CN110042113A - 水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 - Google Patents
水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 Download PDFInfo
- Publication number
- CN110042113A CN110042113A CN201910415184.0A CN201910415184A CN110042113A CN 110042113 A CN110042113 A CN 110042113A CN 201910415184 A CN201910415184 A CN 201910415184A CN 110042113 A CN110042113 A CN 110042113A
- Authority
- CN
- China
- Prior art keywords
- osmapkkk70
- grain shape
- rice grain
- gene
- rice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8291—Hormone-influenced development
- C12N15/8298—Brassinosteroids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11025—Mitogen-activated protein kinase kinase kinase (2.7.11.25), i.e. MAPKKK or MAP3K
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Endocrinology (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用,涉及一种水稻粒型正调控基因、其编码蛋白及其应用。本发明提供水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用,对通过改造水稻粒型来提高作物产量具有重要意义。水稻粒型正调控基因OsMAPKKK70的核苷酸序列如序列表中SEQ ID NO:1所示。OsMAPKKK70的编码蛋白的氨基酸序列如SEQ ID NO:2所示。OsMAPKKK70基因能够磷酸化OsMAPKK4,正向调控BR信号。本发明OsMAPKKK70基因用于正向调控水稻粒型。
Description
技术领域
本发明涉及一种水稻粒型正调控基因、其编码蛋白及其应用。
背景技术
水稻是重要的粮食作物之一,世界上一半以上的人口以其为主食。因此,提高水稻作物产量是稳定经济发展的关键,也是现在农业面临的挑战。而水稻粒型是决定水稻作物产量的重要因素之一,主要包括粒长、粒宽等,直接决定水稻作物产量。因此,水稻粒型调控网络的阐明,对提高水稻作物产量具有重要意义。
BR(Brassinosteroid,油菜素内酯)是一种重要的甾醇类植物激素,参与调控植物生长发育的各个方面。它能够通过抑制叶枕处远轴面细胞分裂,促进叶枕处近轴面细胞延伸,而使植物体表现为叶夹角增大的表型;此外,它又可以通过促进颖壳处细胞伸长,使水稻粒型增大。如:BR功能获得型突变体bzr1-D、GSK2-RNAi等,表现出叶夹角增大、粒型增大等特征;而BR功能缺陷型突变体d61-2、d11等,表现为叶夹角直立、籽粒变小等表型;说明BR在调控粒型和叶夹角方面发挥重要作用。
因此,研究BR信号途径相关的调控因子,对水稻的营养生长和生殖发育等具有重要的意义。
发明内容
本发明的目的是提供水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用,对通过改造水稻粒型来提高作物产量具有重要意义。
本发明水稻粒型正调控基因OsMAPKKK70的核苷酸序列如序列表中SEQ ID NO:1所示。
本发明水稻粒型正调控基因OsMAPKKK70的编码蛋白的氨基酸序列如SEQ ID NO:2所示。
本发明水稻粒型正调控基因OsMAPKKK70在正向调控水稻粒型中的应用。
本发明水稻粒型正调控基因OsMAPKKK70在磷酸化OsMAPKK4中的应用。
本发明水稻粒型正调控基因OsMAPKKK70在正向调控BR信号中的应用。
本发明的有益效果:
本发明首次发现水稻MAPKKK编码基因OsMAPKKK70能够正向调控水稻粒型。
本发明利用PCR的方法从水稻中克隆出MAPKKK编码基因OsMAPKKK70(所对应基因座位号与Rice Genome Annotation Project中公布的LOC_Os01g50410.1相对应)。
本发明通过遗传转化手段,将OsMAPKKK70基因在水稻中过量表达,发现过表达转基因水稻叶夹角增大、粒长增加,BR生物合成基因表达量降低,表现出类似BR信号增强的表型;本发明通过生物化学等技术手段,发现OsMAPKKK70能够磷酸化OsMAPKK4,通过MAPKKK-MAPKK-MAPK级联途径,影响水稻颖壳处细胞伸长,正向调控水稻粒型。本发明在一定程度上完善了水稻粒型调控网络,对通过改造水稻粒型来提高作物产量,提供重要理论依据,具有广阔的应用前景。
附图说明
图1为OsMAPKKK70基因过表达转基因水稻总体形态图;
图2为OsMAPKKK70基因过表达转基因水稻剑叶叶夹角的形态图;
图3为OsMAPKKK70基因过表达转基因水稻剑叶叶夹角大小统计结果;
图4为OsMAPKKK70基因过表达转基因水稻粒型形态图;
图5为OsMAPKKK70基因过表达转基因水稻粒长统计结果;
图6为OsMAPKKK70基因过表达转基因水稻粒宽统计结果;
图7为OsMAPKKK70基因过表达转基因水稻颖壳外表皮细胞形态图;
图8为OsMAPKKK70基因过表达转基因水稻颖壳外表皮细胞大小统计结果;
图9为OsMAPKKK70基因过表达转基因水稻中BR生物合成基因表达量检测结果;
图10为OsMAPKKK70与OsMAPKK4互作分析结果;
图11为OsMAPKKK70对OsMAPKK4磷酸化作用的实验结果。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式水稻粒型正调控基因OsMAPKKK70的核苷酸序列如序列表中SEQ ID NO:1所示。
具体实施方式二:本实施方式水稻粒型正调控基因OsMAPKKK70的编码蛋白的氨基酸序列如SEQ ID NO:2所示。
具体实施方式三:本实施方式水稻粒型正调控基因OsMAPKKK70在正向调控水稻粒型中的应用。
具体实施方式四:本实施方式水稻粒型正调控基因OsMAPKKK70在磷酸化OsMAPKK4中的应用。
具体实施方式五:本实施方式水稻粒型正调控基因OsMAPKKK70在正向调控BR信号中的应用。
下面对本发明的实施例做详细说明,以下实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方案和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:水稻粒型正调控基因OsMAPKKK70的克隆
一、以野生水稻品种龙粳11为实验材料,按照Invitrogen公司的TRIzol试剂盒的操作手册,提取叶片总RNA;
二、采用DNase Ⅰ处理步骤一所提取的总RNA;
三、取1μg步骤二处理后的总RNA用于cDNA的合成,cDNA的合成操作按照购买自BDBiosciences Clontech公司的BD SMARTTMRACE cDNA Amplification Kit试剂盒的使用手册进行,获得cDNA;
四、以上述获得的cDNA为模板,参照TaKaRa公司的HS DNAPolymerase操作说明书,用引物对F1、R1扩增OsMAPKKK70基因,PCR反应条件如下:98℃预变性3min;98℃变性30s,65℃退火30s(每个循环降低0.5℃),72℃延伸2min,共38循环;72℃终延伸10min。PCR产物在ABI3130测序仪(ABI公司)上进行测序,测序结果表明,水稻粒型正调控基因OsMAPKKK70其核苷酸序列如序列表中的SEQ ID No:1所示。其编码具有序列表中SEQ ID NO:2的氨基酸序列的蛋白质。
正向引物F1 5'-ATGGCTAAGCAGCTCAGGC-3'
反向引物R1 5'-TCAGCATGTGGTTGCCAATT-3'
实施例2:OsMAPKKK70基因过表达转基因水稻的获得
一、载体构建:以水稻品种龙粳11的cDNA为模板,参照TaKaRa公司的HS DNA Polymerase操作说明书,以引物对F2、R2扩增OsMAPKKK70基因,并将扩增片段克隆进入植物过表达载体PC1390U,形成一个Ubiquitin启动子驱动的OsMAPKKK70基因过表达载体。
正向引物F2 5'-GTTACTTCTGCACTAGGTACCATGGCTAAGCAGCTCAGGC-3'
反向引物R2 5'-TCTTAGAATTCCCGGGGATCCTCAGCATGTGGTTGCCAATT-3'
二、目的载体转化农杆菌EHA105:将EHA105感受态从-80℃冰箱取出,置于冰上融化;将500ng~1μg的目的质粒加入100ul EHA105感受态中,冰上放置30min;迅速置于液氮中5min;从液氮中取出,迅速置于37℃水预锅中水浴5min;冰上2min;加入800ul液体LB培养基,置于全温震荡器(购自MKN公司)中,28℃,120rpm孵育4~5h;离心,弃大部分上清,将剩余菌液涂抹于含有卡那霉素(50ug/ml)(购自Amresco)和利福平(50ug/ml)(购自Amresco)的LB固体培养基上,28℃培养3天。
三、待长出菌落后,进行菌落PCR鉴定,鉴定出阳性克隆;挑取阳性克隆至加有相应抗生素和利福平的液体LB培养基中,28℃,180rpm培养16h左右,此时的菌液可以用30%的甘油按1:1的体积比进行保存,存至-80℃冰箱,侵染愈伤组织时,从-80℃取出进行活化即可。
四、农杆菌侵染水稻愈伤组织:从-80℃冰箱取出目的存菌,按1:100的比例加入含有卡那霉素(50ug/ml)和利福平(50ug/ml)的液体LB培养基中,180rpm,28℃培养过夜;将菌液培养至肉眼看上去像橙汁一样的颜色(OD=1.0左右),方可从培养箱中取出;取500ul左右菌液至1.5ml离心管中,5000rpm,28℃,离心3min,弃上清,可以看到管底有白色的菌团;用300ul含有20ug/ml的乙酰丁香酮(购自Aldrich)的液体共培培养基轻轻吹打管底菌团,使其均匀的悬浮在液体培养基中;挑选生长状态良好的愈伤组织至50ml离心管中,大约至离心管刻度5ml左右;加入20ml含有20ug/ml的乙酰丁香酮的液体共培培养基,然后将上述悬浮好的300ul菌液全部加入到50ml离心管中;持续轻柔混匀2~3min,以进行侵染。将液体共培培养基倒掉,然后将侵染好的愈伤组织转移至铺有滤纸的培养皿中,吸附多余的培养基,这一过程大约需要1min左右;在固体共培培养基上铺一层滤纸,使滤纸浸透,然后将上述侵染好的愈伤组织转移至此固体培养基上;28℃暗培养2~3天。
五、被侵染水稻愈伤组织的恢复培养:被侵染的愈伤暗培养2~3天后,将愈伤颗粒转移至50ml离心管中;用含有400ug/ml羧卞青霉素(购自Amresco)的无菌水清洗愈伤组织4~5遍,每次持续1min左右,进行除菌;再用无菌水清洗愈伤组织2~3遍,转移至铺有滤纸的培养皿上,吸干多余水分;将上述愈伤组织转移至含有400ug/ml羧卞青霉素的恢复培养基上,28℃人工气候培养箱(24h光培养)恢复培养4~5天。
六、被侵染水稻愈伤组织的筛选培养:恢复培养4~5天后,将恢复培养基上的愈伤组织转移至含有400ug/ml羧卞青霉素和50ug/ml潮霉素(购自Roche)的筛选培养基上;将其转移至28℃人工气候培养箱(24h光培养)中培养30天左右。
七、抗性水稻愈伤组织的分化培养:将筛选培养基上的抗性愈伤转移至分化培养基上,每瓶移至一簇愈伤;将其置于28℃人工气候培养箱(24h光培养)中培养30天左右,即可分化出转基因苗。
八、转基因苗的鉴定:待分化出转基因苗后,需对其进行鉴定,排除假阳性。首先进行水稻DNA的粗提;用以上粗提的DNA为模板,按照全式金公司的EasyTaq DNA Polymerase说明书,用潮霉素引物(F3和R3)进行扩增。
正向引物F3 5'-TGCGCCCAAGCTGCATCAT-3'
反向引物R3 5'-TGAACTCACCGCGACGTCTGT-3'
如图1所示,是OsMAPKKK70基因过表达转基因水稻的总体形态图,过表达转基因水稻叶夹角增大,剑叶处所形成的的叶夹角平均达到60°左右,为野生型的2倍左右(如图2、3所示)。对其粒型进行观察,发现过表达转基因水稻粒长变长、粒宽变窄(如图4、5、6所示)。利用扫描电子显微镜对OsMAPKKK70基因过表达转基因水稻及其对照的颖壳进行观察(如图7所示),发现过表达转基因水稻与野生型相比,其颖壳处外表皮细胞的细胞长度显著变长(如图8,其中1表示WT,2表示OsMAPKKK70-OE)。进一步说明OsMAPKKK70基因过表达转基因水稻粒型变长是由于其颖壳处细胞伸长造成的。
实施例3:BR生物合成基因的表达量检测
一、以OsMAPKKK70基因过表达转基因水稻及其对照为实验材料,培养至2周大小,取相同部位叶片,参照购买自Invitrogen公司的TRIzol试剂盒的操作手册提取叶片总RNA;
二、采用DNase Ⅰ处理步骤一提取的总RNA;
三、取1μg步骤二处理后的总RNA用于cDNA的合成,cDNA的合成操作按照购买自BDBiosciences Clontech公司的BD SMARTTMRACE cDNA Amplification Kit试剂盒的使用手册进行;
四、以获得的cDNA为模板,通过3个BR生物合成基因引物:D2基因(引物对F4、R4)、OsDWF4基因(引物对F5、R5)和D11基因(引物对F6、R6),水稻内参actin(引物对F7、R7),采用SYBR Green PCR master mix(TransStart)进行Quantitative real-time PCR;数据从Bio-Rad chromo 4real-time PCR detector上获得;用2-△△CT方法分析倍数变化。
正向引物F4 5'-TCGCTGACGGAGCTGATG-3'
反向引物R4 5'-ACTTGAGGTGGGAGGACTTG-3'
正向引物F5 5'-CTCCACCTTCTCCGCTCAG-3'
反向引物R5 5'-GCCGCTCCGTCTCTTCC-3'
正向引物F6 5'-TGGCGACATTGAGAAGATTGC-3'
反向引物R6 5'-CAGAAGGCGATGACATTGACC-3'
正向引物F7 5'-CGTCTGCGATAATGGAACTG-3'
反向引物R7 5'-TCTGGGTCATCTTCTCACGA-3'
如图9所示(其中1表示WT,2表示OsMAPKKK70-OE),是3个BR生物合成基因D2、OsDWF4、D11在OsMAPKKK70基因过表达转基因水稻中的检测结果,可以明显的看出,D2、OsDWF4、D11在过表达转基因水稻中的表达量显著降低,说明其内源的BR信号是增强的,初步说明OsMAPKKK70基因能够正向调控BR信号。
实施例4:OsMAPKKK70与OsMAPKK4互作分析
一、载体构建:
(1)以野生水稻品种龙粳11为实验材料,按照Invitrogen公司的TRIzol试剂盒的操作手册,提取叶片总RNA;
(2)采用DNase Ⅰ处理步骤一所提取的总RNA;
(3)取1μg步骤二处理后的总RNA用于cDNA的合成,cDNA的合成操作按照购买自BDBiosciences Clontech公司的BD SMARTTMRACE cDNA Amplification Kit试剂盒的使用手册进行,获得cDNA;
(4)以上述cDNA为模板,以引物对F8、R8扩增OsMAPKKK70基因,将扩增片段克隆进入植物表达载体pCAMBIA1300-nLUC中。以龙粳11水稻cDNA为模板,以引物对F9、R9扩增OsMAPKK4基因,并将扩增片段克隆进入植物表达载体pCAMBIA1300-cLUC中。
正向引物F8 5'-ACGGGGGACGAGCTCGGTACCATGGCTAAGCAGCTCAGGC-3'
反向引物R8 5'-CGCGTACGAGATCTGGTCGACTAATTCATGTCTCGCTCG-3'
正向引物F9 5'-TACGCGTCCCGGGGCGGTACCATGCGACCGGGCGGGCCG-3'
反向引物R9 5'-ACGAAAGCTCTGCAGGTCGACTCATGACGGAGGCGGTGCGAG-3'
二、目的载体转化农杆菌GV3101:将GV3101感受态从-80℃冰箱取出,置于冰上融化;将500ng~1μg的质粒(pCAMBIA1300-nLUC、pCAMBIA1300-cLUC、pCAMBIA1300-nLUC-OsMAPKKK70和pCAMBIA1300-cLUC-OsMAPKK4)分别加入100ul GV3101感受态中,冰上放置30min,迅速置于液氮中5min;从液氮中取出,迅速置于37℃水预锅中水浴5min;冰上2min;加入800ul液体LB培养基,置于全温震荡器(购自MKN公司)中,28℃、120rpm孵育4~5h;离心,弃大部分上清,将剩余菌液涂抹于含有卡那霉素(50ug/ml)(购自Amresco)和利福平(50ug/ml)(购自Amresco)的LB固体培养基上,28℃培养3天。
三、待长出菌落后,进行菌落PCR鉴定,鉴定出阳性克隆;挑取阳性克隆至加有相应抗生素和利福平的液体LB培养基中,28℃,180rpm培养16h左右,此时的菌液可以用30%的甘油按1:1的体积比进行保存,存至-80℃冰箱,注射烟草叶片前,与携病毒沉默抑制子P19的农杆菌一同从-80℃取出进行活化即可。
四、将活化培养的菌液以1:100接种于含有10mM MES和40μM乙酰丁香酮及卡那霉素(50ug/ml)和利福平(50ug/ml)的新鲜LB培养基中,28℃恒温摇床过夜培养至OD600达到1.5;3200g离心10min收集菌体;用10mM MgCl2重悬菌体,利用分光光度计调整菌液浓度(携目的质粒的农杆菌OD600=1.5,携病毒沉默抑制子P19的农杆菌OD600=1.0);加入乙酰丁香酮至终浓度200μM,室温静置至少3h;将含目的质粒的农杆菌重悬液与含P19的农杆菌重悬液等体积混合;选择生长状态良好的植株开花前的烟草叶片用灭菌处理过的1ml注射器将菌液从叶片背面注入叶片中;暗培养过夜后揭去遮光布正常条件培养2~3天后,剪取叶片菌液渗透覆盖的部分,在化学发光成像仪(Tanon)下观察瞬时表达结果。
如图10所示,将pCAMBIA1300-nLUC-OsMAPKKK70和pCAMBIA1300-cLUC-OsMAPKK4共同注射烟草叶后,能够检测到荧光素酶(Luciferase,LUC)信号;而单独瞬时表达nLUC-OsMAPKKK70或cLUC-OsMAPKK4都不能检测到荧光素酶信号;以上说明OsMAPKKK70和OsMAPKK4存在互作关系。
实施例5:OsMAPKKK70对OsMAPKK4磷酸化作用分析
一、载体构建:以水稻野生品种龙粳11的cDNA为模板,用引物对F10、R10扩增OsMAPKKK70基因,克隆至入门载体pENTRTM 中。随后,将目的片段LR至目的载pDEST15中(GatewayTMLR ClonaseTMII Enzyme mix,目录号:11791020)。以水稻野生品种龙粳11的cDNA为模板,用引物对F11、R11和F12、R12扩增OsMAPKK4的两个含有桥接片段的序列(桥接部分含突变位点),所得PCR产物稀释10倍后作模板,以引物对F13、R13,利用重叠延伸PCR技术扩增含突变位点的OsMAPKK4,并将产物克隆至原核蛋白表达载体pET28a中,载体命名为pET28a-OsMAPKK4m。
正向引物F10 5'-GTGGATGGATGCGGCTGCGGTG-3'
反向引物R10 5′-TTAAAAATTGCTCATTCTAGTCAAAACAGTGA-3′
正向引物F11 5'-GTGGATGGCTAAGCAGCTCAGGC-3'
反向引物R11 5'-TCAGCATGTGGTTGCCAATT-3'
正向引物F12 5'-GTGCCGCGCGGCAGCCATATGCGACCGGGCGGGCCGC-3'
反向引物R12 5'-TCGTCGTGGTTCCCGTAGAGCACCATGAGCGCGTAC-3'
正向引物F13 5'-CCCCACGGGGCGGCCGTACGCGCTCATGGTGCTCTA-3'
反向引物R13 5'-GAGTGCGGCCGCAAGCTTGTCGACTGACGGAGGCGGTGCGAGG-3'
二、蛋白纯化:将构建好的原核蛋白表达载体pDEST15-OsMAPKKK70和pET28a-OsMAPKK4m分别转化大肠杆菌BL21感受态;待菌落长出后,挑取单克隆,经鉴定后接种至3~5ml含有相应抗生素的LB液体培养基中,37℃恒温摇床过夜培养;随后,按1:100接种至含有相应抗生素的新鲜LB液体培养基中,37℃恒温摇床培养至OD600=0.5~0.8(约2~4h);向菌液中加入IPTG至终浓度为1mM,18℃恒温摇床低转速过夜诱导培养;用50ml离心管12000rpm 4℃离心2min收集菌体;预冷PBS缓冲液(pH=7.3)重悬菌体;加入PMSF至终浓度1mM,加入DTT至终浓度1mM,混匀后冰浴15min;超声破碎菌体至菌液由浑浊逐渐变清;加入Triton X-100至终浓度1%,冰浴30min;12000rpm 4℃离心1h,期间用PBS清洗酌量的Glutathione Beads(SMART Life Sciences);将上清液倒入新的50ml离心管,加入洗好的Glutathione Beads,4℃静音混合2~3h后,4℃低速离心使beads离沉于管底,弃去上清;反复用PBS清洗孵育后的beads以洗去非特异性结合,为防止挂壁损失,可及时将beads转移至2ml离心管中,以PBS少量多次洗涤;加入酌量elution buffer(含20mM还原型谷胱甘肽的TBS,pH=10),4℃静音混合至少30min;洗脱结束后,12000rpm 4℃离心2min;将上清液(洗脱的蛋白)分装至PCR管中,液氮速冻后,移至﹣80℃备用。
三、配制两块10%SDS-PAGE胶,其中一块含50μMAcrylamide(Wako)。将His-OsMAPKK4m蛋白、GST-OsMAPKKK70和His-OsMAPKK4蛋白分别置于三个磷酸化反应体系中(25mM Tris-HCl pH7.5,10mM MgCl2,50mM KCl,1mM DTT,100μM ATP)30℃反应1h;
四、加入1×loading buffer,煮沸5min,高速离心10min;
五、上样,进行SDS-PAGE电泳;
六、电泳结束后,将SDS-PAGE胶取出,用含有10mM EDTA的transfer buffer处理3次,每次15min后;随后,再用不含有EDTA的普通transfer buffer处理10min;
七、转膜,将胶上的蛋白转移至PVDF膜(Bio-Rad)上;
八、待转膜结束后,用GST抗体(Abmart:M20007)和His抗体(ORIGENE:TA100027)进行后续western杂交。
如图11所示,将His-OsMAPKK4m蛋白与GST-OsMAPKKK70混合后,His-OsMAPKK4m的条带出现了迁移分离,分离出磷酸化形式的His-OsMAPKK4m蛋白。而单独加入His-OsMAPKK4m的泳道没有分离出磷酸化形式的His-OsMAPKK4m蛋白。说明OsMAPKKK70都能够磷酸化OsMAPKK4。
序 列 表
<110> 中国科学院东北地理与农业生态研究所
<120>水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用
<160> 28
<210> 1
<211> 1957
<212> DNA
<213>粳亚种(Oryza sativa L. japonica. cv. Nipponbare)
<220>
<223>水稻OsMAPKKK70基因
<400> 1
atggctaagc agctcaggcg ggtgcgcacg ctgggccgcg gggcgtccgg cgccgtggtg 60
tggctcgcgt ccgacgacga ctcaggggag ctcatggccg tcaagtcggc ctccgccggc 120
ggcgccgcgg cgcagctgcg gcgagagggg cgtgtcctgt ccgggctctg ctcgccgcac 180
atcgtcccct gcctcggatc gcgcgccgcc gcgggcggcg agtaccagct gttcctcgag 240
ttcgcgcccg gcgggtcgct cgccgacgag gccgccagga acgggggctg cctcccggag 300
ccggccatcc gggcgtacgc cgctgacgtg gcgagggggc tggcgtacct ccacgggaat 360
tcgctggtgc acggcgacgt caaggcgagg aacgtcgtga tcgggagcga cggccgggcg 420
aggctcacgg acttcgggtg cgcgagggtc atggactcgg cggggccgat cggcggcacg 480
ccggcgttca tggcgccgga ggtggcgcgc ggggaggagc aggggccggc ggccgatgtc 540
tgggccctcg gctgcaccat catcgagatg gccaccggcc gcgcgccgtg gagcgacatg 600
gacgacatcc ttgccgcagt ccaccggatc gggtacacga acgccgtgcc ggaggttccc 660
gggtggctgt cagcggaggc caaggacttc ctggatggct gcttcgagag gaacgcgtcc 720
gacaggtcaa cggcggcgca gctcctggaa cacccattcg ttgcctccgc cgcggccctc 780
gaccgctggc cggagccggc gaagcaagaa cgtgcatccc ccaagagcac gctgcatgac 840
gcgttctggg actcagacac cgacgacgag gacgacgaga tgccaaccgg cgcggcggag 900
aggatcggtg cattggcgtg cgccgcctcg gccttgccgg actgggactc cgacgaagga 960
tggatcgagg tgcacgacga ggtctccttc gccgccgtca cgccgccggc cagcgacgcg 1020
gactacttcg tctgggcaga actgtctgac ccagagatgg agcagttcgc cgtcgccgcg 1080
gatggcgtca accatgtccc gcgcaatgaa gcagaagcga tcgaatcctc cattaggcag 1140
ggcagttacc tgcacgtaca tcttggcagt ggtaaaaatg aaatttttca cccgttcgat 1200
actgacggga ctgaatcagt gagattcgat tgtgtttgta acaggaacag agtaataaaa 1260
ttaaattccg ctcaaatttc ctctcgttgt gaccaaccag ttggtgcatt taacttttca 1320
ttacgtctcc tttactactt tgcaaatcaa tcacgtgaca gttcgagacc aaaattagtt 1380
cgagcgagac atgaattatg aatatgtcaa aattagctca tgtttccagc gatcaggatc 1440
ggagtcgtta gcgaacggca atccatcccc ttctagtaaa gttggcaggt ctgttctgca 1500
agcagttttg cgtacggaat actggattgc gacttaatca cgtgtgatta cacccggcga 1560
tttcactaaa cccgttgttg agccgtacgg agaaaagcat gccgttttac tgcgcgtcac 1620
tatgacgtca ctttaggccc acgaggacgt catatcgtac ttcctctctc ctttttgtgt 1680
ggaatttctt ttttaataaa aagatatcga tgatccactt taggagagga gaggtcaaag 1740
ctaactctgc tgtttacctt tttggatgga tagcgaggca ctgtgaacag gccctgttca 1800
tcttcctctg ttcttttagg ggcttgatgc ccaccggctc acagcattgc aaaaacacca 1860
gtggaatctg agctcaagat tgccacattc gagctggatt gatcgaacct ttggaagtga 1920
tctagatatt ggtgttcaat tggcaaccac atgctga 1957
<210> 2
<211> 466
<212> PRT
<213>粳亚种(Oryza sativa L. japonica. cv. Nipponbare)
<220>
<223> 水稻OsMAPKKK70基因编码蛋白
<400> 2
Met Ala Lys Gln Leu Arg Arg Val Arg Thr Leu Gly Arg Gly Ala
5 10 15
Ser Gly Ala Val Val Trp Leu Ala Ser Asp Asp Asp Ser Gly Glu
20 25 30
Leu Met Ala Val Lys Ser Ala Ser Ala Gly Gly Ala Ala Ala Gln
35 40 45
Leu Arg Arg Glu Gly Arg Val Leu Ser Gly Leu Cys Ser Pro His
50 55 60
Ile Val Pro Cys Leu Gly Ser Arg Ala Ala Ala Gly Gly Glu Tyr
65 70 75
Gln Leu Phe Leu Glu Phe Ala Pro Gly Gly Ser Leu Ala Asp Glu
80 85 90
Ala Ala Arg Asn Gly Gly Cys Leu Pro Glu Pro Ala Ile Arg Ala
95 100 105
Tyr Ala Ala Asp Val Ala Arg Gly Leu Ala Tyr Leu His Gly Asn
110 115 120
Ser Leu Val His Gly Asp Val Lys Ala Arg Asn Val Val Ile Gly
125 130 135
Ser Asp Gly Arg Ala Arg Leu Thr Asp Phe Gly Cys Ala Arg Val
140 145 150
Met Asp Ser Ala Gly Pro Ile Gly Gly Thr Pro Ala Phe Met Ala
155 160 165
Pro Glu Val Ala Arg Gly Glu Glu Gln Gly Pro Ala Ala Asp Val
170 175 180
Trp Ala Leu Gly Cys Thr Ile Ile Glu Met Ala Thr Gly Arg Ala
185 190 195
Pro Trp Ser Asp Met Asp Asp Ile Leu Ala Ala Val His Arg Ile
200 205 210
Gly Tyr Thr Asn Ala Val Pro Glu Val Pro Gly Trp Leu Ser Ala
215 220 225
Glu Ala Lys Asp Phe Leu Asp Gly Cys Phe Glu Arg Asn Ala Ser
230 235 240
Asp Arg Ser Thr Ala Ala Gln Leu Leu Glu His Pro Phe Val Ala
245 250 255
Ser Ala Ala Ala Leu Asp Arg Trp Pro Glu Pro Ala Lys Gln Glu
260 265 270
Arg Ala Ser Pro Lys Ser Thr Leu His Asp Ala Phe Trp Asp Ser
275 280 285
Asp Thr Asp Asp Glu Asp Asp Glu Met Pro Thr Gly Ala Ala Glu
290 295 300
Arg Ile Gly Ala Leu Ala Cys Ala Ala Ser Ala Leu Pro Asp Trp
305 310 315
Asp Ser Asp Glu Gly Trp Ile Glu Val His Asp Glu Val Ser Phe
320 325 330
Ala Ala Val Thr Pro Pro Ala Ser Asp Ala Asp Tyr Phe Val Trp
335 340 345
Ala Glu Leu Ser Asp Pro Glu Met Glu Gln Phe Ala Val Ala Ala
350 355 360
Asp Gly Val Asn His Val Pro Arg Asn Glu Ala Glu Ala Ile Glu
365 370 375
Ser Ser Ile Arg Gln Gly Ser Tyr Leu His Val His Leu Gly Ser
380 385 390
Gly Lys Asn Glu Ile Phe His Pro Phe Asp Thr Asp Gly Thr Glu
395 400 405
Ser Val Arg Phe Asp Cys Val Cys Asn Arg Asn Arg Val Ile Lys
410 415 420
Leu Asn Ser Ala Gln Ile Ser Ser Arg Cys Asp Gln Pro Val Gly
425 430 435
Ala Phe Asn Phe Ser Leu Arg Leu Leu Tyr Tyr Phe Ala Asn Gln
440 445 450
Ser Arg Asp Ser Ser Arg Pro Lys Leu Val Arg Ala Arg His Glu
455 460 465
Leu
466
<210> 3
<211> 19
<212> DNA
<213>人工序列
<220>
<223>正向引物F1
<400> 3
atggctaagcagctcaggc 19
<210> 4
<211> 20
<212> DNA
<213>人工序列
<220>
<223>反向引物R1
<400> 4
tcagcatgtggttgccaatt 20
<210> 5
<211> 40
<212> DNA
<213>人工序列
<220>
<223>正向引物F2
<400> 5
gttacttctgcactaggtaccatggctaagcagctcaggc 40
<210> 6
<211> 41
<212> DNA
<213>人工序列
<220>
<223>反向引物R2
<400> 6
tcttagaattcccggggatcctcagcatgtggttgccaatt 41
<210> 7
<211> 19
<212> DNA
<213>人工序列
<220>
<223>正向引物F3
<400> 7
tgcgcccaagctgcatcat 19
<210> 8
<211> 21
<212> DNA
<213>人工序列
<220>
<223>反向引物R3
<400> 8
tgaactcaccgcgacgtctgt 21
<210> 9
<211> 18
<212> DNA
<213>人工序列
<220>
<223>正向引物F4
<400> 9
tcgctgacggagctgatg 18
<210> 10
<211> 20
<212> DNA
<213>人工序列
<220>
<223>反向引物R4
<400> 10
acttgaggtgggaggacttg 20
<210> 11
<211>19
<212> DNA
<213>人工序列
<220>
<223>正向引物F5
<400> 11
ctccaccttctccgctcag 19
<210> 12
<211> 17
<212> DNA
<213>人工序列
<220>
<223>反向引物R5
<400> 12
gccgctccgtctcttcc 17
<210> 13
<211> 21
<212> DNA
<213>人工序列
<220>
<223>正向引物F6
<400> 13
tggcgacattgagaagattgc 21
<210> 14
<211> 21
<212> DNA
<213>人工序列
<220>
<223>反向引物R6
<400> 14
cagaaggcgatgacattgacc 21
<210> 15
<211> 20
<212> DNA
<213>人工序列
<220>
<223>正向引物F7
<400> 15
cgtctgcgataatggaactg 20
<210> 16
<211> 20
<212> DNA
<213>人工序列
<220>
<223>反向引物R7
<400> 16
tctgggtcatcttctcacga 20
<210> 17
<211> 40
<212> DNA
<213>人工序列
<220>
<223>正向引物F8
<400> 17
acgggggacgagctcggtaccatggctaagcagctcaggc 40
<210> 18
<211> 39
<212> DNA
<213>人工序列
<220>
<223>反向引物R8
<400> 18
cgcgtacgagatctggtcgactaattcatgtctcgctcg 39
<210> 19
<211> 39
<212> DNA
<213>人工序列
<220>
<223>正向引物F9
<400> 19
tacgcgtcccggggcggtaccatgcgaccgggcgggccg 39
<210> 20
<211> 42
<212> DNA
<213>人工序列
<220>
<223>反向引物R9
<400> 20
acgaaagctctgcaggtcgactcatgacggaggcggtgcgag 42
<210> 21
<211> 22
<212> DNA
<213>人工序列
<220>
<223>正向引物F10
<400> 21
gtggatggatgcggctgcggtg 22
<210> 22
<211> 32
<212> DNA
<213>人工序列
<220>
<223>反向引物R10
<400> 22
ttaaaaattgctcattctagtcaaaacagtga 32
<210> 23
<211> 23
<212> DNA
<213>人工序列
<220>
<223>正向引物F11
<400> 23
gtggatggctaagcagctcaggc 23
<210> 24
<211> 20
<212> DNA
<213>人工序列
<220>
<223>反向引物R11
<400> 24
tcagcatgtggttgccaatt 20
<210> 25
<211> 37
<212> DNA
<213>人工序列
<220>
<223>正向引物F12
<400> 25
gtgccgcgcggcagccatatgcgaccgggcgggccgc 37
<210> 26
<211> 36
<212> DNA
<213>人工序列
<220>
<223>反向引物R12
<400> 26
tcgtcgtggttcccgtagagcaccatgagcgcgtac 36
<210> 27
<211> 36
<212> DNA
<213>人工序列
<220>
<223>正向引物F13
<400> 27
ccccacggggcggccgtacgcgctcatggtgctcta 36
<210> 28
<211> 43
<212> DNA
<213>人工序列
<220>
<223>反向引物R13
<400> 28
gagtgcggccgcaagcttgtcgactgacggaggcggtgcgagg 43
Claims (5)
1.水稻粒型正调控基因OsMAPKKK70,其特征在于水稻粒型正调控基因OsMAPKKK70的核苷酸序列如序列表中SEQ ID NO:1所示。
2.权利要求1所述的水稻粒型正调控基因OsMAPKKK70的编码蛋白的氨基酸序列如SEQID NO:2所示。
3.权利要求1所述的水稻粒型正调控基因OsMAPKKK70在正向调控水稻粒型中的应用。
4.权利要求1所述的水稻粒型正调控基因OsMAPKKK70在磷酸化OsMAPKK4中的应用。
5.权利要求1所述的水稻粒型正调控基因OsMAPKKK70在正向调控BR信号中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910415184.0A CN110042113B (zh) | 2019-05-17 | 2019-05-17 | 水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910415184.0A CN110042113B (zh) | 2019-05-17 | 2019-05-17 | 水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110042113A true CN110042113A (zh) | 2019-07-23 |
CN110042113B CN110042113B (zh) | 2021-05-14 |
Family
ID=67282493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910415184.0A Active CN110042113B (zh) | 2019-05-17 | 2019-05-17 | 水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110042113B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257697A1 (zh) * | 2021-06-10 | 2022-12-15 | 中国科学院西双版纳热带植物园 | 调控植物半矮化株型和叶比值的cll1基因及其豆科的直系同源基因的应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107299102B (zh) * | 2017-07-20 | 2019-11-08 | 中国科学院东北地理与农业生态研究所 | 水稻BR信号正调控因子OsWRKY53基因及其编码蛋白 |
-
2019
- 2019-05-17 CN CN201910415184.0A patent/CN110042113B/zh active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257697A1 (zh) * | 2021-06-10 | 2022-12-15 | 中国科学院西双版纳热带植物园 | 调控植物半矮化株型和叶比值的cll1基因及其豆科的直系同源基因的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110042113B (zh) | 2021-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soyano et al. | Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus | |
de Oliveira et al. | Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses | |
Yamaya‐Ito et al. | Loss‐of‐function of ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (APN 1) in Lotus japonicus restricts efficient nitrogen‐fixing symbiosis with specific Mesorhizobium loti strains | |
CN107299102B (zh) | 水稻BR信号正调控因子OsWRKY53基因及其编码蛋白 | |
CN111206041A (zh) | OsBAK1P基因在控制水稻抗旱性中的应用 | |
CN108586592B (zh) | 调控根瘤植物的根瘤数目的基因及其在高效固氮方面的应用 | |
CN111018959B (zh) | Bmdr蛋白及其编码基因在调控植物抗旱性中的应用 | |
CN106754956A (zh) | 棉花GhJAZ11‑D基因鉴定及应用 | |
CN108250279B (zh) | 热激蛋白Hsp17.6CII在调控植物耐盐碱中的应用 | |
Ayra et al. | Control of the rhizobia nitrogen-fixing symbiosis by common bean MADS-domain/AGL transcription factors | |
Roy et al. | The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula | |
Tsyganova et al. | Plant genetic control over infection thread development during legume-Rhizobium symbiosis | |
Xing et al. | GmSPX8, a nodule-localized regulator confers nodule development and nitrogen fixation under phosphorus starvation in soybean | |
CN110042113A (zh) | 水稻粒型正调控基因OsMAPKKK70、其编码蛋白及其应用 | |
CN108728425B (zh) | 调节根瘤植物的固氮能力的基因及其应用 | |
CN113388618A (zh) | 本氏烟分泌型腺毛调控基因NbJAZ3、其表达载体及应用 | |
CN110564761B (zh) | 小麦wlhs1基因在调控植物的穗和籽粒发育中的应用 | |
CN117551685A (zh) | 一种马铃薯晚疫病防治方法 | |
US5859338A (en) | Plant clavata1 nucleic acids, transformed plants, and proteins | |
KR20170140922A (ko) | 식물의 내염성을 증가시키는 벼 유래의 OsSIRP1 유전자 및 이의 용도 | |
CN113846105B (zh) | GhAIF3基因在调控植物表型中的应用及调控植物表型的方法 | |
AU754851B2 (en) | A novel mitogenic cyclin and uses thereof | |
Kirolinko et al. | A lateral organ boundaries domain transcription factor acts downstream of the auxin response factor 2 to control nodulation and root architecture in Medicago truncatula | |
Roy et al. | The peptide GOLVEN10 controls nodule and lateral root organogenesis and positioning along the longitudinal root axis | |
Hradilová et al. | Expression pattern of the AHP gene family from Arabidopsis thaliana and organ specific alternative splicing in the AHP5 gene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |