CN110057902A - 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法 - Google Patents

陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法 Download PDF

Info

Publication number
CN110057902A
CN110057902A CN201910361373.4A CN201910361373A CN110057902A CN 110057902 A CN110057902 A CN 110057902A CN 201910361373 A CN201910361373 A CN 201910361373A CN 110057902 A CN110057902 A CN 110057902A
Authority
CN
China
Prior art keywords
strontium barium
deposit
extra large
ratio
selective extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910361373.4A
Other languages
English (en)
Other versions
CN110057902B (zh
Inventor
王爱华
王张华
刘建坤
张飞
李华玲
黄海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING CENTER CHINA GEOLOGICAL SURVEY
East China Normal University
Original Assignee
NANJING CENTER CHINA GEOLOGICAL SURVEY
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING CENTER CHINA GEOLOGICAL SURVEY, East China Normal University filed Critical NANJING CENTER CHINA GEOLOGICAL SURVEY
Priority to CN201910361373.4A priority Critical patent/CN110057902B/zh
Publication of CN110057902A publication Critical patent/CN110057902A/zh
Priority to US16/533,455 priority patent/US20200348281A1/en
Application granted granted Critical
Publication of CN110057902B publication Critical patent/CN110057902B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2028Metallic constituents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4083Concentrating samples by other techniques involving separation of suspended solids sedimentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • G01N2001/4088Concentrating samples by other techniques involving separation of suspended solids filtration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法。该方法为:采集适量的松散沉积物,捡除肉眼可见的生物屑,低温烘干后粉碎到不大于100目,称适量样品以合适的固液比加入一定浓度的醋酸铵或醋酸钠作为提取剂,在常温常压条件下搅拌或振荡(超声振荡亦可),待反应结束后进行固液分离,清液用于仪器分析(ICP‑OES或者ICP‑MS等)测定锶钡,所获得的离子可交换态锶钡比大于1.0为海相沉积环境、小于1.0为陆相沉积环境。本方法不仅消除了赋存于硅酸盐矿物中的锶钡对海陆相沉积环境判别的干扰,还消除了赋存于物源性碳酸盐矿物中的锶钡对海陆相沉积环境判别的干扰。

Description

陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉 积环境判别方法
技术领域
本发明涉及陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法。
背景技术
锶钡同属于碱土金属,在内生地质作用过程中具有很多相似的地球化学行为,但在沉积作用过程中由于其化学性质的差异,地球化学行为发生分异。碎屑沉积物自河流向海洋的搬运沉积过程中, 由于地球化学环境( Eh、ph、盐度及其他离子浓度等) 的改变,特别是在发生海、陆相互作用的河口地区, 河水中呈离子状态搬运的锶、钡的地球化学行为发生了分异,使得陆相沉积物中富钡贫锶、海相沉积物中富锶贫钡,一般陆相沉积物锶钡比小于1.0,海相沉积物锶钡比大于1.0,因而我们可以利用锶钡比来判别沉积物的海陆相沉积环境。
目前大家进行现代陆源碎屑沉积物海陆相沉积环境判别时通常采用的是全样总量分析(Whole-rock geochemical analysis)获得的锶钡比来判别沉积环境,由于全样总量分析的锶钡既包含有赋存于碎屑矿物中搬运而来的反映物源区的各种地质作用的信息的部分锶钡、也包含有在沉积作用过程中形成的反映沉积环境的沉积成因的部分锶钡,因而目前判别的效果不尽如意。究其原因主要是我们目前多数研究者使用的样品分析测试方法不合适的缘故。
目前大家常用的碎屑沉积物中锶钡的分析方法主要有两类方法,一类是X荧光光谱法(简称XRF法,包括粉末压片法和熔片法);另一类为等离子光谱或质谱法(ICP-OES orICP-MS,简称ICP法)。XRF法是将全样粉碎后压片或加入助熔剂后熔融成玻璃片后进行全样总量分析的测试方法;ICP法是将全样的元素全部消解(digestion)到溶液中进行测试的方法,目前消解地质样品的办法主要有酸消解法(盐酸、硝酸、氢氟酸、高氯酸)和熔融法(四硼酸锂或偏硼酸锂熔融、稀酸提取),也属于全样总量分析。从上述分析方法可知目前全样总量分析的分析结果是全部样品中锶与钡的总量,而我们判别沉积环境所需要的碎屑沉积物中沉积成因那部分的锶与钡含量而不是锶钡的总量。显然,我们需要一种全新的样品前处理方法来选择性的提取沉积成因的锶与钡从而达到利用锶钡比判别海陆相沉积环境的目的。
申请者针对上述存在问题曾发明了《陆源碎屑沉积物中沉积成因锶钡的选择性提取方法》进行陆源碎屑沉积物中沉积成因锶钡的选择性提取和海陆相沉积环境判别,尽管判别效果较传统的总量方法有很大的改善,但实际应用过程中发现该专利技术应用于高碳酸盐含量的沉积物时(比如黄土)因钙锶的类质同像导致提取的锶高于正常的沉积物,使得即使是陆相沉积物的锶钡比也大于1.0,影响了海陆相沉积环境的正确判断。
陆源碎屑沉积物中锶钡的赋存形式多种多样,既有存在于钾长石、斜长石、角闪石等造岩硅酸盐矿物中的,也有吸附或赋存于风化搬运过程形成的粘土矿物中的,还有存在于沉积作用过程形成的自生矿物中的,更有以碎屑矿物形式搬运来的碳酸盐矿物中的;这些不同来源与成因的锶钡主要以离子可交换态、碳酸盐结合态、铁锰氧化物结合态、有机还原结合态以及硅酸盐结合态等形式赋在于陆源碎屑沉积物中;已发明的专利方法尽管尽可能减少了非沉积成因的硅酸盐矿物中的锶和钡,但对于物源性的碳酸盐的锶钡也一并被提取了出来,从而影响了对沉积物海陆相沉积环境的正确判断。
发明内容
本发明需要解决的关键技术问题就是需要从多种成因、多种来源、多种赋存形式的碎屑沉积物中提取出能反映沉积物沉积时海陆相沉积环境的沉积成因的锶钡的提取方法和海陆相沉积环境判别方法,不仅消除了赋存于硅酸盐矿物中的锶钡对海陆相沉积环境判别的干扰,还消除了赋存于物源性碳酸盐矿物中锶钡对海陆相沉积环境判别的干扰。
研究发现,陆源碎屑沉积物中锶的50%左右赋存于钾长石、斜长石、角闪石等造岩硅酸盐矿物中;钡则有80%以上赋存于钾长石、斜长石、角闪石等造岩硅酸盐矿物中,只有不足10%赋存于可交换态、碳酸盐态和铁锰氧化物态中。但碳酸盐态的锶钡不仅有自生同沉积成因的,也还有一部分是以碎屑矿物的形式搬运而来的,因而我们需要剔除这部分赋存于碳酸盐中的继承性的锶钡对海陆相沉积环境判别的干扰。
实验研究发现,离子可交换态的锶钡比与水体的盐度具有良好的线性相关性(图1),因而我们可以通过选择性提取陆源碎屑沉积物中的离子可交换态的锶和钡(图2)进行锶钡比的海陆相沉积环境判别(图3)。
本发明所采用的技术方案如下:
一种陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,在样品中以合适的固液比加入一定质量浓度的醋酸铵或醋酸钠作为提取剂进行选择性提取,获得的离子可交换态锶钡比大于1.0为海相沉积环境、小于1.0为陆相沉积环境。
进一步地,在进行提取前先对样品进行前处理,具体方法为:采集具有代表性的适量松散沉积物样品,然后捡除肉眼可见的生物屑并烘干后粉碎备用。粉碎的粒径要求是样品粉碎后的颗粒直径不大于100目。
进一步地,所述选择性提取的具体步骤为:在样品中以合适的固液比加入一定质量浓度的醋酸铵或醋酸钠作为提取剂,在常温常压条件下搅拌或振荡120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
进一步地,所述醋酸铵或醋酸钠的质量浓度为5~50%。
进一步地,所述样品与提取剂的固液比为1:50~1:500。
进一步地,所述振荡包括机械振荡和超声振荡。
有益效果:与传统的总量分析方法和已授权的专利方法相比,本发明不仅剔除了碎屑沉积物中非沉积成因的物源性的硅酸盐态的锶(占总量50%以上)和钡(占总量80%以上)对沉积环境判别的干扰,还更有效的剔除了物源性碳酸盐形式的锶和钡对锶钡比海陆相沉积环境判别的干扰,使得锶钡比小于1.0为陆相、大于1 .0为海相成为了普遍的应用判别标准。提取试剂与提取方法只提取了沉积成因中的离子可交换态的锶和钡,避免了非沉积成因的碳酸盐态的锶钡对沉积环境判别的干扰,提高了海陆相沉积环境判别的有效性和准确性。
附图说明
图1为人工合成三角洲沉积物中离子可交换态的锶钡比随水体盐度的变化特征图。随着水体盐度的升高,相对应的沉积物中离子可交换态的锶钡比逐渐增大。
图2为本发明、已授权专利方法、传统方法测得的黄河三角洲钻孔样品不同沉积环境锶钡含量特征图。由于来源于黄土的黄河三角洲沉积物含有大量的碳酸盐,因而已授权专利方法的10%醋酸提取的锶明显高于本发明的1MNH4Ac方法提取的锶;而钡正好与锶相反,已授权专利方法提取的钡明显低于本发明提取的钡(图中传统方法的钡为实测值减300mg/kg的值,故以“Ba-300-传统方法”表示)。
图3为本发明、已授权专利方法、传统方法获得的黄河三角洲钻孔样品不同沉积环境锶钡比变化特征图。传统方法的锶钡比变化不大无法判别沉积环境,已授权专利方法的锶钡比尽管锶钡比的分辨率已有提高但不符合通常的陆相小于1.0的规律(由于物源性碳酸盐矿物锶钙类质同像导致了选择性提取锶含量较高的干扰),本发明剔除了物源性锶的干扰,可以确保陆相沉积物的锶钡比小于1.0。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,本实施例在以本发明技术方案为前提下进行实施,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:
陆源碎屑沉积物中沉积成因锶钡的选择性提取方法,该方法包括如下步骤:采集具有代表性的适量松散沉积物样品,捡除肉眼可见的生物屑(贝壳等)并烘干后粉碎至不大于100目备用;准确称取适量样品,以固液比1:50加入质量浓度为50%醋酸铵或醋酸钠作为提取剂,在常温(20~30℃)常压条件下搅拌或振荡(超声振荡亦可)120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析(ICP-OES或者ICP-MS等)测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
实施例2:
陆源碎屑沉积物中沉积成因锶钡的选择性提取方法,该方法包括如下步骤:采集具有代表性的适量松散沉积物样品,捡除肉眼可见的生物屑(贝壳等)并烘干后粉碎至不大于100目备用;准确称取适量样品,以固液比1:500加入质量浓度为5%醋酸铵或醋酸钠作为提取剂,在常温(20~30℃)常压条件下搅拌或振荡(超声振荡亦可)120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析(ICP-OES或者ICP-MS等)测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
实施例3:
陆源碎屑沉积物中沉积成因锶钡的选择性提取方法,该方法包括如下步骤:采集具有代表性的适量松散沉积物样品,捡除肉眼可见的生物屑(贝壳等)并烘干后粉碎至不大于100目备用;准确称取适量样品,以固液比1:100加入质量浓度为40%醋酸铵或醋酸钠作为提取剂,在常温(20~30℃)常压条件下搅拌或振荡(超声振荡亦可)120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析(ICP-OES或者ICP-MS等)测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
实施例4:
陆源碎屑沉积物中沉积成因锶钡的选择性提取方法,该方法包括如下步骤:采集具有代表性的适量松散沉积物样品,捡除肉眼可见的生物屑(贝壳等)并烘干后粉碎至不大于100目备用;准确称取适量样品,以固液比1:200加入质量浓度为30%醋酸铵或醋酸钠作为提取剂,在常温(20~30℃)常压条件下搅拌或振荡(超声振荡亦可)120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析(ICP-OES或者ICP-MS等)测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
实施例5:
陆源碎屑沉积物中沉积成因锶钡的选择性提取方法,该方法包括如下步骤:采集具有代表性的适量松散沉积物样品,捡除肉眼可见的生物屑(贝壳等)并烘干后粉碎至不大于100目备用;准确称取适量样品,以固液比1:400加入质量浓度为20%醋酸铵或醋酸钠作为提取剂,在常温(20~30℃)常压条件下搅拌或振荡(超声振荡亦可)120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析(ICP-OES或者ICP-MS等)测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
下面通过对比实验来进一步阐述本发明的有益效果。
以黄河三角洲钻孔为例,传统方法的锶钡比从钻孔上部的陆相→钻孔中上部的海陆过渡相→钻孔中下部的海相→钻孔下部的陆相,锶钡比值最大0.50,最小0.39,比值的变化与沉积环境无明显对应关系,无法判别海陆相沉积环境;已授权的专利方法中的实施例1至实施例5中任一实施例进行实验得到的锶钡比最小1.40,最大5.00,锶钡比值随海陆相沉积环境变化明显,但即使陆相沉积环境的锶钡比也大于1.0。本发明方法中的实施例1至实施例5中任一实施例进行实验得到的锶钡比可以很好地区分出海相、陆相沉积环境(见图2)且符合陆相锶钡比小于1.0海相锶钡比大于1.0的普遍的判别标准。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的离子可交换态提取原理的前提下,还可以做出许多可交换态的提取试剂与方法的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于:在样品中以合适的固液比加入一定质量浓度的醋酸铵或醋酸钠作为提取剂进行选择性提取,获得的离子可交换态锶钡比大于1.0为海相沉积环境、小于1.0为陆相沉积环境。
2.根据权利要求1所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于,在进行提取前先对样品进行前处理,具体方法为:采集具有代表性的适量松散沉积物样品,然后捡除肉眼可见的生物屑并烘干后粉碎备用。
3.根据权利要求2所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于:粉碎的粒径要求是样品粉碎后的颗粒直径不大于100目。
4.根据权利要求1所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于,所述选择性提取的具体步骤为:在样品中以合适的固液比加入一定质量浓度的醋酸铵或醋酸钠作为提取剂,在常温常压条件下搅拌或振荡120分钟以上,然而进行固液分离留取清液备用;清液稀释到合适浓度用于仪器分析测定锶钡,所获得的离子可交换态锶钡比就能较好地反映沉积物沉积时的海陆相沉积环境。
5.根据权利要求1或4所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于:所述醋酸铵或醋酸钠的质量浓度为5~50%。
6.根据权利要求1或4所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于:所述样品与提取剂的固液比为1:50~1:500。
7.根据权利要求4所述的陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法,其特征在于:所述振荡包括机械振荡和超声振荡。
CN201910361373.4A 2019-04-30 2019-04-30 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法 Active CN110057902B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910361373.4A CN110057902B (zh) 2019-04-30 2019-04-30 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法
US16/533,455 US20200348281A1 (en) 2019-04-30 2019-08-06 Method for the discrimination between marine and terrestrial sedimentary environments by selectively extracted exchangeable strontium to barium ratio from terrigenous clastic sediments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910361373.4A CN110057902B (zh) 2019-04-30 2019-04-30 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法

Publications (2)

Publication Number Publication Date
CN110057902A true CN110057902A (zh) 2019-07-26
CN110057902B CN110057902B (zh) 2021-09-03

Family

ID=67321845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910361373.4A Active CN110057902B (zh) 2019-04-30 2019-04-30 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法

Country Status (2)

Country Link
US (1) US20200348281A1 (zh)
CN (1) CN110057902B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726600A (zh) * 2019-10-30 2020-01-24 中国地质调查局南京地质调查中心 利用柠檬酸从碎屑沉积物中提取沉积成因锶钡进行海陆相沉积环境判别的样品前处理方法
CN114199978A (zh) * 2020-08-26 2022-03-18 中国石油化工股份有限公司 一种测定沉积岩中不同赋存形态金属元素含量的方法
CN116840424A (zh) * 2023-08-31 2023-10-03 中国地质大学(北京) 一种沉积物中微量方解石锶同位素特征值的获取方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340691B (zh) * 2021-06-05 2023-12-12 清华大学 一种提取海洋沉积物中不同赋存形态磷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1564906B2 (de) * 1966-09-22 1975-03-06 Telefunken Patentverwertungsgesellschaft Mbh, 7900 Ulm Elektrolytische Trägerlösung für Sedimentationsverfahren zum Aufbringen einer Leuchtstoffschicht auf einen Leuchtstoffträger
CN101839900A (zh) * 2010-05-19 2010-09-22 重庆大学 燃煤中汞含量的检测方法
CN103558242A (zh) * 2013-11-14 2014-02-05 河南理工大学 水体中颗粒态有机磷的提取及测定方法
CN106706571A (zh) * 2016-10-14 2017-05-24 中国地质调查局南京地质调查中心 陆源碎屑沉积物中沉积成因锶钡的选择性提取方法
CN108535455A (zh) * 2018-04-04 2018-09-14 武汉新能源研究院有限公司 一种石油焦中重金属钒、镍的赋存形态逐级提取鉴定方法
CN109082275A (zh) * 2018-06-20 2018-12-25 华北水利水电大学 一种重金属铜污染土壤用生物质炭及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1564906B2 (de) * 1966-09-22 1975-03-06 Telefunken Patentverwertungsgesellschaft Mbh, 7900 Ulm Elektrolytische Trägerlösung für Sedimentationsverfahren zum Aufbringen einer Leuchtstoffschicht auf einen Leuchtstoffträger
CN101839900A (zh) * 2010-05-19 2010-09-22 重庆大学 燃煤中汞含量的检测方法
CN103558242A (zh) * 2013-11-14 2014-02-05 河南理工大学 水体中颗粒态有机磷的提取及测定方法
CN106706571A (zh) * 2016-10-14 2017-05-24 中国地质调查局南京地质调查中心 陆源碎屑沉积物中沉积成因锶钡的选择性提取方法
CN108535455A (zh) * 2018-04-04 2018-09-14 武汉新能源研究院有限公司 一种石油焦中重金属钒、镍的赋存形态逐级提取鉴定方法
CN109082275A (zh) * 2018-06-20 2018-12-25 华北水利水电大学 一种重金属铜污染土壤用生物质炭及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
关天霞等: "土壤中重金属元素形态分析方法及形态分布的影响因素", 《土壤通报》 *
王爱华等: "不同选择性提取方法锶钡比的海陆相沉积环境判别探讨——以现代黄河三角洲为例", 《沉积学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726600A (zh) * 2019-10-30 2020-01-24 中国地质调查局南京地质调查中心 利用柠檬酸从碎屑沉积物中提取沉积成因锶钡进行海陆相沉积环境判别的样品前处理方法
CN114199978A (zh) * 2020-08-26 2022-03-18 中国石油化工股份有限公司 一种测定沉积岩中不同赋存形态金属元素含量的方法
CN116840424A (zh) * 2023-08-31 2023-10-03 中国地质大学(北京) 一种沉积物中微量方解石锶同位素特征值的获取方法
CN116840424B (zh) * 2023-08-31 2023-10-31 中国地质大学(北京) 一种沉积物中微量方解石锶同位素特征值的获取方法

Also Published As

Publication number Publication date
CN110057902B (zh) 2021-09-03
US20200348281A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CN110057902A (zh) 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法
Bayon et al. Determination of rare earth elements, Sc, Y, Zr, Ba, Hf and Th in geological samples by ICP‐MS after Tm addition and alkaline fusion
CN106706571B (zh) 陆源碎屑沉积物中沉积成因锶钡的选择性提取方法
Collins Geochemistry of oilfield waters
Zhang et al. Study of hydrochemical characteristics of CBM co-produced water of the Shizhuangnan Block in the southern Qinshui Basin, China, on its implication of CBM development
Qi et al. Platinum-group elemental and Sr–Nd–Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China
Jin et al. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering
Zhu et al. Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone–a model for pyrite in gold deposits from the Jiaodong Peninsula, East China
Krogstad et al. Sources of continental magmatism adjacent to the late Archean Kolar Suture Zone, South India: distinct isotopic and elemental signatures of two late Archean magmatic series
Thierstein et al. Stable isotopic and carbonate cyclicity in Lower Cretaceous deep-sea sediments: dominance of diagenetic effects
Garde et al. Mesoarchean epithermal gold mineralization preserved at upper amphibolite-facies grade, Qussuk, southern West Greenland
Zou et al. Structure of weathered clastic crust and its petroleum potential
CN105181783A (zh) 白云岩、石英岩型铂族矿床中铂钯金相态分析方法
Yan et al. Sequential leachates of multiple grain size fractions from a clay-rich till, Saskatchewan, Canada: implications for controls on the rare earth element geochemistry of porewaters in an aquitard
Li et al. Geochemistry of the Permian oil shale in the Northern Bogda Mountain, Junggar Basin, Northwest China: Implications for weathering, provenance, and tectonic Setting
Carr et al. Tin enrichment in magmatic-hydrothermal environments associated with cassiterite mineralization at Ardlethan, eastern Australia: Insights from Rb-Sr and Sm-Nd isotope compositions in tourmaline
Pack et al. Supergene ferromanganese wad deposits derived from Permian Karoo Strata along the late cretaceous–mid-tertiary African Land Surface, Ryedale, South Africa
CN106645378B (zh) 一种鉴别离子吸附型稀土矿风化程度的方法
Deng et al. Significant contribution of seamounts to the oceanic rare earth elements budget
Borovikov et al. Physicochemical conditions of formation of hydrothermal titanium mineralization on the Murunskiy alkaline massif, western Aldan (Russia)
HE et al. Geochronology, Geochemistry and Petrogenesis of the Bangbule Quartz Porphyry: Implications for Metallogenesis
CN106092712B (zh) 一种土壤重金属元素汞有效态的提取剂及其制备方法和应用
CN110726600A (zh) 利用柠檬酸从碎屑沉积物中提取沉积成因锶钡进行海陆相沉积环境判别的样品前处理方法
Bhattacharya et al. A Short Review on Lu-Hf Isotope System in Zircon: Implications for Crustal Evolution
Preetha et al. Preconcentration of uranium (VI) by solid phase extraction onto dicyclohexano-18-crown-6 embedded benzophenone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant