CN110066176A - 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法 - Google Patents

氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN110066176A
CN110066176A CN201910392964.8A CN201910392964A CN110066176A CN 110066176 A CN110066176 A CN 110066176A CN 201910392964 A CN201910392964 A CN 201910392964A CN 110066176 A CN110066176 A CN 110066176A
Authority
CN
China
Prior art keywords
boron nitride
oxygen nitrogen
boron
fiber
staple fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910392964.8A
Other languages
English (en)
Inventor
吴赟
李鑫
温广武
王鑫昊
仲诚
孙志远
李俐
王洪升
韦其红
邵长涛
孙成功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Shandong Industrial Ceramics Research and Design Institute Co Ltd
Original Assignee
Shandong University of Technology
Shandong Industrial Ceramics Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology, Shandong Industrial Ceramics Research and Design Institute Co Ltd filed Critical Shandong University of Technology
Priority to CN201910392964.8A priority Critical patent/CN110066176A/zh
Publication of CN110066176A publication Critical patent/CN110066176A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法,其特征是:将絮状氮化硼纤维经湿法球磨后得到的氮化硼短纤维加入硅硼氧氮陶瓷粉体中进行均匀混合获得制备陶瓷基复合材料的原料;将原料经干燥、过筛后装模进行热压烧结,之后随炉冷却,出炉脱模后即可获得氮化硼纤维增强硅硼氧氮材料。本发明的制备方法工艺简单,适于工业化操作,生产周期、短成本低。由本发明的方法得到的复合材料性能密度达到1.5~2.5g/cm3,抗弯强度>90MPa,断裂韧性>5.2 MPa·m1/2,解决了硅硼氧氮陶瓷的脆性断裂问题,提高了材料的力学性能。

Description

氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法
技术领域
本发明属于陶瓷基复合材料技术领域,涉及一种氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法。
背景技术
硅硼氧氮陶瓷是一种新型耐高温透波陶瓷材料,具有优异的电学、热学及力学性能,但因这种陶瓷材料的本征脆性,限制了该材料在高温结构件上的使用。这种材料陶瓷材料的致命弱点是脆性,根据复合材料的理论,当裂纹扩展遇到纤维时,通过纤维与基体界面的脱离来吸收能量,缓和应力集中;部分纤维在张应力作用下发生断裂而从集体中拔出时,也将吸收较大的能量。因此,纤维增韧陶瓷基复合材料是一种有效解决硅硼氧氮陶瓷材料脆性的途径。而为了保证硅硼氧氮陶瓷的高温透波特性,最适合作为增强相添加的是氮化硼纤维。目前,国内连续氮化硼纤维生产尚不成熟,而非连续氮化硼纤维的生产工艺和产品性能已较为稳定,为本专利技术的实施提供了基础条件。
目前所使用的BN纤维增韧的方法主要有CVD/CVI法[1],PIP法[2 3 4],热压烧结[5 6]。中国专利201711312460.8所使用的CVD/CVI法需要先制备氮化硼预制体,然后进行热解沉降,所需周期较长;中国专利201710359001.9所使用PIP法工艺复杂,需要反复浸渍多次,并且所需的设备要求较高;中国专利CN201110005941.0所使用PIP法不仅要反复浸渍,而且要先固化完后热解,所需周期较长;中国专利201710280508.5所使用热压烧结法氮化物粉体和BN短纤维球磨时需要加入纳米SiO2粉和烧结助剂,球磨时间3 - 24 h,需要将BN絮状纤维剪切成长度为5 mm的短纤维,工艺较为复杂且污染较大;中国专利201710039763.0所使用热压烧结法需要使用溶胶凝胶法制备堇青石粉体,加入剪切过的BN短纤维(长度为3 - 5毫米)后需要超声分散,实验步骤繁琐,所需周期长;本专利技术与上述专利技术相比,无需氮化硼纤维预制体,采用球磨的方式对BN絮状纤维进行处理得到BN短纤维,后续经过热压烧结得到氮化硼纤维增强硅硼氧氮陶瓷基复合材料,效率高,所需周期短,工艺简单,易于工程化实施。
[1]西北工业大学.CVD/CVI法制备透波型BN纤维增韧Si-B-N陶瓷基复合材料的方法:CN201711312460.8[P].2017-12-12。
[2]中国航空工业集团公司基础技术研究院.一种纤维增强SiC基复合材料的成型方法:CN201710359001.9[P].2017-05-19。
[3]中材高新材料股份有限公司.氮化物纤维织物增强氮化物陶瓷材料的制备方法:CN201110005941.0[P].2011-01-12。
[4]南京航空航天大学.一种氮化硼纤维增韧的氮化硼-氮化硅基透波复合材料的制备方法:CN201210336410.4[P].2012-09-13。
[5]山东工业陶瓷研究设计院有限公司.氮化硼纤维增强氮化物陶瓷基复合材料的制备方法:CN201710280508.5[P].2017-04-26。
[6]哈尔滨工业大学.一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法:CN201710039763.0[P].2017-01-19。
发明内容
本发明的目的是提供一种氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法,从而提高硅硼氧氮陶瓷材料的力学性能。该方法步骤简单,便于工业化操作,本发明采用技术方案如下:
1. 将絮状氮化硼纤维通过湿法球磨的工艺处理成分散性好、尺寸均匀的短纤维,即按照质量比1:2加入正己烷、丙酮等湿法球磨介质,按料球比1:40~1:60、转速200~400转/分钟、球磨时间2~10分钟得到氮化硼短纤维;
2. 按照氮化硼短纤维加入量为所有粉体质量的20%~70%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体置于三维混合机,搅拌混合机或球磨混合机等混合设备中均匀混合,获得制备陶瓷基复合材料的原料;
3. 将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5~10℃/min,烧结温度1400~1800℃,保温时间0.5~2小时,压力15~35MPa;
4. 热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。
与现有技术相比,本发明的优点在于:(1)利用湿法球磨工艺处理絮状团聚氮化硼,获得的氮化硼短纤维分散性好、尺寸均匀,工艺过程简单高效;(2)采用硅硼氧氮粉末与氮化硼纤维直接混合,再进行热压烧结,解决了化学气相沉积、反复浸渍裂解烧结等方法周期长、成本高、资源消耗过大的问题;(3)通过纤维增强的方式显著提高了硅硼氧氮陶瓷材料的性能。
附图说明
图1为通过本发明方法获得的氮化硼短纤维扫描电子显微镜照片;图2为复合材料断口扫描电子显微镜照片;图3为复合材料X射线衍射物相分析图谱;图4为具体实施例获得材料的性能数据。图2和图3表明复合材料中氮化硼纤维形貌完好且均匀分布于基体材料中,物相组成为氮化硼微晶、氮化硅微晶以及非晶态物质构成的硅硼氧氮陶瓷,证明所制得材料为氮化硼纤维增强硅硼氧氮陶瓷复合材料
具体实施方式
为了更好的了解本发明的技术方案,下面结合具体实施例对本发明作进一步说明。
实施例一
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入丙酮,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速200转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的20%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1700℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.99g/cm3,弯曲强度93.2MPa,断裂韧性6.3 MPa·m1/2
实施例二
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入丙酮,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速200转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的20%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1600℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.97g/cm3,弯曲强度105.7MPa,断裂韧性6.7 MPa·m1/2
实施例三
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入丙酮,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速200转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的20%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1500℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.94g/cm3,弯曲强度115.3MPa,断裂韧性7.3 MPa·m1/2
实施例四
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入丙酮,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速200转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的20%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1400℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.89g/cm3,弯曲强度89.4MPa,断裂韧性5.6 MPa·m1/2
实施例五
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入正己烷,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速300转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的30%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1700℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.98g/cm3,弯曲强度102.4MPa,断裂韧性7.1 MPa·m1/2
实施例六
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入正己烷,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速300转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的30%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1600℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.97g/cm3,弯曲强度113.9MPa,断裂韧性7.6 MPa·m1/2
实施例七
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入正己烷,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速300转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的30%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1500℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.94g/cm3,弯曲强度123.1MPa,断裂韧性8.0MPa·m1/2
实施例八
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入正己烷,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速300转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的30%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1400℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.88g/cm3,弯曲强度96.4MPa,断裂韧性6.4 MPa·m1/2
实施例九
将絮状氮化硼纤维置于球磨罐中,按照质量比1:2加入正己烷,按料球比1:45加入氧化锆球,然后在行星式球磨机上以转速300转/分钟、球磨8分钟得到氮化硼短纤维。按照氮化硼短纤维加入量为所有粉体质量的40%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体球磨混合机中均匀混合,获得制备陶瓷基复合材料的原料。将原料经干燥、过筛后装模进行热压烧结,热压烧结工艺参数为:升温速率5℃/min,烧结温度1500℃,保温时间1小时,压力20MPa。热压烧结过程结束后随炉冷却,出炉脱模后即获得氮化硼纤维增强硅硼氧氮复合材料。复合材料性能为:密度1.95g/cm3,弯曲强度125.8MPa,断裂韧性8.2 MPa·m1/2
上述各实施例获得的材料的性能测试数据列于图4中。其中,抗弯强度和断裂韧性分别采用三点弯曲和单边缺口梁三点弯曲法测试;密度由阿基米德排水法测得。

Claims (4)

1.一种氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法,其特征是:所使用的氮化硼短纤维是将絮状氮化硼纤维经湿法球磨后得到的;按照氮化硼短纤维加入量为所有粉体质量的20%-70%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体进行均匀混合获得制备陶瓷基复合材料的原料;将原料经干燥、过筛后装模进行热压烧结,之后随炉冷却,出炉脱模后即可获得氮化硼纤维增强硅硼氧氮材料。
2.如权利要求1所述的制备方法,其特征是:所使用的氮化硼短纤维是将絮状氮化硼纤维按照质量比1:2加入正己烷、丙酮等湿法球磨介质,按照料球比1:40~1:60,转速200~400转/分钟,球磨时间2~10分钟得到。
3.如权利要求1所述的制备方法,其特征是:按照氮化硼短纤维加入量为所有粉体质量的30%-70%比例将氮化硼短纤维、硅硼氧氮陶瓷粉体置于三维混合机,搅拌混合机或球磨混合机等混合设备中均匀混合。
4.如权利要求1所述的制备方法,其特征是:按照升温速率5~10℃/min,烧结温度1400~1800℃,保温时间0.5~2小时,压力15~35MPa工艺参数进行热压烧结。
CN201910392964.8A 2019-05-13 2019-05-13 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法 Pending CN110066176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910392964.8A CN110066176A (zh) 2019-05-13 2019-05-13 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910392964.8A CN110066176A (zh) 2019-05-13 2019-05-13 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN110066176A true CN110066176A (zh) 2019-07-30

Family

ID=67370543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910392964.8A Pending CN110066176A (zh) 2019-05-13 2019-05-13 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110066176A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341205A (zh) * 2020-10-26 2021-02-09 北京玻钢院复合材料有限公司 一种硼纤维增强陶瓷基复合材料承压筒及承压壳体
CN114907128A (zh) * 2022-06-24 2022-08-16 中国人民解放军国防科技大学 一种SiBNO隔热透波一体化纤维及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107936A (zh) * 1985-10-23 1987-07-22 国家建筑材料工业局山东工业陶瓷研究设计院 赛隆(Sialon)—氮化硼纤维复合材料及其制造方法
JPH0977570A (ja) * 1995-09-18 1997-03-25 Tokuyama Corp 繊維強化セラミックス系複合体
CN102731098A (zh) * 2012-07-04 2012-10-17 山东大学 一种硅硼氧氮纤维/氮化硅陶瓷复合材料及其制备方法
CN106810286A (zh) * 2017-01-19 2017-06-09 哈尔滨工业大学 一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法
CN106986658A (zh) * 2017-04-26 2017-07-28 山东工业陶瓷研究设计院有限公司 氮化硼纤维增强氮化物陶瓷基复合材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107936A (zh) * 1985-10-23 1987-07-22 国家建筑材料工业局山东工业陶瓷研究设计院 赛隆(Sialon)—氮化硼纤维复合材料及其制造方法
JPH0977570A (ja) * 1995-09-18 1997-03-25 Tokuyama Corp 繊維強化セラミックス系複合体
CN102731098A (zh) * 2012-07-04 2012-10-17 山东大学 一种硅硼氧氮纤维/氮化硅陶瓷复合材料及其制备方法
CN106810286A (zh) * 2017-01-19 2017-06-09 哈尔滨工业大学 一种氮化硼纤维增强堇青石陶瓷基复合材料及其制备方法
CN106986658A (zh) * 2017-04-26 2017-07-28 山东工业陶瓷研究设计院有限公司 氮化硼纤维增强氮化物陶瓷基复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴等: "温度对原位反应制备的Si-B-O-N陶瓷微观结构及力学性能的影响", 《硅酸盐学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341205A (zh) * 2020-10-26 2021-02-09 北京玻钢院复合材料有限公司 一种硼纤维增强陶瓷基复合材料承压筒及承压壳体
CN112341205B (zh) * 2020-10-26 2022-07-12 北京玻钢院复合材料有限公司 一种硼纤维增强陶瓷基复合材料承压筒及承压壳体
CN114907128A (zh) * 2022-06-24 2022-08-16 中国人民解放军国防科技大学 一种SiBNO隔热透波一体化纤维及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN104311090B (zh) 一种热压烧结/前驱体裂解法制备Cf/ZrC-SiC超高温陶瓷复合材料的方法
CN110357648A (zh) 一种制备多级多尺度纤维增韧陶瓷基复合材料的方法
Pei et al. Effect of in situ grown SiC nanowires on microstructure and mechanical properties of C/SiC composites
CN102093058B (zh) 一种α-SiAlON/BN 复合陶瓷材料及其制备方法
CN101913876B (zh) 一种硼化锆-碳化钨钛自润滑复合陶瓷材料的制备方法
Luo et al. Effects of fabrication processes on the properties of SiC/SiC composites
CN100497804C (zh) 一种在碳纤维表面制备碳化硅涂层的方法
CN112142477B (zh) 一种纳米木质素-氮化硅基陶瓷及其制备方法
CN106747555B (zh) 一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法
CN110066176A (zh) 氮化硼纤维增强硅硼氧氮陶瓷基复合材料的制备方法
CN102731093A (zh) 一种低温致密化烧结碳化硼基陶瓷材料的方法
CN109678540A (zh) Bn纳米管界面相强韧化碳纤维增强陶瓷基复合材料及其制备方法
Tang et al. An efficient and low-cost liquid silicon infiltration method to prepare SiC-coated carbon short fiber for fiber protection of Cf/SiC ceramic matrix composites
Zhao et al. SiC/SiC composite fabricated with carbon nanotube interface layer and a novel precursor LPVCS
CN105441767B (zh) 一种抗高温氧化损伤ZrB2‑SiC‑ZrC‑W复相陶瓷的制备方法
Gao et al. Combination of gel-casting and reactive melt infiltration for rapid fabrication of SiCw/SiC composites
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
Yu et al. Fabrication of Si3N4–SiC/SiO2 composites using 3D printing and infiltration processing
CN102603344A (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN111892414A (zh) 一种短碳纤维增强碳化硼复合材料及其制备方法
Yang et al. Flexural behaviors and microstructures of SiC/SiC composites fabricated by microwave sintering assisted with heat molding process
CN101948326A (zh) 一种SiC晶须增韧ZrC基超高温陶瓷复合材料及其制备方法
CN101817675B (zh) 氮化硼纳米管增强的二氧化硅陶瓷的制备方法
CN106348777A (zh) 一种氧化铝基复合陶瓷刀具材料及其微波制备方法
Liu et al. Dense SiC ceramics prepared by using amorphous sintering additives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination