CN110078900A - 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法 - Google Patents

一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法 Download PDF

Info

Publication number
CN110078900A
CN110078900A CN201910347351.2A CN201910347351A CN110078900A CN 110078900 A CN110078900 A CN 110078900A CN 201910347351 A CN201910347351 A CN 201910347351A CN 110078900 A CN110078900 A CN 110078900A
Authority
CN
China
Prior art keywords
electrode material
poly
amaranth
ethylene dioxythiophene
high circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910347351.2A
Other languages
English (en)
Inventor
李宝铭
百梦弟
王肖利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910347351.2A priority Critical patent/CN110078900A/zh
Publication of CN110078900A publication Critical patent/CN110078900A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种高循环稳定性聚3,4‑乙撑二氧噻吩电极材料及其制备方法,属于超级电容器用电极材料制备技术领域。所述电极材料是在水相体系中,以3,4‑乙撑二氧噻吩为单体,以三氯化铁为氧化剂,以苋菜红为表面活性剂和交联剂,经化学氧化聚合制备而成。本发明制备的电极材料不仅具有多孔交联片状结构,而且具有比电容较高、循环稳定性优异、制备工艺简便、制备过程绿色环保等优势,具有显著的经济价值和社会效益。

Description

一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备 方法
技术领域
本发明属于超级电容器用电极材料制备技术领域,具体涉及一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法。
背景技术
聚3,4-乙撑二氧噻吩(PEDOT)具有能隙小,电导率高,易制备以及环境稳定等特点,成为最有希望的超级电容器电极材料。但是3,4-乙撑二氧噻吩单体在水中溶解度较低,以及聚合过程中团聚严重,导致PEDOT电极材料比电容不高,限制了PEDOT在超级电容器用电极材料方面的应用。针对以上问题,人们常常利用水溶性聚合物或者有机质子酸(如对甲苯磺酸、樟脑磺酸等)等对PEDOT进行掺杂,以提高3,4-乙撑二氧噻吩单体的溶解度,调控PEDOT的分子形貌,从而提高PEDOT的电化学性能。江杰青(江杰清, 李巍, 刘东志, 田建华, 郭亚芳, 周雪琴; 聚(3,4-乙撑二氧噻吩)/樟脑磺酸复合材料的合成及电化学性能,精细化工, 2012, 29(6): 541-541.)以樟脑磺酸为掺杂剂、三氯化铁为氧化剂,通过化学氧化法合成了聚3,4-乙撑二氧噻吩/樟脑磺酸复合材料。研究表明,该复合材料具有良好的导电性能。但实际上,有机质子酸的掺杂不能够改变PEDOT极易团聚的问题,所制备的PEDOT复合材料依然呈现致密堆积的表观形貌,不利于电极材料与电解液的充分接触,导致活性物质的利用率较低,因而比电容和循环稳定性都不高。中国发明专利CN 108314780A以刚果红和有机酸作为掺杂剂,在表面活性剂的作用下,在水相中通过化学氧化聚合反应制备聚3,4-乙撑二氧噻吩粗品,再采用硫酸溶液进行后处理,制备聚3,4-乙撑二氧噻吩多孔电极材料。虽然所制备的电极材料具有较高的比电容和较好的循环稳定性,但是该电极材料的制备工艺复杂,生产成本较高。
发明内容
本发明针对现有技术中聚3,4-乙撑二氧噻吩团聚严重以及电化学性能较差这一问题,提供一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法。本发明制备的电极材料不仅具有多孔交联片状结构,而且具有比电容较高、循环稳定性优异、制备工艺简便、制备过程绿色环保等优势,具有显著的经济价值和社会效益。
为实现上述目的,本发明采用如下技术方案:
一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料是在水相体系中,以3,4-乙撑二氧噻吩为单体,以三氯化铁为氧化剂,以苋菜红为表面活性剂和交联剂,经化学氧化聚合制备而成。
所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料的制备方法包括以下步骤:
(1)将1~3 g苋菜红加入到100~300 mL去离子水中,在室温下磁搅拌20~60 min,制备苋菜红溶液。向上述溶液中加入1.5~6 g 3,4-乙撑二氧噻吩,在室温下先磁搅拌20~60 min,再超声30~60 min,最后再磁搅拌10~30 min,制备3,4-乙撑二氧噻吩和苋菜红的混合液;
(2)向上述混合液中逐滴滴加12~90 mL三氯化铁盐酸溶液,在20~40 ℃下,磁搅拌反应24~48 h。反应结束后,向反应混合物中加入200~600 mL甲醇,在室温下磁搅拌30~60 min,静置12~24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料。
所述三氯化铁盐酸溶液中,三氯化铁的浓度为2 mol/L,盐酸的浓度为0.02 mol/L,溶剂为去离子水。
本发明与现有技术相比具有以下优点:
(1)苋菜红分子中含有三个磺酸根离子,通过与PEDOT的硫原子进行配位作用,可以作为交联剂将PEDOT交联起来,形成稳定的多孔交联片状结构。在电化学循环稳定性测试中,这种结构不易破坏,从而提高PEDOT的电化学循环稳定性。
(2)苋菜红具有π共轭结构,当与PEDOT进行交联时,能够增加PEDOT的π-π共轭程度,有利于电荷的传输,从而提高PEDOT的比电容。另外,苋菜红还可以作为表面活性剂,提高3,4-乙撑二氧噻吩单体在水中的溶解度。
(3)本发明制备的聚3,4-乙撑二氧噻吩电极材料不仅具有明显的多孔交联片状结构,而且在电流密度为0.2 A/g、0.5 A/g、1 A/g和2 A/g时,比电容为141 F/g、136 F/g、130F/g和117 F/g,经过1000次循环之后,比电容保持率仍然达到96 %以上,即具有比电容较高和循环稳定性优异的特点,同时制备工艺简便、制备过程绿色环保,具有显著的经济价值和社会效益。
附图说明
图1为实施例1制备的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的红外光谱图;
图2为实施例1制备的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的扫描电镜图;
图3为对比例1制备的聚3,4-乙撑二氧噻吩的扫描电镜图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)将2 g苋菜红加入到200 mL去离子水中,在室温下磁搅拌40 min,制备苋菜红溶液。向上述溶液中加入3.5 g 3,4-乙撑二氧噻吩,在室温下先磁搅拌40 min,再超声45 min,最后再磁搅拌20 min,制备3,4-乙撑二氧噻吩和苋菜红的混合液;
(2)向上述混合液中逐滴滴加40 mL三氯化铁盐酸溶液,在30 ℃下,磁搅拌反应36 h。反应结束后,向反应混合物中加入400 mL甲醇,在室温下磁搅拌45 min,静置18 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料。
图1为本实施例制备的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的红外光谱图。从图中可以看出,1625 cm-1和1369 cm-1处的峰分别对应噻吩环上C=C和C-C的不对称伸缩振动吸收峰,证明成功制备了聚3,4-乙撑二氧噻吩。1098 cm-1和543 cm-1处的峰为磺酸根基团的特征吸收峰,并且在3470 cm-1处出现的较大吸收峰来源于苋菜红分子内羟基的伸缩振动,这些都表明苋菜红成功交联进入聚3,4-乙撑二氧噻吩。
图2为本实施例制备的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的扫描电镜图。图中显示,本发明制备的聚3,4-乙撑二氧噻吩呈现明显的多孔交联片状结构。这是因为苋菜红分子中含有三个磺酸根离子,通过与PEDOT的硫原子进行配位作用,可以作为交联剂将PEDOT交联起来,形成稳定的多孔交联片状结构。
实施例2
(1)将1 g苋菜红加入到100 mL去离子水中,在室温下磁搅拌20 min,制备苋菜红溶液。向上述溶液中加入1.5 g 3,4-乙撑二氧噻吩,在室温下先磁搅拌20 min,再超声30 min,最后再磁搅拌10 min,制备3,4-乙撑二氧噻吩和苋菜红的混合液;
(2)向上述混合液中逐滴滴加12 mL三氯化铁盐酸溶液,在20 ℃下,磁搅拌反应48 h。反应结束后,向反应混合物中加入200 mL甲醇,在室温下磁搅拌30 min,静置12 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料。
实施例3
(1)将3 g苋菜红加入到300 mL去离子水中,在室温下磁搅拌60 min,制备苋菜红溶液。向上述溶液中加入6 g 3,4-乙撑二氧噻吩,在室温下先磁搅拌60 min,再超声60 min,最后再磁搅拌30 min,制备3,4-乙撑二氧噻吩和苋菜红的混合液;
(2)向上述混合液中逐滴滴加90 mL三氯化铁盐酸溶液,在40 ℃下,磁搅拌反应24 h。反应结束后,向反应混合物中加入600 mL甲醇,在室温下磁搅拌60 min,静置24 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料。
对比例1
(1)将3.5 g 3,4-乙撑二氧噻吩加入到200 mL去离子水中,在室温下先磁搅拌40 min,再超声45 min,最后再磁搅拌20 min,制备3,4-乙撑二氧噻吩的分散液;
(2)向上述分散液中逐滴滴加40 mL三氯化铁盐酸溶液,在30 ℃下,磁搅拌反应36 h。反应结束后,向反应混合物中加入400 mL甲醇,在室温下磁搅拌45 min,静置18 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备聚3,4-乙撑二氧噻吩电极材料。
图3为本实施例制备的聚3,4-乙撑二氧噻吩的扫描电镜图。图中显示,没有添加苋菜红时,聚合生成的聚3,4-乙撑二氧噻吩呈现粗糙的大量块状固体堆积的表面形貌且空隙较少。
对比例2
(1)将1.5 g 3,4-乙撑二氧噻吩加入到100 mL去离子水中,在室温下先磁搅拌20 min,再超声30 min,最后再磁搅拌10 min,制备3,4-乙撑二氧噻吩的分散液;
(2)向上述分散液中逐滴滴加12 mL三氯化铁盐酸溶液,在20 ℃下,磁搅拌反应48 h。反应结束后,向反应混合物中加入200 mL甲醇,在室温下磁搅拌30 min,静置12 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备聚3,4-乙撑二氧噻吩电极材料。
对比例3
(1)将6 g 3,4-乙撑二氧噻吩加入到300 mL去离子水中,在室温下先磁搅拌60 min,再超声60 min,最后再磁搅拌30 min,制备3,4-乙撑二氧噻吩的分散液;
(2)向上述分散液中逐滴滴加90 mL三氯化铁盐酸溶液,在40 ℃下,磁搅拌反应24 h。反应结束后,向反应混合物中加入600 mL甲醇,在室温下磁搅拌60 min,静置24 h。经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备聚3,4-乙撑二氧噻吩电极材料。
将质量百分比80 %产物、15 %乙炔炭黑和5 %聚偏氟乙烯混合均匀涂在不锈钢网上作为工作电极,以铂丝作为对电极,以饱和甘汞电极作为参比电极,以1 mol/L硫酸水溶液作为电解液,利用恒流充放电方法测试实施例和对比例所制备产物的比电容,利用循环伏安法测试实施例和对比例所制备产物的循环稳定性,其中,电压范围为-0.2~0.8 V,充放电电流密度分别0.2 A/g、0.5 A/g、1 A/g和2 A/g,扫描速率为100 mV/s。测试结果如下表1所示。
表1 性能测试结果
从实施例和对比例的测试结果可以看出,将苋菜红添加到聚3,4-乙撑二氧噻吩的聚合反应体系中,不仅可以提高聚3,4-乙撑二氧噻吩的比电容,而且可以显著提高聚3,4-乙撑二氧噻吩的循环稳定性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料,其特征在于:所述电极材料是在水相体系中,以3,4-乙撑二氧噻吩为单体,以三氯化铁为氧化剂,以苋菜红为表面活性剂和交联剂,经化学氧化聚合制备而成。
2.一种如权利要求1所述的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的制备方法,其特征在于:包括以下步骤:
(1)将1~3 g苋菜红加入到100~300 mL去离子水中,在室温下磁搅拌20~60 min,制备苋菜红溶液;向上述溶液中加入1.5~6 g 3,4-乙撑二氧噻吩,在室温下先磁搅拌20~60 min,再超声30~60 min,最后再磁搅拌10~30 min,制备3,4-乙撑二氧噻吩和苋菜红的混合液;
(2)向上述混合液中逐滴滴加12~90 mL三氯化铁盐酸溶液,在20~40 ℃下,磁搅拌反应24~48 h;反应结束后,向反应混合物中加入200~600 mL甲醇,在室温下磁搅拌30~60 min,静置12~24 h;经过滤、甲醇和去离子水交叉洗涤、60 ℃真空干燥24 h,制备所述高循环稳定性聚3,4-乙撑二氧噻吩电极材料。
3.根据权利要求2所述的高循环稳定性聚3,4-乙撑二氧噻吩电极材料的制备方法,其特征在于:所述三氯化铁盐酸溶液中,三氯化铁的终浓度为2 mol/L,盐酸的终浓度为0.02mol/L,溶剂为去离子水。
CN201910347351.2A 2019-04-28 2019-04-28 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法 Pending CN110078900A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910347351.2A CN110078900A (zh) 2019-04-28 2019-04-28 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910347351.2A CN110078900A (zh) 2019-04-28 2019-04-28 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110078900A true CN110078900A (zh) 2019-08-02

Family

ID=67417124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910347351.2A Pending CN110078900A (zh) 2019-04-28 2019-04-28 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110078900A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186173A (zh) * 2020-09-21 2021-01-05 湖南艾华集团股份有限公司 一种具有高倍率性能的负极、制备方法及锂离子电池
CN112186131A (zh) * 2020-09-24 2021-01-05 湖南艾华集团股份有限公司 一种具有高比电容的负极、制备方法及锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824145A (zh) * 2009-03-06 2010-09-08 北京服装学院 电致变色导电聚合物及其制备方法和用途
CN107910194A (zh) * 2017-11-23 2018-04-13 福州大学 一种纳米纤维状苋菜红掺杂聚苯胺电极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824145A (zh) * 2009-03-06 2010-09-08 北京服装学院 电致变色导电聚合物及其制备方法和用途
CN107910194A (zh) * 2017-11-23 2018-04-13 福州大学 一种纳米纤维状苋菜红掺杂聚苯胺电极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENGDI BAI ET AL.: "Capacitive behavior and material characteristics of congo red doped poly (3,4-ethylene dioxythiophene)", 《ELECTROCHIMICA ACTA》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112186173A (zh) * 2020-09-21 2021-01-05 湖南艾华集团股份有限公司 一种具有高倍率性能的负极、制备方法及锂离子电池
CN112186131A (zh) * 2020-09-24 2021-01-05 湖南艾华集团股份有限公司 一种具有高比电容的负极、制备方法及锂离子电池

Similar Documents

Publication Publication Date Title
CN102212210B (zh) 一种原位聚合制备聚苯胺包覆细菌纤维素纳米导电复合材料的方法
Leguizamon et al. High charge-capacity polymer electrodes comprising alkali lignin from the Kraft process
CN105839228B (zh) 一种聚丙烯腈基导电纤维材料的制备方法
CN106910643B (zh) 原位聚合聚苯胺—磺化石墨烯复合材料在电极材料中的应用
CN109192539A (zh) 机械化学聚合法制备石墨烯/导电高分子复合电极材料
Wang et al. Fluoro-substituted conjugated polyindole for desirable electrochemical charge storage materials
CN110078900A (zh) 一种高循环稳定性聚3,4-乙撑二氧噻吩电极材料及其制备方法
CN111118883A (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
CN105006374B (zh) 盐模板法制备多孔氮碳复合物及其在超级电容器中的应用
CN105719846B (zh) 一种硫化钴/碳复合材料的制备方法及其产品与应用
CN108470629B (zh) 一种镍离子掺杂聚噻吩/石墨烯复合电极材料及其制备方法
CN110010368A (zh) 一种片状聚3,4-乙撑二氧噻吩及其制备方法与应用
CN110265229A (zh) 纸纤维/本征态聚苯胺超级电容器复合电极材料制备方法
CN110534352A (zh) 一种聚3,4-乙撑二氧噻吩包覆氧化石墨烯的制备方法及其应用
LIN et al. Preparation and application of polyaniline doped with different sulfonic acids for supercapacitor
CN109979764B (zh) 用于超级电容器的纤维素基离子凝胶电解质的制备方法
CN108314780B (zh) 一种高导电聚3,4-乙撑二氧噻吩多孔电极材料的制备方法
CN110176617B (zh) 一种提高nafion膜阻醇选择性的方法
CN112201486B (zh) 一种聚3,4-乙撑二氧噻吩/石墨毡柔性电极材料的制备方法
CN105513826B (zh) 一种多孔结构吡咯‑邻甲基苯胺共聚物的制备方法
CN109148170A (zh) 一种三维多孔四氧化锰/聚苯胺复合凝胶电极的制备方法及应用
CN104681281B (zh) 具有优异倍率性能复合电极材料及其制备方法
CN107746572A (zh) 分级多孔结构pnma/木质素磺酸杂化水凝胶的制备方法
CN110010369B (zh) 一种类海胆状聚3,4-乙撑二氧噻吩微球及其制备方法与应用
CN104610543A (zh) 一种导电高分子材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190802

RJ01 Rejection of invention patent application after publication