CN110078511A - 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法 - Google Patents

一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法 Download PDF

Info

Publication number
CN110078511A
CN110078511A CN201910181576.5A CN201910181576A CN110078511A CN 110078511 A CN110078511 A CN 110078511A CN 201910181576 A CN201910181576 A CN 201910181576A CN 110078511 A CN110078511 A CN 110078511A
Authority
CN
China
Prior art keywords
powder
alc
preparation
diamond
cutter head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910181576.5A
Other languages
English (en)
Other versions
CN110078511B (zh
Inventor
杨黎
侯明
郭胜惠
彭金辉
胡途
叶小磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910181576.5A priority Critical patent/CN110078511B/zh
Publication of CN110078511A publication Critical patent/CN110078511A/zh
Application granted granted Critical
Publication of CN110078511B publication Critical patent/CN110078511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/14Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • B24D3/342Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties incorporated in the bonding agent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明涉及一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,属于超硬材料工具制备技术领域。本发明所述方法:将单质Ti粉、Al粉、C粉为结合剂原料与金刚石磨料按照一定比例称量混合,烘干,冷压制成坯料;将压坯置于氩气保护反应器,采用微波作为诱发热源引燃自蔓延反应烧结制备Ti3AlC2陶瓷基金刚石钻进工具刀头。本发明利用微波点火来强化自蔓延过程,有利于烧结体内液相元素的快速迁移,加速致密化过程中烧结体内部气体逸出,样品烧结组织均匀,可显著提高Ti3AlC2基金刚石工具刀头的生产效率,获得综合力学性能优良的金刚石工具产品。

Description

一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法
技术领域
本发明涉及一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,属于超硬材料工具制备领域。
背景技术
金刚石工具因其具有高效率、高精度、高强度及低环境污染等优势而被广泛应用于钻探领域,其工作层复合材料通常采用金属、陶瓷及树脂等作为结合剂,经与金刚石磨料混合后高温烧结而成,其中陶瓷材料是制备金刚石磨具结合剂的主要类别。
目前常用的陶瓷基结合剂多以氧化物、玻璃或微晶等作为主要组元,在加入大量碱性物料后烧结得到结合剂,出现基体与金刚石间热膨胀系数匹配性差、基体脆性大、金刚石磨料把持力不足等问题,造成刀头在服役过程中金刚石脱落过快,在使用过程中容易发生脆裂现象,从而影响磨具磨削特性。此外,陶瓷导热性能差,磨削区域局部温度高,使磨粒容易热损耗缩短了工具的使用寿命。
可见传统的氧化物基陶瓷的固有缺陷限制了陶瓷结合剂金刚石磨具材料的选择范围,要突破现有陶瓷结合剂金刚石材料性能,最可行的策略是采用新型陶瓷材料替换现有结合剂种类。近年来以Ti3AlC2为代表的MAX相金属陶瓷结合剂,兼具金属和陶瓷的优点,具有抗热震性强、导热性好、强韧性匹配易调控等优点,克服了传统陶瓷材料作为结合剂的固有缺陷,已成为金刚石磨具开发的研究热点。
Ti3AlC2基金属陶瓷结合剂通常采用热压或放电等离子体烧结。专利ZL201210243897.1提出一种锡碳化钛结合剂金刚石复合材料的热压烧结方法,采用100℃/min速率升温,在800~1000℃和20~50Mpa下保温15~30 分钟烧结得到样品,但该方法存在烧结能耗高、石墨模具消耗严重、样品尺寸受限等问题。Ching等采用放电等离子体烧结制备得到多种MAX相金属陶瓷,但该方法存在设备投资大、尺寸适应性和批量生产受限等问题。自蔓延烧结具有能耗低、样品适应性好、反应速度快等优点,是制备Ti3AlC2基金属陶瓷结合剂的可行方法。Liang等探索了自蔓延烧结制备钛硅碳、钛锡碳基体的方法,但由于传统的自蔓延反应点火方式通常为外部加热,使得内部气体逸出过程受阻,导致基体中存在大量随机分布的大孔结构,降低了金刚石工具的服役性能。
微波作为一种新型的外场强化手段,具有选择性加热、内部整体加热和能量原位转化等特点,将微波能用作粉末冶金的热源,在自蔓延反应速率控制和组织结构均匀化等方面具有明显优势,处理对象具有广泛的适应性。目前采用微波强化自蔓延反应制备Ti3AlC2金属陶瓷,尤其在制备Ti3AlC2结合剂金刚石刀头领域尚未见报道。
发明内容
针对上述现有技术存在的问题及不足,本发明提供一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,将单质Ti粉、Al粉、C粉为结合剂原料与金刚石按照一定比例称量混合,烘干,压制成坯料;将微波能作为诱发热源,依靠微波强化自蔓延烧结制备Ti3AlC2陶瓷基金刚石钻头刀头,具体包括以下步骤:
(1)按按照摩尔比Ti : Al : C=2.9-3.1 : 1 : 1.9-2.1的比例称取Ti粉、Al粉及C粉,混合均匀后,备用;
(2)将步骤(1)所得混合粉末与金刚石颗粒进行混合,得到所需混合料,混合料中金刚石颗粒的体积百分数为10-30%;
(3)将步骤(2)得到的混合料填入冷压模具中,将其压制成型,得到冷压生坯;
(4)将步骤(3)中所得的冷压生坯装入氩气保护的微波无压烧结炉中,利用微波能为热源引燃冷压坯并发生自蔓延烧结反应,微波维持时间40-60s,得到Ti3AlC2基陶瓷结合剂金刚石刀头。
优选的,本发明所述Ti粉、Al粉和C粉的粒度均为200-400目。
优选的,本发明步骤(1)中混粉方式为球磨,球磨时间为6-10h。
优选的,本发明步骤(3)中冷压的压力为10-30MPa。
优选的,本发明所述微波的频率为2450MHz,微波功率3-5kW,辐照时间6-15 s。
本发明的有益效果为:
(1)本发明利用微波作为整体热源,诱发自蔓延烧结反应获得服役性能优良的金刚石钻进工具刀头,微波对烧结过程的强化,有利于液相元素的迁移实现金刚石工具的致密化,提高基体对金刚石的把持力,可有效降低金刚石在服役过程中的脱落率,缩短工艺流程,降低生产成本。
(2)相比TiC等高熔点陶瓷,本发明采用熔点较低、性能优良的Ti3AlC2 材料作结合剂,通过优化制备工艺,将Ti3AlC2结合剂金刚石钻头刀头的烧结温度降低至1000℃以下,为Ti3AlC2结合剂金刚石钻进工具刀头制备提供了一种全新的烧结方法,在实际工业生产中具有广泛的应用前景。
(3)Ti3AlC2结合剂密度较低、熔点高,具有优良的导热性及冲击韧性,结合剂中的Ti可与金刚石发生化学反应生成TiC过渡层,从而使结合剂与金刚石磨料间具有良好的化学键结合,可提高基体对金刚石磨料的把持力,有效增强金刚石工具的抗弯强度和使用寿命。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,选用粒度为300目的Ti粉、Al粉及C粉,按照摩尔比为Ti : Al : C=3 : 1 : 2的比例称取,在球磨机中充分混合5h,得到混合均匀的粉料;在所得粉料加入体积百分数为10%的金刚石颗粒,混合1h,得到配方料;将配方料填入冷压模具,利用冷压机压制成型,冷压压力控制在10MPa,得到尺寸为55×10×10 mm的冷压压坯;所得冷压坯装入氩气保护的微波无压烧结炉中,利用2450MHz微波能为热源,微波功率3kW,辐照时间6s,引燃冷压坯并发生自蔓延烧结反应,微波维持时间40s,得到Ti3AlC2基陶瓷结合剂金刚石刀头,其相对密度为96.89%,横向断裂强度为895.24MPa。
实施例2
一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,选用粒度为300目的Ti粉、Al粉及C粉,按照摩尔比为Ti : Al : C=2.9 : 1 : 2.1的比例称取,在球磨机中充分混合6h,得到混合均匀的粉料;在所得粉料加入体积百分数为20%的金刚石颗粒,混合2h,得到配方料;将配方料填入冷压模具,利用冷压机压制成型,冷压压力控制在20MPa,得到尺寸为55×10×10 mm的冷压压坯;所得冷压坯装入氩气保护的微波无压烧结炉中,利用2450MHz微波能为热源,微波功率4kW,辐照时间10s,引燃冷压坯并发生自蔓延烧结反应,微波维持时间50s,得到Ti3AlC2基陶瓷结合剂金刚石刀头,其相对密度为98.27%,横向断裂强度为923.67MPa。
实施例3
一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,选用粒度为300目的Ti粉、Al粉及C粉,按照摩尔比为Ti : Al : C=3.1 : 1 : 1.9的比例称取,在球磨机中充分混合7h,得到混合均匀的粉料;在所得粉料加入体积百分数为30%的金刚石颗粒,混合3h,得到配方料;将配方料填入冷压模具,利用冷压机压制成型,冷压压力控制在30MPa,得到尺寸为55×10×10 mm的冷压压坯;所得冷压坯装入氩气保护的微波无压烧结炉中,利用2450MHz微波能为热源,微波功率5kW,辐照时间15s,引燃冷压坯并发生自蔓延烧结反应,微波维持时间60s,得到Ti3AlC2基陶瓷结合剂金刚石刀头,其相对密度为97.15%,横向断裂强度为913.64MPa。
上面对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种改变。

Claims (5)

1.一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,其特征在于,具体包括以下步骤:
(1)按按照摩尔比Ti : Al : C=2.9-3.1 : 1 : 1.9-2.1的比例称取Ti粉、Al粉及C粉,混合均匀后,备用;
(2)将步骤(1)所得混合粉末与金刚石颗粒进行混合,得到所需混合料,混合料中金刚石颗粒的体积百分数为10-30%;
(3)将步骤(2)得到的混合料填入冷压模具中,将其压制成型,得到冷压生坯;
(4)将步骤(3)中所得的冷压生坯装入氩气保护的微波无压烧结炉中,利用微波能为热源引燃冷压坯并发生自蔓延烧结反应,微波维持时间40-60s,得到Ti3AlC2基陶瓷结合剂金刚石刀头。
2.根据权利要求1所述Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,其特征在于:Ti粉、Al粉和C粉的粒度均为200-400目。
3.根据权利要求1所述Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,其特征在于:步骤(1)中混粉方式为球磨,球磨时间为6-10h。
4.根据权利要求1所述Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,其特征在于:步骤(3)中冷压的压力为10-30MPa。
5.根据权利要求1所述Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法,其特征在于:微波的频率为2450MHz,微波功率3-5kW,辐照时间6-15 s。
CN201910181576.5A 2019-03-11 2019-03-11 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法 Active CN110078511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910181576.5A CN110078511B (zh) 2019-03-11 2019-03-11 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910181576.5A CN110078511B (zh) 2019-03-11 2019-03-11 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法

Publications (2)

Publication Number Publication Date
CN110078511A true CN110078511A (zh) 2019-08-02
CN110078511B CN110078511B (zh) 2021-10-12

Family

ID=67412383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910181576.5A Active CN110078511B (zh) 2019-03-11 2019-03-11 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法

Country Status (1)

Country Link
CN (1) CN110078511B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211333A (zh) * 2021-04-23 2021-08-06 广东朗旗新材料科技有限公司 陶瓷结合剂金刚石刀头组件及其制造方法
CN113561074A (zh) * 2021-07-29 2021-10-29 惠州捷姆复合材料有限公司 一种金刚石磨头的制备方法和装置及其基材
CN114956824A (zh) * 2022-01-17 2022-08-30 昆明理工大学 一种利用高热值合金诱发微波自蔓延烧结反应制备max结合剂金刚石复合材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts
CN102114616A (zh) * 2010-12-06 2011-07-06 中原工学院 一种Ti3AlC2基陶瓷结合剂立方氮化硼磨削工具及制作方法
CN102114617A (zh) * 2010-12-06 2011-07-06 中原工学院 一种Ti3SiC2基陶瓷结合剂金刚石磨削工具及制备方法
CN103896590A (zh) * 2013-04-23 2014-07-02 河南工业大学 一种微波合成(Cr,Ti)2AlC固溶粉体的方法
CN104531069A (zh) * 2014-12-25 2015-04-22 中原工学院 一种超硬材料颗粒/钛铝核壳结构复合颗粒及其制备方法
CN105732040A (zh) * 2014-12-10 2016-07-06 辽宁法库陶瓷工程技术研究中心 一种微波自蔓延法制备Ti3AlC2的合成方法
CN107759227A (zh) * 2017-10-09 2018-03-06 中原工学院 一种采用触媒法制备PcBN刀具材料的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655830A (en) * 1985-06-21 1987-04-07 Tomotsu Akashi High density compacts
CN102114616A (zh) * 2010-12-06 2011-07-06 中原工学院 一种Ti3AlC2基陶瓷结合剂立方氮化硼磨削工具及制作方法
CN102114617A (zh) * 2010-12-06 2011-07-06 中原工学院 一种Ti3SiC2基陶瓷结合剂金刚石磨削工具及制备方法
CN103896590A (zh) * 2013-04-23 2014-07-02 河南工业大学 一种微波合成(Cr,Ti)2AlC固溶粉体的方法
CN105732040A (zh) * 2014-12-10 2016-07-06 辽宁法库陶瓷工程技术研究中心 一种微波自蔓延法制备Ti3AlC2的合成方法
CN104531069A (zh) * 2014-12-25 2015-04-22 中原工学院 一种超硬材料颗粒/钛铝核壳结构复合颗粒及其制备方法
CN107759227A (zh) * 2017-10-09 2018-03-06 中原工学院 一种采用触媒法制备PcBN刀具材料的方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
LIANG BAOYAN ET AL.: "Self-propagation high-temperature sintering of the Ti-Al-C-diamond/BN system", 《INTERNATIONAL JOURNAL OF MATERIALS RESEARCH》 *
MING HOU ET AL.: "Microwave hot press sintering:New attempt for the fabrication of Fe-Cu pre-alloyed matrix in super-hard material", 《POWDER TECHNOLOGY》 *
MING HOU ET AL.: "Synthesis of diamond composites via microwave sintering and the improvement of mechanical properties induced by in-situ decomposition of Ti3AlC2", 《CERAMICS INTERNATIONAL》 *
T.A.PRIKHNA ET AL.: "Studies of the oxidation stability,mechanical characteristics of materials based on max phases of the Ti-Al-(C,N) systems, and of the possibility of their use as tool bonds and materials for polishing", 《JOURNAL OF SUPERHARD MATERIALS》 *
YU.D.FILATOV ET AL.: "Polishing of optoelectronic components made of monocrystalline silicon carbide", 《JOURNAL OF SUPERHARD MATERIALS》 *
尹邦跃 等: "《陶瓷核燃料工艺》", 31 January 2016, 哈尔滨工程大学出版社 *
曾令可 等: "《纳米陶瓷技术》", 31 August 2006, 华南理工大学出版社 *
梁宝岩 等: "微波反应快速合成Ti3AlC2和Ti2AlC材料", 《陶瓷学报》 *
梁宝岩 等: "微波烧结制备MAX相-金刚石复合材料", 《金刚石与磨料磨具工程》 *
梁宝岩 等: "金刚石含量与粒度对自蔓延高温烧结钛铝碳结合剂/金刚石复合材料组织与形貌的影响", 《粉末冶金技术》 *
韩警贤: "自蔓延法制备3Ti-Si/Al-2C系结合剂超硬复合材料及其机理的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211333A (zh) * 2021-04-23 2021-08-06 广东朗旗新材料科技有限公司 陶瓷结合剂金刚石刀头组件及其制造方法
CN113211333B (zh) * 2021-04-23 2024-01-30 广东朗旗新材料科技有限公司 陶瓷结合剂金刚石刀头组件及其制造方法
CN113561074A (zh) * 2021-07-29 2021-10-29 惠州捷姆复合材料有限公司 一种金刚石磨头的制备方法和装置及其基材
CN114956824A (zh) * 2022-01-17 2022-08-30 昆明理工大学 一种利用高热值合金诱发微波自蔓延烧结反应制备max结合剂金刚石复合材料的方法

Also Published As

Publication number Publication date
CN110078511B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
CN102600928B (zh) 一种破碎机镶齿锤头
CN102219518B (zh) 碳化硼碳化硅复相陶瓷及其制备方法
US9211633B2 (en) Metal-bonded diamond grinding wheel prepared by self-propagating pressure-less sintering and a preparation method thereof
CN101892411B (zh) 一种新型wc基硬质合金材料及其制备方法
CN110078511A (zh) 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法
CN100465134C (zh) 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN104630664A (zh) 一种新型碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
CN103361532B (zh) 一种固溶体增韧金属陶瓷及其制备方法
CN108423997A (zh) 利用固体废弃物制备微晶泡沫玻璃的方法
CN106216687B (zh) 一种梯度碳化钨基微纳复合刀具材料及其制备方法
CN113321494B (zh) 一种抗氧化、长寿命吸储热一体的刚玉-莫来石陶瓷及其制备方法
CN104842286A (zh) 一种超硬磨具及其制备方法
CN110116376B (zh) 一种金属结合剂磨具及其制备方法
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN102219530A (zh) 一种硅莫砖及其制备方法
CN109180161A (zh) 一种高纯钛硅化碳/氧化铝复合材料及其制备方法
CN101798222A (zh) 一种Al2O3-Ni-C-B4C复相陶瓷及其制备方法
CN103938006A (zh) 耐铝液腐蚀金属陶瓷材料的制备方法
CN105986139B (zh) 一种碳化钛金属陶瓷及其制备方法
CN100448797C (zh) 一种碳化硼基陶瓷喷砂嘴材料
CN105483487A (zh) 一种含锆的碳化硼-铝合金复合材料及其制备方法
CN111266573B (zh) 一种聚晶立方氮化硼复合片的制备方法
CN115991606B (zh) 一种TiB2-SiC-B4C三元超硬陶瓷材料及其制备方法
CN102731071A (zh) 一种铝钛硼和稀有金属协同增韧氧化铝的制备方法
CN104446459A (zh) 用于钨钼烧结中频炉的氧化锆空心球隔热制品的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant