、碱性、中性由炼油厂加工原油的性质而定,与原油中含硫、含氮有关,不同原油加工产生的含硫污水中可溶性硫化氢与可溶性氨氮的比例不同,含硫污水的酸性、碱性、中性则不同。处理污油的含硫污水不作特别限定,一般含硫污水的pH值不低于3、不高于11均能满足污油处理的要求,含硫污水溶液具有一定的酸碱缓冲溶液作用,避免了添加强酸、强碱的强腐蚀性。
超声波是污油处理的一种新兴手段,单独采用超声波处理污油,即使采用了复杂的技术工艺,最终的处理效果有一定的限制,处理后的污油含水率达到一个极限值后很难再降低,处理后的污油含水率不能达到生产中掺炼污油的指标要求,脱出污水的含油率也达不到污水处理场进水的指标要求;含硫污水处理污油后,再采用超声波进行超声破乳作用,可以达到较好的破乳脱水效果,最终处理的污油含水率能达到生产中掺炼污油的指标要求,脱出污水的含油率也能达到污水处理场进水的指标要求;含硫污水—超声波联合处理污油后,最终可达到高效的油水渣三相分离效果,处理后的污油可以达到含水与含渣低、污水可以达到含油与含泥少、罐底泥可以达到含油少与可流动。
所述的超声波声强满足0.05-1.5w/cm2的参数要求,优选的超声波声强满足0.20-1.2w/cm2范围。
超声波作用频率为10kHz-60kHz,优选的超声波频率是19-40kHz。
超声波作用时间控制在1-12min。
超声波作用温度控制在50-95℃。
本发明所述的超声波含硫污水处理污油的装置,包括开关阀、输送泵、压力测控、流量测控、超声波换能器、防爆柜、控制单元和污油管道,污油管道与含硫污水管道合并后与混合器相连,混合器通过管道与混合阀相连,混合阀通过管道与超声波作用区相连,超声波作用区通过管路与混料开关阀相连,混料开关阀通过管道与沉降罐相连。
其中:
含硫污水与污油混合后进入超声波作用区作用,超声完毕后进入沉降罐进行沉降分离。
污油管道、含硫污水管道与混合器相连的管道上均依次设置开关阀、输送泵、压力测控和流量测控。
开关阀、输送泵、压力测控、流量测控和混合阀均通过控制单元控制。
防爆柜用于盛放超声波发生器,超声波发生器控制超声波换能器。
超声波作用区设置至少一个,含硫污水处理后的污油再进超声波作用区中与超声波作用。
超声波作用区之间的连接方式是串联、并联或者串并联中的一种。
超声波设置至少一个超声波作用区,超声波作用区可以单一作用,超声波作用区可以串联,超声波作用区也可以并联,超声波作用区也可以串并联。
超声波作用区的工作方式是间隙式作用或在线式作用中的一种。
超声波作用区形式以聚能式效果最优。
超声波作用区形式是抛物面聚焦型或平面反射叠加聚焦型中的一种。
超声波作用区形式是罐式结构或管道式结构中的一种。
超声波作用区设置至少一个超声波换能器。
超声波作用区设置有超声波换能器,超声波换能器把电能转换为超声波的机械能。
超声波换能器是压电陶瓷型或磁致伸缩型中的一种。
所述超声波换能器与超声波作用区需要选择匹配,匹配条件满足超声波声强的条件要求。
超声波换能器的作用方向是任意方向。
所述超声波换能器的作用方向是上下方向作用方式,水平方向作用方式或以各种不同角度方向作用的方式中的一种。
所述超声波换能器连接有超声波发生器,超声波发生器控制超声波换能器,超声波发生器置于防爆柜中,防爆柜适应于石油化工生产现场安装。
超声波发生器的控制方式是现场手动控制操作、PLC控制操作或接入DCS进行控制操作中的一种。
所述超声波作用区、污油的沉降罐及污油处理工艺系统,可以常压操作,也可以带压操作或真空操作,系统可以鼓泡,系统也可以汽浮。
所述超声波也可以采用气哨或液哨发声产生。
本发明所述的超声波含硫污水处理污油的装置的工作过程如下:
污油管道内的污油与含硫污水管道内的污水合并后进入到混合器混合,污油管道、含硫污水管道与混合器相连的管道上均依次设置开关阀、输送泵、压力测控和流量测控开关阀、输送泵、压力测控、流量测控和混合阀均通过控制单元控制,控制单元是PLC控制或DCS集中控制中的一种;混合器内混合完毕后,通过管路进入到超声波作用区进行超声,超声波作用区设置至少一个,超声波作用区通过管道与沉降罐相连,经过超声分散的混合液进入到沉降罐内进行沉降分离。
本发明所述的超声波含硫污水处理污油的方法及装置,适用于油水乳化物破乳的场合,尤其适用于油田或炼油厂的污油处理的场合。
本发明所述的超声波含硫污水处理污油的方法,不采用化学剂处理污油,能够大幅降低处理污油的成本,也减轻了后续污水处理的难度,采用超声波与含硫污水联合处理污油的方法与装置,是该发明的大胆创新。
本发明所述的超声波含硫污水处理污油的装置,含硫污水与污油的混合能够采用静态混合器、混合阀、液流循环搅拌、机械搅拌等多种方式的混合,也能够采用静态混合器、混合阀、液流循环搅拌、机械搅拌等多种方式的组合,通过混合实现含硫污水与污油的充分均质化混合,达到含硫污水处理污油的最佳效果。
所述超声波含硫污水处理污油的生产工艺过程可以是连续式生产工艺过程,也可以是间隙式生产工艺过程。
所述含硫污水输送或添加的方式,可以采用系统自压输送或添加,也可以采用各种泵送方式输送或添加。
所述超声波含硫污水处理污油的方法,分别设置含硫污水、污油的流量控制手段,流量控制手段可以是手动调节控制,也可以是自动调节控制。
所述超声波含硫污水处理污油的方法,可以是现场手动控制,也可以是现场PLC控制,也可以是DCS集中控制。
除沉降罐外,装置的其它组件均安装在撬装内,车载移动,方便用户,重复使用,节省成本。
包括沉降罐在内装置的所有组件均安装在污油处理的生产现场,建成固定式生产装置。
实现上述超声波含硫污水处理污油的方法的装置,可以是移动式撬装装置,也可以是固定式生产装置。
实现上述超声波含硫污水处理污油的方法的装置,设置物料进料装置开关调节阀、输送动力输送管道、压力测控调节阀、流量控制调节阀、混合单元、超声波处理单元、物料出料装置开关阀。
实现上述超声波含硫污水处理污油的方法的装置,可与原油罐或污油罐相连接达到油水渣三相的沉降分离效果,也可以设置专用的沉降罐达到较好的油水渣三相的沉降分离效果。
实现上述超声波含硫污水处理污油的方法的装置,专用沉降罐设置罐壁伴热保温的加热方式,伴热加热采用不高于100℃的热媒水加热的方式,也可以采用控制缓和的电加热方式伴热保温,罐壁伴热保温加热过程防止专用沉降罐中物料返混,防止罐底盘管的蒸汽加热影响油水渣三相的分离效果。
本发明与现有技术相比,具有以下有益效果:
(1)本发明所述的超声波含硫污水处理污油的方法及装置,首先,含硫污水中溶解硫化氢、溶解氨氮与污油中硫化亚铁、石油酸钙、石油酸镁、石油酸铁、石油酸镍等进行化学作用,在碱性、酸性或中性条件下进行化学转化反应,达到破解污油稳定态的作用,使污油乳化状态成为一种亚稳态;紧接着,亚稳态的含硫污水与污油的混合物在超声波的作用下继续破坏亚稳态乳化结构,实现无死角的超声波的传递与作用,达到较好的破乳效果,实现破乳;最后,破乳后的污油与含硫污水的混合物,通过沉降分离方式实现油水渣三相分离效果。
(2)本发明所述的超声波含硫污水处理污油的方法及装置,不添加强酸、强碱,也不加入化学破乳剂、絮凝剂,既避免了设备的腐蚀,也节省了处理费用,同时,提高了处理效果,改善了脱出污水的水质:降低了COD值,增大了BOD值,增大了B/C值,降低污水的含油量。
(3)本发明所述的超声波含硫污水处理污油的装置,简化了工艺过程,也减少了处理设备,减少了设备的总投资和费用。
(4)本发明所述的超声波含硫污水处理污油的装置,控制手段先进,单元独立,工艺过程合理,可通过管线连接在污油、老化污油、重污油等各种污油处理的场合,接入方式简单,应用灵活。工业试验结果表明,采用本发明的技术方案,沉降5天,可以实现现有技术1年不能解决的生产问题,达到较好的油水渣三相分离效果。
(5)本发明所述的超声波含硫污水处理污油的方法及装置,应用于炼厂污油的处理过程中,也适用于油田污油的处理工艺中。
(6)本发明所述的超声波含硫污水处理污油的方法及装置,应用于炼厂污油、老化油、重污油的脱水的过程中,也用于油田污油、老化油的脱水工艺中。
附图说明
图1是本发明的超声波含硫污水处理污油的方法及装置的工艺流程示意图。
图中:1、污油管道;2、含硫污水管道;3、开关阀;4、输送泵;5、压力测控;6、流量测控;7、混合器;8、混合阀;9、超声波作用区;10、超声波换能器;11、防爆柜;12、控制单元;13、混料开关阀;14、沉降罐。
具体实施方式
实施例1
超声波含硫污水处理污油的装置,包括开关阀3、输送泵4、压力测控5、流量测控6、超声波换能器10、防爆柜11、控制单元12和污油管道1,污油管道1与含硫污水管道2合并后与混合器7相连,混合器7通过管道与混合阀8相连,混合阀8通过管道与超声波作用区9相连,超声波作用区9通过管路与混料开关阀13相连,混料开关阀13通过管道与沉降罐14相连。
污油管道1、含硫污水管道2与混合器7相连的管道上均依次设置开关阀3、输送泵4、压力测控5和流量测控6。
开关阀3、输送泵4、压力测控5、流量测控6和混合阀8均通过控制单元12控制。
防爆柜11用于安装超声波发生器,超声波发生器控制超声波换能器10。
图1所示,组件1-13安装在撬装装置内,可车载移动,适应于各种不同炼油厂或油田的生产过程,现场配套沉降罐14,实施的工艺过程方法如下:
(1)打开开关阀3的污油开关阀,污油管道1中的污油由输送泵4输送至压力测控5,调节污油输送泵出口的压力测控阀,控制污油压力,打开混合阀8,打开混料开关阀13,污油流程打通。
(2)打开开关阀3的含硫污水开关阀,含硫污水管道2中的含硫污水由输送泵3的含硫污水输送泵输送至压力测控5,调节含硫污水输送泵出口的压力测控阀,控制污油压力,含硫污水流程打通。
(3)开启防爆柜11的8个超声波发生器开关,控制4个超声波作用区9的8个超声波换能器10的声强达到预设值,超声波开始运行。
(4)通过控制单元12的PLC或DCS进行过程各参数的集中控制,分别控制流量测控6的污油、含硫污水的流量,分别调节污油的流量达到预设值,调节污油与含硫污水的配比达到预设值。
(5)通过控制单元12的PLC或DCS进行过程各参数的集中控制,控制污油与含硫污水的混合强度。
(6)待沉降罐14的污油液位高度达到生产要求的高度,停止超声波含硫污水处理的生产过程,关闭开关阀3,关闭超声波,关闭混料开关阀13,进行污油沉降过程。
(7)沉降过程对沉降罐14上、中、下采样分析,达到脱水要求后,先外送污泥,再外送污水,最后外送处理后净化污油。
本发明的超声波含硫污水处理污油的方法及装置,具有以下有益效果:工艺过程合理,构造结构简单,易于制造,生产成本低,运行费用少;撬装式装置可移动,撬装式装置可重复利用,撬装式装置设置PLC控制单元,控制自动化程度高,PLC控制单元预留DCS接口,可实现现场生产的DCS集中控制;进出料单元的管口设计采用钢丝软管与活套法兰连接,撬装装置与生产现场连接方便,易于现场安装使用,安装过程简单易行。
采用本发明所述的超声波含硫污水处理污油的装置处理污油,处理1000t污油的工业试验显示有益效果如下:
(1)各种污油处理的适应性好,污油破乳彻底,不残留乳化层。
(2)脱后污油含水率低,脱后污油含渣少,污水含油量低。
(3)污水COD值低,污水B/C值显示可生化性能好。
(4)溶解性硫化氢、溶解性氨氮与污油中化学成分化学反应生成盐,处理过程即使常压也没有硫化氢、氨氮的挥发性,生产过程安全可靠。
(5)超声波含硫污水处理污油的方法及装置,适应于油田或炼油厂的各种污油的处理过程,没有限制性,没有选择性,具有广泛的适应性。
实施例2
一种超声波含硫污水处理污油的方法,具体是污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。
本发明的技术方案,含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,满足:含硫污水满足硫化物含量≥2500mg/L,溶解氨氮含量≥2000mg/L。
在该实施例中物料性质与工艺参数:
含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,含硫污水中硫化物(S2-)含量2530.3mg/L,氨氮含量(NH3-N)含量2016.7mg/L。
含硫污水与污油的质量比例为7/10。
污油与含硫污水混合前预热到70-95℃。
污油与含硫污水混合的混合阀的混合强度350-500KPa。
超声波的作用时间控制在4-7min。
超声波的作用的温度控制在60-95℃。
污油与含硫污水在沉降罐的沉降温度为80-90℃。
超声波声强为0.20-0.5w/cm2
超声波频率为19kHz。
实施例2中采用的超声波含硫污水处理污油的装置与实施例1相同。
本发明的超声波含硫污水处理污油的方法及装置在某厂3.6万吨高含水污油处理中实施。
利用撬装装置,采用含硫污水,处理高含水老化污油效果。
如图1所示,组件1-13安装在撬装装置内,采用车载移动的方式,在某炼油厂实施。
随着加工原油的重质化与劣质化趋势加剧,原油加工过程中的原油罐区沉降脱水带油增加,电脱盐排水含油上升,3-4年累积了近3.6万吨高含水老化污油,污油含水量高达80%,一直存放在80℃原油储罐内,脱水效果不明显,占用两个20000m3的原油储罐,影响原油的正常生产,无法采用常用手段进行处理,2018年,实施超声波含硫污水处理污油的方法及装置技术方案,在高含水老化污油储罐罐区,采用撬装式超声波含硫污水处理污油的方法的装置,在70-95℃下,通过污油泵输送老化污油,用含硫污水管线压力自压输送含硫污水,处理高含水老化污油,处理后的高含水老化污油在污油沉降罐中进行沉降脱水,针对本发明的技术方案要求,对300t容积的污油沉降罐进行罐壁伴热式保温的适应性改造。
每处理200t需要24h,沉降需要5d时间,处理效果如表1所示。
80-90℃5d沉降后,对油层脱出油的含盐、含水率、机械杂质、金属含量等进行了分析,与原料重污油、某高硫高酸原油、常规加热脱出油的性质进行比较,结果如表1所示。
表1超声波含硫污水处理重污油的超声波脱出油的性质对比
可见,重污油具有三高特性:第一,含水率高;第二,含盐高;第三,含机械杂质高。
重污油含水率高
重污油的含水率难以采用卡尔费休化学法测定准确值,表1中采用蒸馏法测定,含水率72.21%,与化学法测定的某高硫高酸原油样品的较为准确的含水率0.46%相比,重污油的含水率是156.98倍。
重污油含水高,重污油含水率采用离心法分析可达到80%,其中包括底部沉渣。一般观点错误的认为重污油脱除了水分即可以有效加工利用,事实上,重污油含水率高只是重污油难加工处理的一个表面现象,重污油的难加工处理还表现在其它方面。
重污油含盐量高
无机盐氯化钠的分析较为容易,可以直接测定,但是,由于技术原因直接测定重污油中有机盐难度较大;已公开的重污油破乳和脱水研究的文献中报道,测定重污油的金属含量也未见报道;试验过程中,分析重污油的无机盐(NaCl)含量高,与某高硫高酸原油样品相比,重污油中无机盐含量是22.85倍;间接分析了重污油可形成环烷酸类有机盐的金属Ca、Mg、Fe的含量高,与某高硫高酸原油样品相比,Ca为62.65倍、Mg为175.27倍、Fe为161.96倍,可以认为重污油的有机盐含量也相应较高。
重污油机械杂质高
重污油的机械杂质6.24%,与某高硫高酸原油样品相比,重污油的机械杂质是某高硫高酸原油样品的9.18倍,直接掺炼加工重污油对后部加工工序设备结垢腐蚀、换热器或塔器淤堵、催化剂中毒或催化剂消耗增加均具有不利影响,直接影响炼厂经济效益。
表1可见,超声波—含硫污水联合处理重污油后具有有益效果:
脱出油具有三低特性,第一,含水率低;第二,含盐低;第三,含机械杂质低。与常规加热沉降脱出的少量油层的脱除油性质相比,超声波—含硫污水联合处理重污油后的脱出油具有三低特性。
(1)超声波含硫污水处理的重污油脱出油含水低
超声波含硫污水处理重污油后的脱出油的平均含水率仅为0.21%,脱出油的含水率大幅度降低,与常规加热沉降处理脱出少量油层的重污油脱出油对照,脱出油的含水率降低72.38倍,达到较为理想的脱水效果。
(2)超声波含硫污水处理的重污油脱出油含盐低
由表1可知,同样地,超声波含硫污水处理重污油后的脱出油的含盐量1.72mg·L-1也大幅度的降低,与常规加热沉降脱出少量油层的脱除油对照含盐量相比降低84.07倍。
表1可见,以石油酸、环烷酸类有机盐形式存在的金属盐,超声波处理重污油后的脱出油的金属Fe、Ca、Mg、Ni、V、Cu含量,与常规加热沉降的脱出少量油层的脱除油对照相比,分别降低176.16、4.02、18.62、1.03、1.09、64.5倍,实施超声波—含硫污水联合处理重污油,不仅能够高效脱除重污油中的无机金属盐,而且能够高效脱除重污油中的有机金属盐。
超声波含硫污水处理的重污油脱出油含机械杂质低
表1可见,超声波含硫污水处理重污油后的机械杂质为0.72%,机械杂质含量大幅度降低,与常规加热沉降脱出少量油层的脱除油对照相比降低7.11倍。
表1可见,与不采用超声波的含硫污水脱出油相比,超声波的作用具有显著的有益效果,其中重要的效果有:(1)脱出油的含水量1.98%降至0.21%;(2)机械杂质由1.90%降至0.72%;(3)盐含量10.20mg·L-1降至1.72mg·L-1;(4)金属Fe含量由680.40ug·g-1降至8.00ug·g-1;(5)金属Ca含量由720.25ug·g-1降至298.46ug·g-1;(6)金属Mg含量由70.36ug·g-1降至6.45ug·g-1
综上所述,超声波含硫污水处理重污油,超声波与含硫污水的结合使用是一种完美的结合,能够高效脱除重污油含水,能够高效脱除金属无机盐与金属有机盐而大幅降低机械杂质含量,因此,超声波含硫污水处理重污油能够实现重污油脱水-净化的双重功能。
实施例3
一种超声波含硫污水处理污油的方法,具体是污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。
物料性质与工艺参数:
含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,含硫污水中硫化物(S2-)含量12170.8mg/L,氨氮(NH3-N)含量8341.6mg/L。
含硫污水与污油的质量比例为2/10。
污油与含硫污水混合前预热到80-95℃。
污油与含硫污水混合的混合阀的混合强度200-350KPa。
超声波的作用时间控制在1-6min。
超声波的作用的温度控制在50-75℃。
污油与含硫污水在沉降罐的沉降温度为80-95℃。
超声波声强为0.8-1.2w/cm2
超声波频率为20kHz。
实施例3中采用的超声波含硫污水处理污油的装置与实施例1相同。
本发明所述的超声波含硫污水处理污油的方法及装置处理其它污油处理过程的累积的乳化层。
如图1所示,撬装式装置处理累积的乳化层,强碱法处理重污油时残留的乳化层累积6个月集中储存,采用本发明撬装装置处理,配套现场沉降罐。
某厂采用pH值12-14的NaOH强碱溶液处理重污油,勉强达到≤5%的污油指标要求,不仅处理后的重污油沉降时间需要15-25天,而且,沉降罐中还存在乳化层需要切出集中储存,不易再处理。
采用本发明的撬装装置,注入强碱法脱出的碱性水pH值10-11,处理累积的重污油的乳化层,采用PLC操作方式,生产温度90-96℃,系统操作压力0.1-0.2MPa,注入污水流量3-6m3/h,污油处理能力6-12m3/h,超声波处理过程运行36h,处理后沉降罐80-90℃沉降5天,处理强碱处理的污油乳化层200t。
实施后有益的效果显著:
超声波处理后污油平均含水率达到1.8%,满足了炼油厂掺炼污油≤5%的指标要求;超声波处理后的污油中机械杂质含量大幅降低,与常规的加热脱水沉降方式对照比较,处理后的污油的平均机械杂质含量由5.01%降低至0.10%;超声波处理后的污油分析机械杂质含量的800℃吹脱的陶瓷坩埚为白色,常规的加热脱水沉降方式脱出的少量污油的分析机械杂质含量的800℃吹脱的陶瓷坩埚为黄褐色。
处理后的污水,与常规的加热脱水沉降方式对照比较,含油率由2218.01mg/L降低至280.45mg/L;污水的平均CODcr值由2800.25mg/L降至1500.56mg/L,污油的平均BOD值由434.36mg/L上升至482.74mg/L,B/C值由0.155上升至0.321,水质由不可生化状态(B/C≤0.21)改善为可生化状态。
处理后的罐底沉降的泥,与常规的加热脱水沉降方式对照比较,沉降罐底产生了大量的可流动泥。泥呈黑色,流动性良好,可采用泵输送,泥涂在滤纸上干燥后点燃,无助燃效果,可判断泥中含油少、含碳粉颗粒少。
撬装装置与现场管道对接方式简便,生产操作容易,生产过程安全可靠,适合于炼油厂或油田的生产环境。
实施例4
一种超声波含硫污水处理污油的方法,具体是污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。
物料性质与工艺参数:
含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,含硫污水中硫化物(S2-)含量为6482.32mg/L,氨氮(NH3-N)含量为4598.24mg/L。
含硫污水与污油的质量比例为5/10。
污油与含硫污水混合前,重污油温度80℃,含硫污水75℃。
污油与含硫污水混合的混合阀的混合强度50-250KPa。
超声波的作用时间控制在8-12min。
超声波的作用温度控制在75-95℃。
污油与含硫污水在沉降罐的沉降温度为85-90℃。
超声波声强为0.5-0.8w/cm2
超声波频率为40kHz。
实施例4中采用的超声波含硫污水处理污油的装置与实施例1相同。
本发明超声波含硫污水处理污油的方法及装置,在生产现场设计安装。生产现场可以安装一套或多套超声波作用区,多套超声波作用区可以串联组合,也可以并联组合。
如图1所示,可以安装一套超声波作用区,超声波作用区两端各安装一组超声波换能器。采用一套超声波作用区处理某厂重污油8000吨,采用间隙式操作方式,污油沉降罐进行管壁伴热式加热保温的技术改造。
间隙时操作方式,每次处理200t,沉降时间4-5d。
试验过程对超声波含硫污水脱出的污水COD值、BOD值及生化性能进行了分析,分析结果与常规加热沉降脱出的少量油层的重污油性质进行比较,结果如表2所示。
表2超声波处理重污油脱出清水性质的比较
分析项目 超声波脱出清水 常规加热脱除清水 方法标准
COD,mg·L<sup>-1</sup> 10209 5019 GB 11914-89
BOD,mg·L<sup>-1</sup> 2925 1355 HJ505-2009
B/C 0.29 0.27 测定计算比值
由表2可见,某炼油厂超声波含硫污水处理重污油脱出清水的COD为10209mg·L-1,BOD为2925mg·L-1,B/C值为0.29,属于可生化范围(≥0.21)。
相比常规加热脱除清水COD为5019mg·L-1,某炼油厂超声波含硫污水处理重污油脱出清水,COD为10209mg·L-1,在大量加入了COD为2000mg·L-1左右的含硫污水稀释后,COD值仍然高出1倍,一方面说明了超声波催化反应的效能,另一方面说明了超声波处理对重污油净化的效能;超声波的化学催化作用机理,通过对重污油中极性乳化剂与含硫污水的化学催化反应,降解了化学乳化剂,产生水溶性的小分子有机物,最终达到了超声波含硫污水对重污油的破乳作用效果;通过含硫污水稀释作用的某炼油厂超声波含硫污水处理重污油脱出清水,与常规加热脱除清水相比,COD总量增加至接近2倍,超声波作用含硫污水处理重污油混合物,脱除了大量的有机物杂质,大大的净化了重污油。
通过含硫污水稀释作用的某炼油厂超声波含硫污水处理重污油脱出清水,与常规加热脱除清水相比,COD总量增加至接近2倍,但可生化性能有所提高,B/C值由0.27升高至0.29;超声波联合含硫污水脱出大分子极性有机物并降解为水溶性小分子有机物,虽然使污水的COD值大幅上升,但是水溶性小分子有机物是生化菌喜欢的食物,可生化性有所提高;一般的污水处理需要控制可溶性硫化氢与氨氮的指标,污水中可溶性硫化氢与氨氮较高则不利于污水处理的生化作用,但是,超声波作用产生的有机小分子对生化反应的有益作用完全抵消了加入的含硫污水中的可溶性硫化氢与氨氮的对生化反应的不利作用。
应用获得有益效果:
(1)处理后重污油达到较好的油水渣三相分离效果,油层与水层之间没有乳化层。
(2)处理后的重污油平均含水率由76%降低至2.3%,处理后的重污油的平均机械杂质含量由6.8%降至0.34%,获得了理想的有益的效果。
(3)试验过程对超声波含硫污水脱出的污水COD值、BOD值及生化性能进行了分析,超声波含硫污水脱出的污水的可生化性能有所提高。

Claims (10)

1.一种超声波含硫污水处理污油的方法,其特征在于,污油中注入含硫污水进行混合破乳,再经超声波强化破乳,最后经沉降罐沉降实现油水渣三相分离,处理后的污油达到污油的含水率<5%、污油的机械杂质含量<1%。
2.根据权利要求1所述的超声波含硫污水处理污油的方法,其特征在于,含硫污水为石油化工生产过程中产生的含有溶解硫化氢和溶解氨氮的废水,含硫污水满足硫化物含量≥2500mg/L,溶解氨氮含量≥2000mg/L。
3.根据权利要求1所述的超声波含硫污水处理污油的方法,其特征在于,含硫污水与污油的质量比例为≤7/10。
4.根据权利要求1所述的超声波含硫污水处理污油的方法,其特征在于,超声波声强为0.05-1.5w/cm2,超声波频率为10kHz-60kHz。
5.根据权利要求4所述的超声波含硫污水处理污油的方法,其特征在于,超声波声强为0.20-1.2w/cm2,超声波频率为19-40kHz。
6.根据权利要求1所述的超声波含硫污水处理污油的方法,其特征在于,超声波作用时间控制在1-12min。
7.根据权利要求6所述的超声波含硫污水处理污油的方法,其特征在于,超声波作用温度控制在50-95℃。
8.一种权利要求1所述的超声波含硫污水处理污油的装置,其特征在于,包括开关阀(3)、输送泵(4)、压力测控(5)、流量测控(6)、超声波换能器(10)、防爆柜(11)、控制单元(12)和污油管道(1),污油管道(1)与含硫污水管道(2)合并后与混合器(7)相连,混合器(7)通过管道与混合阀(8)相连,混合阀(8)通过管道与超声波作用区(9)相连,超声波作用区(9)通过管路与混料开关阀(13)相连,混料开关阀(13)通过管道与沉降罐(14)相连。
9.根据权利要求8所述的超声波含硫污水处理污油的装置,其特征在于,污油管道(1)、含硫污水管道(2)与混合器(7)相连的管道上均依次设置开关阀(3)、输送泵(4)、压力测控(5)和流量测控(6);开关阀(3)、输送泵(4)、压力测控(5)、流量测控(6)和混合阀(8)均通过控制单元(12)控制;防爆柜(11)用于盛放超声波发生器,超声波发生器控制超声波换能器(10),超声波作用区(9)设置至少一个,超声波作用区(9)之间的连接方式是串联、并联或串并联中的一种。
10.根据权利要求8所述的超声波含硫污水处理污油的装置,其特征在于,除沉降罐(14)外,装置的其它组件均安装在撬装内或包括沉降罐(14)在内装置的所有组件均安装在污油处理的生产现场,建成固定式生产装置;沉降罐(14)是罐壁式伴热保温沉降罐,采用电加热或100℃以下的热媒水伴热保温。
CN201910468593.7A 2019-05-31 2019-05-31 一种超声波含硫污水处理污油的方法及装置 Active CN110104728B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910468593.7A CN110104728B (zh) 2019-05-31 2019-05-31 一种超声波含硫污水处理污油的方法及装置
PCT/CN2019/125583 WO2020238161A1 (zh) 2019-05-31 2019-12-16 一种超声波含硫污水处理污油的方法及装置
PCT/CN2019/125586 WO2020238162A1 (zh) 2019-05-31 2019-12-16 超声波作用的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910468593.7A CN110104728B (zh) 2019-05-31 2019-05-31 一种超声波含硫污水处理污油的方法及装置

Publications (2)

Publication Number Publication Date
CN110104728A true CN110104728A (zh) 2019-08-09
CN110104728B CN110104728B (zh) 2023-09-22

Family

ID=67493280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910468593.7A Active CN110104728B (zh) 2019-05-31 2019-05-31 一种超声波含硫污水处理污油的方法及装置

Country Status (1)

Country Link
CN (1) CN110104728B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020238161A1 (zh) * 2019-05-31 2020-12-03 青岛贝索科技有限公司 一种超声波含硫污水处理污油的方法及装置
WO2020238164A1 (zh) * 2019-05-31 2020-12-03 青岛贝索科技有限公司 一种含硫污水处理污油的方法及装置
CN114149051A (zh) * 2020-09-05 2022-03-08 中国石油化工股份有限公司 一种高沸物金属离子超声波脱除系统及工艺
CN114735868A (zh) * 2022-04-20 2022-07-12 武汉理工大学 石化废水综合处理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477337A (en) * 1982-07-13 1984-10-16 Husky Oil Operations Ltd. Method for removing solids and water from petroleum crudes
CN1740261A (zh) * 2005-09-07 2006-03-01 南京工业大学 炼厂或油田污油脱水工艺
CN1837069A (zh) * 2005-03-25 2006-09-27 淄博天工石化工程咨询有限公司 含油、含硫污水的处理方法
CN102583821A (zh) * 2012-02-07 2012-07-18 上海华畅环保设备发展有限公司 一种煤直接液化生成含硫污水除煤粉除油的方法及装置
CN103102033A (zh) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 一种含硫和氨废水的处理方法
CN104556513A (zh) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 污油脱水工艺及装置
CN105776704A (zh) * 2016-04-08 2016-07-20 江苏大轩石化设备有限公司 一种超大功率超声波污油破乳脱水方法
CN210085017U (zh) * 2019-05-31 2020-02-18 青岛贝索科技有限公司 一种超声波含硫污水处理污油的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477337A (en) * 1982-07-13 1984-10-16 Husky Oil Operations Ltd. Method for removing solids and water from petroleum crudes
CN1837069A (zh) * 2005-03-25 2006-09-27 淄博天工石化工程咨询有限公司 含油、含硫污水的处理方法
CN1740261A (zh) * 2005-09-07 2006-03-01 南京工业大学 炼厂或油田污油脱水工艺
CN103102033A (zh) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 一种含硫和氨废水的处理方法
CN102583821A (zh) * 2012-02-07 2012-07-18 上海华畅环保设备发展有限公司 一种煤直接液化生成含硫污水除煤粉除油的方法及装置
CN104556513A (zh) * 2013-10-15 2015-04-29 中国石油化工股份有限公司 污油脱水工艺及装置
CN105776704A (zh) * 2016-04-08 2016-07-20 江苏大轩石化设备有限公司 一种超大功率超声波污油破乳脱水方法
CN210085017U (zh) * 2019-05-31 2020-02-18 青岛贝索科技有限公司 一种超声波含硫污水处理污油的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020238161A1 (zh) * 2019-05-31 2020-12-03 青岛贝索科技有限公司 一种超声波含硫污水处理污油的方法及装置
WO2020238164A1 (zh) * 2019-05-31 2020-12-03 青岛贝索科技有限公司 一种含硫污水处理污油的方法及装置
CN114149051A (zh) * 2020-09-05 2022-03-08 中国石油化工股份有限公司 一种高沸物金属离子超声波脱除系统及工艺
CN114149051B (zh) * 2020-09-05 2023-04-11 中国石油化工股份有限公司 一种高沸物金属离子超声波脱除系统及工艺
CN114735868A (zh) * 2022-04-20 2022-07-12 武汉理工大学 石化废水综合处理装置

Also Published As

Publication number Publication date
CN110104728B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN110104728A (zh) 一种超声波含硫污水处理污油的方法及装置
CN100500595C (zh) 一种含油污水处理装置及处理工艺
US10174281B2 (en) Biomass treatment system
US20230340340A1 (en) Systems and methods for enhanced inorganic contaminant removal from hydrocarbon feedstock
CN105457973B (zh) 对氯铝酸类离子液体废催化剂进行处理的方法及处理系统
CN106673401A (zh) 石化行业中含油浮渣脱水方法
CN110105977B (zh) 超声波作用的方法及装置
CN205436572U (zh) 一种对氯铝酸类离子液体废催化剂进行处理的处理系统
CN110104704A (zh) 一种含硫污水处理污油的方法及装置
JP2008023411A (ja) バイオディーゼル燃料洗浄排水の処理方法
WO2020238161A1 (zh) 一种超声波含硫污水处理污油的方法及装置
CN103320160B (zh) 一种含酸原油的加工方法
CN210085017U (zh) 一种超声波含硫污水处理污油的装置
CN206666453U (zh) 一种煤焦油预处理系统
CN210084992U (zh) 一种含硫污水处理污油的装置
RU2708005C1 (ru) Способ очистки сернисто-щелочных сточных вод
CN212334901U (zh) 一种甲醇合成烯烃废水处理回用系统
CN211226833U (zh) 一种船舶含油污水集中处理系统
CN210394006U (zh) 一种含杂含皂乳化油快速油水分离的装置
CN103893941B (zh) 利用碱渣以废治废中和水解处理有机硅浆渣的方法
CN113683245A (zh) 一种船舶污水高效分离回收处理方法
CN106701144B (zh) 一种用于费托合成的在线净化方法及其费托合成系统
CN101613620B (zh) 一种油品净化工艺
WO2020238164A1 (zh) 一种含硫污水处理污油的方法及装置
CN218403910U (zh) 一种铝加工废乳液处理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant