CN110085877A - 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用 - Google Patents

一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用 Download PDF

Info

Publication number
CN110085877A
CN110085877A CN201910312273.2A CN201910312273A CN110085877A CN 110085877 A CN110085877 A CN 110085877A CN 201910312273 A CN201910312273 A CN 201910312273A CN 110085877 A CN110085877 A CN 110085877A
Authority
CN
China
Prior art keywords
electrode
inorganic composite
laccase
nano flower
chitosan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910312273.2A
Other languages
English (en)
Other versions
CN110085877B (zh
Inventor
戴志晖
王雪钰
韦天香
崔馨文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Normal University
Original Assignee
Nanjing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Normal University filed Critical Nanjing Normal University
Priority to CN201910312273.2A priority Critical patent/CN110085877B/zh
Publication of CN110085877A publication Critical patent/CN110085877A/zh
Application granted granted Critical
Publication of CN110085877B publication Critical patent/CN110085877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明公开了一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用,该装置包括阴极电极、阳极电极和阴阳两极室,其中,所述阴极电极和阳极电极均为金纳米颗粒/壳聚糖‑还原氧化石墨烯负载的漆酶无机复合纳米花(AuNPs/Chit‑RGO/Lac nanoflower)修饰的石墨毡电极。底物分别为氧气和酚类污染物,由漆酶催化反应中心不同价态的铜离子分别催化两极室的底物。本发明的电极材料具有良好的固载能力。利用漆酶反应中心的不同价态设计正负极相同的燃料电池,解决现有燃料电池酶固载效果不佳、输出电流低、工艺设计复杂的问题。

Description

一种基于单酶无机复合纳米花的酚类污水发电装置及其制备 方法和应用
技术领域
本发明属于酶燃料电池技术领域,具体涉及一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用。
背景技术
目前应用较广的酚类污水处理方法主要分为三种。一是电化学氧化催化法,即化学法处理。二是物理法处理,包括活性炭吸附法、沸石吸附法和萃取法等。采用物理处理法对处理条件要求极高,而且设备昂贵。近年来,对活性炭的研究围绕在减少制作成本,改良活性炭吸附性能和产率的问题上。提高活性炭吸附性能和降低活性炭生产成本之间仍然存在着矛盾。三是生物法处理,包括活性污泥法、固定化微生物技术和微生物燃料电池法。传统的活性污泥法和生物膜法具有工艺成熟的优点,但都对高浓度含酚废水处理效果不佳。新型的固定化法及微生物燃料电池技术大多针对单一的酚类物质且应用规模较小,许多技术的研究还处于试验阶段。
酶生物燃料电池相比于传统的燃料电池,其反应条件温和、产物无害,且酶催化剂的来源广泛,作为一种新型可再生能源中的一种,酶生物燃料电池具有特殊优势,在替代能源、污水处理等方面有着巨大的应用前景。
对大多数酶来说,催化反应的活性中心被多肽链包围,使电极导体与酶催化反应中心之间的电子转移受到阻碍,造成酶燃料电池的输出电流较低。且酶在实际工作中易被洗脱,失活,造成电池使用寿命短、污水处理效果不佳等问题。因此需要选择合适的生物相容性材料和适宜的酶固载方法,以有效保持酶的生物活性,较好地实现酶与电极间的直接电子传输。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用,该装置利用三维结构的纳米花状材料的比表面积大、反应活性高、团聚现象少等优点制备在常温条件下性能更加稳定的酶存在方式;通过制备具有水溶性好并具有生物相容性的金纳米颗粒/壳聚糖-还原氧化石墨烯(AuNPs/Chit-RGO)纳米复合材料作为酶固定材料。由于壳聚糖对石墨烯的表面改性,该复合材料在水溶液中呈正电荷的表面电荷性质,这使得带负电荷的金纳米颗粒可通过静电吸附作用固载于复合物表面。且通过镶嵌金纳米颗粒(AuNPs),使得该材料与生物分子上的氨基基团更易结合。由此,AuNPs/Chit-RGO纳米复合材料为漆酶纳米花提供了附着固定的“肥沃土壤”。同时,用相同的电极来构筑正负极,为未来设计更为简洁、高效、环保的新型生物燃料电池提供了新的思路。是一种性能更加稳定的且输出功率较大的新型生物燃料电池。
本发明的技术方案如下:
一种基于单酶无机复合纳米花的酚类污水发电装置,包括阴极电极、阳极电极和阴阳两极室,其中,阴阳两极室包括阴极室及其室内的阴极电解液、阳极室及其室内的阳极电解液和两室之间的质子交换膜,所述阴极电极和阳极电极分别悬挂置于阴极室和阳极室内,并浸没于各室内的电解液中;所述阴极电极和阳极电极均为金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花(AuNPs/Chit-RGO/Lac nanoflower)修饰的石墨毡电极。
优选地,所述阴极电解液为50mM,pH=5的柠檬酸/Na2HPO4缓冲溶液与0.5mM 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)的混合溶液;所述阳极电解液为50mM,pH=5的柠檬酸/Na2HPO4缓冲溶液与典型难降解的0.8mM双酚A的混合溶液。
一种基于单酶无机复合纳米花的酚类污水发电装置的制备方法,包括以下步骤:
步骤1)金纳米颗粒/壳聚糖-还原氧化石墨烯的制备:向壳聚糖的醋酸溶液中加入氧化石墨烯(GO)溶液和抗坏血酸,获得壳聚糖-还原氧化石墨烯(Chit-RGO)的黑色悬浮液;将Chit-RGO过滤洗涤后重悬于水中备用;将金纳米颗粒(AuNPs)分散于Chit-RGO溶液中,得到分散液;将分散液离心,沉淀即为金纳米颗粒/壳聚糖-还原氧化石墨烯(AuNPs/Chit-RGO)纳米复合材料浆料;
步骤2)漆酶纳米花的制备:将漆酶分散于缓冲溶液中,得到漆酶分散液;将CuSO4溶液加入漆酶分散液,静置得到蓝色絮状悬浮液,该蓝色絮状物即为漆酶纳米花;
步骤3)电极的制作:向步骤2)所述蓝色絮状悬浮液中滴入步骤1)制得的AuNPs/Chit-RGO纳米复合材料浆料,振荡使其均相悬浮,静置;将得到的含有漆酶纳米花的AuNPs/Chit-RGO的匀浆滴涂在石墨毡上,干燥后得到AuNPs/Chit-RGO/Lac nanoflower修饰的石墨毡电极;
步骤4)发电装置的构建:布置阴阳两极室,在两室之间设置质子交换膜,向两室中分别装入电解液和磁子,用导电夹固定步骤3)制得的电极,分别悬于阴极室和阳极室中,保持电极浸没于电解液中,且导电夹不接触电解液,即得。
优选地,步骤1)所述过滤洗涤为纤维素膜方式抽滤,采用超声方式将AuNPs分散于Chit-RGO溶液中。
优选地,步骤2)所述缓冲溶液为pH=5的柠檬酸/Na2HPO4缓冲溶液。
一种基于单酶无机复合纳米花的酚类污水发电装置在检测液体中的双酚A上的应用。
优选地,检测输出功率时采用两电极测定体系,以一片AuNPs/Chit-RGO/Lacnanoflower修饰的石墨毡电极为工作电极,另一片AuNPs/Chit-RGO/Lac nanoflower修饰的石墨毡电极为参比电极和对电极。
优选地,测定循环伏安行为时采用三电极测定体系,以AuNPs/Chit-RGO/Lacnanoflower修饰的石墨毡电极为工作电极,Ag/AgCl为参比电极,Pt电极为对电极;检测过程如下:采用循环伏安法,对工作电极的循环伏安行为进行测定;采用开路电位-时间测试方法,对电池降解双酚A标准溶液时输出电压随时间变化的对应关系进行测定。
优选地,在对工作电极的循环伏安行为进行测定时,电解液需饱和氮气;采用开路电位-时间测试方法,对电池降解双酚A标准溶液时输出电压随时间变化的对应关系进行测定时,阳极电解液需饱和氮气,阴极电解液需饱和氧气,当发电装置获得稳定的开路电位后,加入双酚A标准溶液进行开路电位与时间的关系测定。
与现有技术相比,本发明具有以下特点:
(1)本发明合成漆酶纳米花固载漆酶。作为生物催化剂的酶是由生物体合成的,在体内生理条件下能够较好地保持活性,但在酶的实际应用环境下则会表现出耐受性差、容易失活、不易存储等缺陷,严重制约了其在工业上的应用。而当酶从游离态变成固定态结合于负载电极时,酶蛋白活性构象会发生变化,使得酶的活性中心受损。固定化酶经过多次反复使用后,酶活力就开始慢慢减弱。基于现状,本发明合成了漆酶纳米花,漆酶通过配位络合作用于无机纳米花骨架,酶蛋白的活性中心与高级结构未受到破坏。同时,纳米花的褶皱结构、大的比表面积、极强的吸附性能和稳定的结构使得漆酶在常温下得以保存,且酶的催化活性显著增强。
(2)本发明采用AuNPs/Chit-RGO纳米复合材料负载漆酶纳米花。作为一种新型碳基二维纳米材料,还原氧化石墨烯具有较大的比表面积和良好的电子传输性等优点。通过进一步修饰壳聚糖和金纳米颗粒,该纳米复合材料不仅具有良好的水溶性,还具有较好的生物相容性,为漆酶纳米花提供了快速的电子通道和稳定的附着位点。
(3)本发明阴阳极采用相同的电极来构筑发电装置,探索一个电池新概念。利用漆酶本身酶活性中心的金属离子多价态性形成阴阳极电势差,这与传统酶燃料电池利用阴阳极不同酶形成电势差相区别。在催化过程中,漆酶自身承担着微型电池的角色,为未来设计更为简洁、高效、环保的新型生物电池提供了新的思路。
(4)减排产能并行。在污水处理领域,许多能源设备的运转需要消耗大量能量,本装置却能够同时获取干净水源与清洁能源,产生电能用于带动自身涡流发生器,避免了实际应用中为此装置接通电源或更换电池等繁琐操作,能够即开即用。
附图说明
图1为基于单酶无机复合纳米花的酚类污水发电装置的结构示意图;
图2为AuNPs/Chit-RGO纳米复合材料的TEM图;
图3为漆酶纳米花的SEM图;
图4为基于单酶无机复合纳米花的酚类污水发电装置降解双酚A的电压-时间图;
图5为AuNPs/Chit-RGO/Lac nanoflower修饰的石墨毡电极的循环伏安行为;
图5中,1为石墨毡分层滴涂AuNPs/Chit-RGO与Lac nanoflower;2为石墨毡滴涂AuNPs/Chit-RGO/Lac nanoflower匀浆。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明,但本发明的保护范围不限于下述的实施例。
一种基于单酶无机复合纳米花的酚类污水发电装置,如图1所示,包括阴极电极、阳极电极和阴阳两极室,其中,阴阳两极室包括阴极室及其室内的阴极电解液、阳极室及其室内的阳极电解液和两室之间的质子交换膜,所述阴极电极和阳极电极分别悬挂置于阴极室和阳极室内,并浸没于各室内的电解液中;所述阴极电极和阳极电极均为金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花(AuNPs/Chit-RGO/Lac nanoflower)修饰的石墨毡电极。
实施例1
1、发电装置中阴阳两极的构建:
(1)AuNPs/Chit-RGO的制备:配制5mL 0.5%w.t.的壳聚糖溶液(溶解于1%的醋酸溶液),超声30min使壳聚糖均相溶解,在搅拌下缓缓加入5mL 0.5mg/mL的氧化石墨烯(GO)溶液和23.6mg抗坏血酸(L-ascorbic acid)。将混合液放入60℃恒温反应6h,获得Chit-RGO黑色悬浮液;用0.05μm直径滤孔的纤维素膜抽滤,并用去离子水反复洗涤,将沉淀重悬于10mL水中备用。取10mL Chit-RGO溶液和10mL AuNPs(最大吸收峰波长:498nm)溶液于离心管,超声1h,取上层清液离心10000rpm 15min,沉淀即为AuNPs/Chit-RGO纳米复合材料浆料。
如图2所示,AuNPs/Chit-RGO复合纳米材料通过TEM图表征,可以清楚地观察到未发生石墨烯堆叠现象;金纳米颗粒均匀地分布在还原氧化石墨烯片上,揭示了金纳米颗粒与还原性石墨烯片层之间有强烈的相互作用;金纳米颗粒的粒径大小在10nm左右且很少有团聚现象,这说明还原氧化石墨烯表面的壳聚糖对金纳米颗粒具有较好的分散和稳定的效果。
(2)漆酶纳米花的制备:在1.5mL离心管中依次加入1.45mL 10mM PBS溶液、30μL1mg/mL漆酶溶液(溶于PBS溶液中)和20μL 120mM CuSO4溶液,充分振荡使溶液充分混匀。将混合液放置于恒温箱中,使混合液在25℃下恒温反应48 h后,得到蓝色絮状悬浮液,蓝色絮状物即为漆酶纳米花。
如图3所示,漆酶纳米花通过SEM表征,漆酶纳米花材料为均匀的纳米花状球,平均直径约为10μm,粒径分布均匀,形貌均一,且具有良好的分散性和多层三维结构。
(3)电极的制作:向含有6 mg的漆酶纳米花悬浮液中加入0.5 mL AuNPs/Chit-RGO浆料,静置24 h,得到在石墨烯材料中生长的纳米花匀浆。使用滴涂法,取匀浆滴涂在2 cm×2 cm的石墨毡上,静置待其挥发成膜,重复2~3次。将涂好的电极放入冰箱4℃层干燥,得到AuNPs/Chit-RGO/Lac nanoflower修饰的石墨毡电极。所述的发电装置的阳极电极、阴极电极均为该电极。
2、发电装置的构建:
(4)采用DuPontTM PFSANRE-211(杜邦质子交换膜,型号NRE-211)作为发电装置阴阳两极室之间的隔膜。
(5)阳极电解液采用氮气饱和的50 mL 50 mM pH=5的柠檬酸/Na2HPO4缓冲溶液;阴极电解液采用氧气饱和的50 mL 50 mM pH=5的柠檬酸/Na2HPO4缓冲溶液与0.5 mM 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)溶液。在阴阳两极室中装入电解液与磁子,搅拌速率150 rpm。用导电夹固定电极片,分别悬于阴极室与阳极室中,保持复合浆料浸润在电极液中,且导电金属夹不接触电极液。阴、阳极均常压曝气放置。
在测试发电装置开路电位-时间时,当发电装置获得稳定的开路电位时,向阳极室中添加典型难降解的双酚A使阳极室中双酚A浓度为0.8 mM,模拟酚类物质污染实际情况。以电极的阳极为工作电极,电极的阴极为参比电极和对电极,发电装置的开路电压-时间关系如图4所示。
实施例2
循环伏安行为测定:
发电装置电极的电化学性质使用CHI660c电化学工作站进行表征测定。分别将石墨毡分层滴涂AuNPs/Chit-RGO与Lac nanoflower、石墨毡滴涂AuNPs/Chit-RGO/Lacnanoflower匀浆作为工作电极,Ag/AgCl电极为参比电极,Pt电极为对电极,在50 mM pH=5的柠檬酸/Na2HPO4缓冲溶液中采用循环伏安曲线(CV)对电极的循环伏安行为进行测定,实施结果如图5所示,图中1为石墨毡分层滴涂AuNPs/Chit-RGO与Lac nanoflower的循环伏安行为,2为石墨毡滴涂AuNPs/Chit-RGO/Lac nanoflower匀浆的循环伏安行为,可以看到将AuNPs/Chit-RGO和Lac nanoflower以匀浆的形式滴涂在石墨毡上的电容高于两者分层滴涂在石墨毡上。

Claims (9)

1.一种基于单酶无机复合纳米花的酚类污水发电装置,其特征在于,包括阴极电极、阳极电极和阴阳两极室,其中,阴阳两极室包括阴极室及其室内的阴极电解液、阳极室及其室内的阳极电解液和两室之间的质子交换膜,所述阴极电极和阳极电极分别悬挂置于阴极室和阳极室内,并浸没于各室内的电解液中;所述阴极电极和阳极电极均为金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花修饰的石墨毡电极。
2.根据权利要求1所述的一种基于单酶无机复合纳米花的酚类污水发电装置,其特征在于,所述阴极电解液为50mM,pH=5的柠檬酸/Na2HPO4缓冲溶液与0.5mM2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)的混合溶液;所述阳极电解液为50mM,pH=5的柠檬酸/Na2HPO4缓冲溶液与0.8mM双酚A的混合溶液。
3.权利要求1或2所述的一种基于单酶无机复合纳米花的酚类污水发电装置的制备方法,其特征在于,包括以下步骤:
步骤1)金纳米颗粒/壳聚糖-还原氧化石墨烯的制备:向壳聚糖的醋酸溶液中加入氧化石墨烯溶液和抗坏血酸,获得壳聚糖-还原氧化石墨烯的黑色悬浮液;将悬浮液过滤洗涤后重悬于水中备用;将金纳米颗粒分散于壳聚糖-还原氧化石墨烯溶液中,得到分散液;将分散液离心,沉淀即为金纳米颗粒/壳聚糖-还原氧化石墨烯纳米复合材料浆料;
步骤2)漆酶纳米花的制备:将漆酶分散于缓冲溶液中,得到漆酶分散液;将CuSO4溶液加入漆酶分散液,静置得到蓝色絮状悬浮液,该蓝色絮状物即为漆酶纳米花;
步骤3)电极的制作:向步骤2)所述蓝色絮状悬浮液中滴入步骤1)制得的金纳米颗粒/壳聚糖-还原氧化石墨烯纳米复合材料浆料,振荡使其均相悬浮,静置;将得到的含有漆酶纳米花的金纳米颗粒/壳聚糖-还原氧化石墨烯的匀浆滴涂在石墨毡上,干燥后得到金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花修饰的石墨毡电极;
步骤4)发电装置的构建:布置阴阳两极室,在两室之间设置质子交换膜,向两室中分别装入电解液和磁子,用导电夹固定步骤3)制得的电极,分别悬于阴极室和阳极室中,保持电极浸没于电解液中,且导电夹不接触电解液,即得。
4.根据权利要求3所述的一种基于单酶无机复合纳米花的酚类污水发电装置的制备方法,其特征在于,步骤1)所述过滤洗涤为纤维素膜方式抽滤,采用超声方式将金纳米颗粒分散于壳聚糖-还原氧化石墨烯溶液中。
5.根据权利要求3所述的一种基于单酶无机复合纳米花的酚类污水发电装置的制备方法,其特征在于,步骤2)所述缓冲溶液为pH=5的柠檬酸/Na2HPO4缓冲溶液。
6.权利要求1所述的基于单酶无机复合纳米花的酚类污水发电装置在检测液体中的双酚A上的应用。
7.根据权利要求6所述的基于单酶无机复合纳米花的酚类污水发电装置在检测液体中的双酚A上的应用,其特征在于,检测输出功率时采用两电极测定体系,以一片金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花修饰的石墨毡电极为工作电极,另一片金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花修饰的石墨毡电极为参比电极和对电极。
8.根据权利要求6所述的基于单酶无机复合纳米花的酚类污水发电装置在检测液体中的双酚A上的应用,其特征在于,测定循环伏安行为时采用三电极测定体系,以金纳米颗粒/壳聚糖-还原氧化石墨烯负载的漆酶无机复合纳米花修饰的石墨毡电极为工作电极,Ag/AgCl为参比电极,Pt电极为对电极;检测过程如下:采用循环伏安法,对工作电极的循环伏安行为进行测定;采用开路电位-时间测试方法,对电池降解双酚A标准溶液时输出电压随时间变化的对应关系进行测定。
9.根据权利要求8所述的基于单酶无机复合纳米花的酚类污水发电装置在检测液体中的双酚A上的应用,其特征在于,在对工作电极的循环伏安行为进行测定时,电解液需饱和氮气;采用开路电位-时间测试方法,对电池降解双酚A标准溶液时输出电压随时间变化的对应关系进行测定时,阳极电解液需饱和氮气,阴极电解液需饱和氧气,当发电装置获得稳定的开路电位后,加入双酚A标准溶液进行开路电位与时间的关系测定。
CN201910312273.2A 2019-04-18 2019-04-18 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用 Active CN110085877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910312273.2A CN110085877B (zh) 2019-04-18 2019-04-18 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910312273.2A CN110085877B (zh) 2019-04-18 2019-04-18 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110085877A true CN110085877A (zh) 2019-08-02
CN110085877B CN110085877B (zh) 2021-12-28

Family

ID=67415535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910312273.2A Active CN110085877B (zh) 2019-04-18 2019-04-18 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110085877B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799479A (zh) * 2020-07-20 2020-10-20 中国海洋大学 一种壳聚糖-过渡金属离子复合改性阴极材料及其制备方法与应用
CN115057540A (zh) * 2022-07-06 2022-09-16 吉林大学 一种基于具有漆酶活性的纳米酶UMP-Cu的酚类污水治理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573816A (zh) * 2007-01-05 2009-11-04 埃克民公司 生物阳极和生物阴极堆叠组件
CN107012134A (zh) * 2017-06-05 2017-08-04 北京林业大学 一种经化学修饰后的漆酶与磷酸铜结合的花状生物催化剂的制备方法
CN109148924A (zh) * 2018-08-19 2019-01-04 南京工业大学 一种利用污水中大肠杆菌产海藻糖发电的酶生物燃料电池
KR20190023717A (ko) * 2017-08-30 2019-03-08 한국기계연구원 염생 식물 기반 전지와 해수 전지를 이용한 친환경 에너지 생산/저장 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101573816A (zh) * 2007-01-05 2009-11-04 埃克民公司 生物阳极和生物阴极堆叠组件
CN107012134A (zh) * 2017-06-05 2017-08-04 北京林业大学 一种经化学修饰后的漆酶与磷酸铜结合的花状生物催化剂的制备方法
KR20190023717A (ko) * 2017-08-30 2019-03-08 한국기계연구원 염생 식물 기반 전지와 해수 전지를 이용한 친환경 에너지 생산/저장 시스템
CN109148924A (zh) * 2018-08-19 2019-01-04 南京工业大学 一种利用污水中大肠杆菌产海藻糖发电的酶生物燃料电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张谦等: "金纳米粒子-壳聚糖-石墨烯纳米复合材料的制备及其在生物电化学中的应用", 《化学学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799479A (zh) * 2020-07-20 2020-10-20 中国海洋大学 一种壳聚糖-过渡金属离子复合改性阴极材料及其制备方法与应用
CN115057540A (zh) * 2022-07-06 2022-09-16 吉林大学 一种基于具有漆酶活性的纳米酶UMP-Cu的酚类污水治理方法
CN115057540B (zh) * 2022-07-06 2023-09-15 吉林大学 一种基于具有漆酶活性的纳米酶UMP-Cu的酚类污水治理方法

Also Published As

Publication number Publication date
CN110085877B (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
Deng et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell
Li et al. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems
US9105913B2 (en) Device and method for performing a biologically catalyzed electrochemical reaction
Sun et al. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell
Scott et al. Application of modified carbon anodes in microbial fuel cells
Wen et al. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks
Numnuam et al. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles
JP2018535200A (ja) レドックス活性を有するMOFsを合成すると同時にターゲット物質を封入する製造方法
Chen et al. A hierarchically structured urchin-like anode derived from chestnut shells for microbial energy harvesting
Feng et al. Comparative study of carbon fiber structure on the electrocatalytic performance of ZIF-67
Wang et al. Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15
Mashkour et al. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly
Peng et al. One pot synthesis of nitrogen-doped hollow carbon spheres with improved electrocatalytic properties for sensitive H2O2 sensing in human serum
CN102147389B (zh) 一种基于辣根过氧化物酶-凹土纳米复合材料的细胞内过氧化氢的检测方法
CN106383158A (zh) 一种基于银‑石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法
CN103207224A (zh) 一种检测过氧化氢的电化学生物传感器电极及其制备方法
Kosimaningrum et al. Surfactant-and binder-free hierarchical platinum nanoarrays directly grown onto a carbon felt electrode for efficient electrocatalysis
Zhou et al. High‐performance carbon anode derived from sugarcane for packed microbial fuel cells
CN107219281A (zh) 一种铂‑三维石墨烯气凝胶基酶传感器件的制备及应用
CN108344788A (zh) 一种基于金纳米笼的电化学生物传感器的制备方法及应用
Ramachandran et al. Enhancement of different fabricated electrode materials for microbial fuel cell applications: an overview
CN110085877A (zh) 一种基于单酶无机复合纳米花的酚类污水发电装置及其制备方法和应用
Zhao et al. Synthesis of mesoporous grooved ZnFe2O4 nanobelts as peroxidase mimetics for improved enzymatic biosensor
Kumar et al. Evaluation of the algal-derived biochar as an anode modifier in microbial fuel cells
Bogdanovskaya et al. Bioelectrocatalytic oxygen reduction by laccase immobilized on various carbon carriers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant