CN110038518A - 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用 - Google Patents

一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用 Download PDF

Info

Publication number
CN110038518A
CN110038518A CN201910352280.5A CN201910352280A CN110038518A CN 110038518 A CN110038518 A CN 110038518A CN 201910352280 A CN201910352280 A CN 201910352280A CN 110038518 A CN110038518 A CN 110038518A
Authority
CN
China
Prior art keywords
zif
micro
magnetism
adsorbent
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910352280.5A
Other languages
English (en)
Other versions
CN110038518B (zh
Inventor
李嘉
刘君
邴兴美
王福东
孙小凡
杨文宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201910352280.5A priority Critical patent/CN110038518B/zh
Publication of CN110038518A publication Critical patent/CN110038518A/zh
Application granted granted Critical
Publication of CN110038518B publication Critical patent/CN110038518B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种尺寸可控的ZIF‑8磁性自驱动微管马达吸附剂及应用,是采用木棉为模板,通过原位生长法制备ZIF‑8磁性自驱动微管马达,属于一种新型MOFs材料吸附剂。本发明首先用浸渍煅烧法得到磁性中空管状马达,然后用原位生长法将ZIF‑8负载到微管马达上,最终得到ZIF‑8磁性微马达。本发明制备工艺简单,反应条件温和易控制,可以进行大规模的制备,获得的MOFs微马达吸附剂还同时具有优异的吸附能力和动态快速吸附性能,而且在外加磁场下可以进行运动方向的控制,使得其吸附功能更加智能化。该吸附剂在模拟污水的条件下可有效吸附不同的有机污染物,并可在真实水体中进行运动和吸附,具有很大的实际应用潜能。

Description

一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂及其应用
技术领域
本发明涉及一种污水处理方面的MOFs微马达吸附剂,具体涉及一种ZIF尺寸可调的ZIF-8磁性自驱动微管马达吸附剂及其应用。
背景技术
随着工业的快速发展,大量污染物排入水体,因此水污染一直是人们关注的热门话题,吸附技术因其低成本和高效而在污水治理中具有广泛的应用。相比于传统的吸附剂,金属有机骨架化合物(MOFs)材料具有高的孔隙率和稳定性,巨大的比表面积和结构灵活可调性而被作为理想的吸附剂用于环境净化中。如果赋予吸附剂自主运动的性能,使其能够在污水中进行动态吸附,可以促进溶液中物质的传输,增加吸附剂周围的污染物浓度,从而提高吸附剂对污染物的吸附能力和吸附效率。
ZIF-8作为具有沸石结构的MOFs材料,不仅具有MOFs的高比表面积和孔隙率,还具有沸石的稳定性,可以作为高效的吸附剂应用于污水治理。但是ZIF在使用过程中回收比较困难。本发明将ZIF-8与磁性微管马达相结合,可以得到能进行自主运动的易回收的高效吸附剂。微马达是一种可以将外界能量转换为自身动能的一种人工器件,其可以利用自身的结构或组分的不对称性产生合力不为零的受力,从而可以进行宏观的运动。自然界中的木棉具有天然的不对称的管状结构,可以作为模板用于微马达的制备。因此,在本发明中,首先以木棉为管状模板,在其上负载磁性颗粒γ-Fe2O3和催化剂MnO2,制备磁性微管自驱动马达,MnO2可以用于催化H2O2产生氧气气泡,作为微马达的驱动力。然后在磁性微马达上原位生长ZIF-8,得到吸附性能优异的ZIF-8微马达吸附剂。在H2O2存在的不同水体环境下(蒸馏水,湖水和自来水),该吸附剂能对水中不同的有机污染物进行高效的动态吸附,大大提高了吸附效率和吸附能力。而且在外加磁场下,可以对该吸附剂的运动进行人为的控制以及便于对其回收和再利用。
发明内容
本发明的目的在于提供一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂。本发明利用木棉通过浸渍硝酸铝和硝酸铁溶液煅烧得到具有磁性的混合金属氧化物微管(γ-Al2O3/γ-Fe2O3),保留了木棉的中空管状结构,再进行浸渍硝酸锰溶液煅烧得到磁性微管马达M(γ-Al2O3/γ-Fe2O3/MnO2),然后在M上原位生长ZIF-8制备两种尺寸ZIF的ZIF-8磁性微管马达。
本发明还提供了一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂的应用。本发明制备的ZIF-8磁性自驱动微管马达吸附剂,在H2O2存在的水体中,催化剂MnO2可以催化降解H2O2产生氧气气泡,作为微马达的驱动力,使其可以在污水中实现动态吸附,可高效的吸附水体中不同的有机污染物。
本发明具体采用以下技术方案:
一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,它是采用下述方法制备的:
(1)磁性微管的制备:
将木棉浸渍到70ml混合液中浸渍20min,然后超声20min;将浸渍后的木棉烘干后进行煅烧,得到具有磁性的混合金属氧化物;所述混合液为硝酸铝乙醇溶液和硝酸铁乙醇溶液的混合液,其中硝酸铝浓度为0.71mol/L,硝酸铁浓度为0.142mol/L;
(2)磁性微管马达的制备:
将步骤(1)中得到的混合金属氧化物浸渍在20ml 25%硝酸锰溶液中1h,取出烘干后煅烧,得到磁性微管马达,记为M;
(3)微米级ZIF的ZIF-8磁性微管马达的预制备:
将硝酸锌有机溶液与二甲基咪唑有机溶液等体积混合,取混合液160ml然后取步骤(2)中所制备的M 0.5g加入上述混合溶液中搅拌5min,最终的混合溶液室温静置24h,然后对沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中活化得到预产物ZIF-8-M-P;
(4)取160ml硝酸锌有机溶液与二甲基咪唑有机溶液等体积混合的混合液,向其中加入0.5g步骤(3)所制备的ZIF-8-M-P,机械搅拌5min,将最终的混合溶液室温静置24h,然后对沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中活化后得到最终的ZIF-8磁性自驱动微管马达,记为ZIF-8-M-F。
优选的,所述步骤(1)中木棉加入量为3g,烘干温度为80℃,烘干时间8h,煅烧温度为550℃,煅烧时间1h。
优选的,所述步骤(2)中混合金属氧化物的质量为0.5g,烘干温度为80℃,烘干时间6h,煅烧温度为400℃,煅烧时间1h。
优选的,所述硝酸锌有机溶液和二甲基咪唑有机溶液的溶剂为甲醇或N,N-二甲基甲酰胺。
优选的,所述硝酸锌有机溶液和二甲基咪唑有机溶液的浓度均为0.05mol/L。
优选的,所述步骤(3)中干燥箱活化温度为150℃,活化时间为24h。
优选的,所述步骤(4)中干燥箱活化温度为150℃,活化时间为24h。
一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂得应用,用于在含有H2O2的污水中高效的吸附水体中不同的有机污染物。所述有机污染物为抗生素和染料。具体的是:将ZIF-8微马达放入污水中,对水中的不同的污染物如抗生素和染料进行吸附。在含0.3%H2O2的有机污染物废水中,ZIF-8微马达可以通过气泡驱动,对水中的污染物进行动态吸附。更具体地,吸附时,多西环素模拟为抗生素污染物,污水中多西环素浓度为250mg/L,刚果红模为染料污染物,污水中刚果红的浓度为250mg/L,吸附剂的使用量为30mg,吸附时间为56h。在0.3%H2O2存在的污染水体中,多西环素浓度为1.5mg/L,刚果红的浓度为1.5mg/L,吸附剂的使用量为30mg,吸附时间为1h。在5%H2O2存在的真实污染水体中(如湖水和自来水),多西环素浓度为1.5mg/L,刚果红的浓度为1.5mg/L,吸附剂的使用量为30mg,吸附时间为1h。
本发明具有以下优点:
本发明以天然具有管状不对称结构的木棉作为模板制备自驱动微管马达,制备工艺简单,成本低廉,不需要复杂的仪器设备,易于实现大规模制备。合成的具有高负载量ZIF的ZIF-8MEOH-M-F和ZIF-8DMF-M-F吸附剂对水中多种有机污染物具有非常优异的吸附性。在H2O2存在的水体环境中,ZIF-8微马达能够通过MnO2催化剂催化降解H2O2产生驱动力进行有效的快速运动,而且能对水中有机污染物进行快速的动态吸附。微马达的运动促进了污染物在水体中的传输,增加了吸附剂周围污染物的浓度,有利于提高吸附剂的吸附能力和吸附效率。通过外加磁场还可以对该吸附剂的运动进行控制以及对其进行回收和再利用,不会对水体造成二次污染。在真实水体环境中的运动和吸附性能表明,ZIF-8微马达可以进一步实现其在真实污水治理中的应用。
附图说明
图1为本发明所制ZIF-8微马达吸附剂的XRD图;图中,(a)为M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-F及ZIF-8DMF-M-F的XRD图;(b)为ZIF-8MEOH-M-P和ZIF-8DMF-M-P的XRD图。
图2为本发明所制ZIF-8微马达吸附剂的SEM图和mapping图;图中,(a)为木棉模板的SEM图;(b)为磁性微马达M的SEM图;(c)和(d)分别为纯的ZIF-8MEOH及ZIF-8DMF的SEM图;(e)为2-ZIF-8MEOH-M-P的SEM图;(f)为ZIF-8MEOH-M-P的SEM图;(g)为6-ZIF-8MEOH-M-P的SEM图;(h)为ZIF-8MEOH-M-F的SEM图;(i)为ZIF-8DMF-M-P的SEM图;(j)为ZIF-8DMF-M-F的SEM图;(k)、(l)、(m)、(n)、(o)和(p)为ZIF-8MEOH-M-F的mapping图。
图3为本发明所制ZIF-8微马达吸附剂的TEM图;图中,(a)、(b)和(c)为ZIF-8MEOH-M-F的TEM图;(d)、(e)和(f)为ZIF-8DMF-M-F的TEM图。
图4为本发明所制ZIF-8微马达吸附剂对水中多西环素和刚果红的吸附量随吸附时间的关系曲线;图中,(a)为本发明所制备的M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对多西环素的吸附量随吸附时间的关系曲线;(b)为本发明所制备的M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对刚果红的吸附量随吸附时间的关系曲线。
图5为本发明所制ZIF-8微马达吸附剂对水中多西环素和刚果红的吸附前后的IR图;图中,(a)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F在对水中多西环素吸附前后的IR图;(b)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F对水中刚果红吸附前后的IR图。
图6为本发明所制ZIF-8微马达吸附剂在5%H2O2溶液环境中的运动截图;图中,(a)为M在5%H2O2溶液环境中时间间隔为4s的运动截图;(b)为ZIF-8MEOH-M-F在5%H2O2溶液环境中时间间隔为4s的运动截图;(c)为ZIF-8DMF-M-F在5%H2O2溶液环境中时间间隔为4s的运动截图。
图7为本发明所制ZIF-8微马达吸附剂在外加磁场下的运动截图;图中为外加磁场下,ZIF-8MEOH-M-F在3%H2O2溶液环境中时间间隔为2s的运动截图。
图8为本发明所制ZIF-8微马达吸附剂在0.3%H2O2溶液环境中对多西环素和刚果红的动态吸附率随吸附时间的关系曲线及没有H2O2下对多西环素和刚果红的静态吸附率随吸附时间的关系曲线;图中,(a)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F在0.3%H2O2溶液环境中对多西环素的动态吸附率随吸附时间的关系曲线;(b)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F在0.3%H2O2溶液环境中对刚果红的动态吸附率随吸附时间的关系曲线;(c)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对多西环素的静态吸附率随吸附时间的关系曲线;(d)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对刚果红的静态吸附率随吸附时间的关系曲线。
图9为本发明所制ZIF-8微马达吸附剂在含5%H2O2不同水体中(蒸馏水,湖水和自来水)的运动速度和在含5%H2O2的湖水及自来水中对多西环素和刚果红在1h内的吸附率;图中,(a)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F在含5%H2O2的蒸馏水、湖水及自来水中的运动速度;(b)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F在含5%H2O2的湖水及自来水中对多西环素和刚果红在1h内的吸附率。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明。
实施例1
(1)磁性微管的制备:将3.0g木棉浸渍到70mL含有硝酸铝(0.05mol)和硝酸铁(0.01mol)的混合乙醇溶液中,浸渍20min,然后超声20min;80℃烘干8h后进行550℃煅烧1h,得到直径约为15μm的具有磁性的混合金属氧化物中空微管(γ-Al2O3/γ-Fe2O3);
(2)磁性微管马达的制备:取0.5g混合金属氧化物(γ-Al2O3/γ-Fe2O3)浸渍在20mL硝酸锰溶液(25%)中1h,用滤纸过滤后在80℃烘干6h后400℃煅烧1h,煅烧后的黑色产物即磁性微管马达(γ-Al2O3/γ-Fe2O3/MnO2),记为M;
(3)以甲醇为溶剂的ZIF-8磁性微管马达的预制备:试验设3组处理,将2mmol的硝酸锌和2mmol的二甲基咪唑分别溶解于40mL甲醇溶液中充分搅拌并混合后制备出80mL混合甲醇溶液,同理,取等摩尔量(4mmol、6mmol)的硝酸锌和二甲基咪唑分别依次溶解于80mL以及120mL甲醇中搅拌并混合后制备出另外2组混合甲醇溶液;分别称取0.5g M加入上述3组混合甲醇溶液中机械搅拌5min,将最终的混合溶液室温静置24h进行ZIF-8的原位生长,然后对灰白色沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中150℃活化24h得到不同尺寸ZIF的ZIF-8磁性微马达,记为2-ZIF-8MEOH-M-P,ZIF-8MEOH-M-P和6-ZIF-8MEOH-M-P;
(4)以甲醇为溶剂的ZIF-8磁性微管马达的制备:取0.5g步骤(3)所制备的ZIF-8MEOH-M-P加入到160mL含有硝酸锌(4mmol)和二甲基咪唑(4mmol)的混合甲醇溶液中,机械搅拌5min,将最终的混合溶液室温静置24h,然后对灰白色沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中150℃活化24h后得到最终的具有致密微米尺寸ZIF负载层的ZIF-8磁性微管马达,记为ZIF-8MEOH-M-F;
(5)以N,N-二甲基甲酰胺(DMF)为溶剂的ZIF-8磁性微管马达的预制备:将4mmol的硝酸锌和4mmol的二甲基咪唑分别先后溶解于160mL N,N-二甲基甲酰胺(DMF)中得到混合溶液,磁力搅拌10min;称取0.5g M加入上述混合溶液中机械搅拌5min,将最终的混合溶液室温静置24h,然后对灰白色沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中150℃活化24h后得到预生长ZIF-8的ZIF微马达,记为ZIF-8DMF-M-P;
(6)以N,N-二甲基甲酰胺(DMF)为溶剂的ZIF-8磁性微管马达的制备:称取0.5gZIF-8DMF-M-P加入到160mL含有硝酸锌(4mmol)和L二甲基咪唑(4mmol)的混合N,N-二甲基甲酰胺(DMF)溶液中,机械搅拌5min,将最终的混合溶液室温静置24h,然后对灰白色沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中150℃活化24h后得到最终的具有致密纳米尺寸ZIF负载层的ZIF-8磁性微管马达,记为ZIF-8DMF-M-F。
将上述制备的产物进行表征,具体见图1-3。
图1是所制备的ZIF-8微马达吸附剂的XRD图。图1(a)为M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-F及ZIF-8DMF-M-F的XRD图,从图中可以看出分别用两种溶剂合成的ZIF-8的结晶度均较好,M中的相主要为γ-Al2O3(JCPDS 26-0031)、具有磁性的γ-Fe2O3(JCPDS39-1346)以及具有催化活性的MnO2(JCPDS 24-0735),且合成的ZIF-8MEOH-M-F及ZIF-8DMF-M-F中的衍射峰均较好的对应于M和ZIF-8的特征晶相衍射峰,没有其他杂相,初步说明ZIF-8磁性微马达的成功合成。图1(b)为ZIF-8MEOH-M-P和ZIF-8DMF-M-P的XRD图,可以看出预生长ZIF-8的ZIF微马达也是由M和ZIF-8组成,试样纯度较高。通过对比预生长ZIF的样品ZIF-8MEOH-M-P和ZIF-8DMF-M-P与最终ZIF-8MEOH-M-F和ZIF-8DMF-M-F的XRD谱图可以看出,经过二次生长ZIF后的ZIF-8微马达具有相应更强的ZIF-8衍射峰。
图2是所制备的ZIF-8微马达吸附剂的SEM图和mapping图。图2(a)为木棉模板的SEM图,可以看到木棉纤维是平均直径为15μm的中空管。图2(b)为M的SEM图,可以看到M基本保留了木棉的中空管状结构,上下直径不均等,壁厚有所增加,这是由于γ-Al2O3、γ-Fe2O3、MnO2纳米颗粒和纳米片的形成,这种不对称的结构有利于使其受力不平衡,从而可以进行有效的自主运动。图2(c)为甲醇为溶剂合成的纯ZIF-8MEOH,可以看出其形貌为典型的菱形十二面体,平均尺寸为500nm。图2(d)为DMF为溶剂合成的纯ZIF-8DMF,可以看出其也具有菱形十二面体形貌,平均尺寸为300nm。图2(e)、(f)和(g)分别为甲醇溶剂下不同含量ZIF的预生长ZIF微马达的SEM图,ZIF的尺寸分别为1.2,1.7和2.8μm,原位生长在M的表面上。图2(h)为甲醇溶剂下最终的ZIF-8MEOH-M-F的SEM图,可以看出ZIF-8的负载量明显增加,形成致密的ZIF层覆盖在M的表面。图2(i)为DMF溶剂下制备的预生长ZIF的ZIF-8DMF-M-P的SEM图,可以看出纳米ZIF-8颗粒较为均匀的生长在M的表面。图2(j)为DMF溶剂下制备的最终的ZIF-8DMF-M-F的SEM图,纳米ZIF-8形成致密层覆盖在M表面上,形成的ZIF-8微马达仍保留中空管状结构。从SEM图可以看出ZIF尺寸剂负载量的成功调控以及最终ZIF-8磁性微马达吸附剂具有致密的ZIF-8覆盖层。图2(k)、(l)、(m)、(n)、(o)和(p)为ZIF-8MEOH-M-F的mapping图,可以看出样品中含有主要的Al、Fe、Mn、Zn、N和O元素,且在ZIF-8微马达上呈均匀的分布。
图3为所制备的ZIF-8微马达吸附剂的TEM图。图3(a)、(b)和(c)为ZIF-8MEOH-M-F的TEM图,从图中可以看到ZIF-8呈较规则的六边形,M上均匀分布磁性的γ-Fe2O3纳米颗粒和MnO2纳米片,无定型γ-Al2O3基底上分布着许多孔,这种多孔结构有利于提高吸附剂的吸附性能。图3(d)、(e)和(f)为ZIF-8DMF-M-F的TEM图,从图中可以看到ZIF-8的尺寸发生了明显的变化,形貌也呈较规则的六边形,通过对比两种ZIF-8磁性微马达,可以进一步说明ZIF-8尺寸的成功调控以及ZIF-8微马达的合成。
测试例1
以抗生素多西环素(DOC)和染料刚果红(CR)模拟水中的有机污染物,测试本发明所制备的ZIF-8磁性微马达吸附剂对水中污染物的吸附性能。
具体方法为:取30mg实施例1中所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F分别置于50mL 250mg/L的多西环素和刚果红溶液中,室温下静置56h,每隔一段时间取上清液用紫外-分光光度计测试其吸光度,多西环素的吸收波长为345nm,刚果红的吸收波长为497nm。将吸光度换算成浓度以表征吸附剂对多西环素和刚果红的吸附效果。具体结果见图4-图7。
图4为本发明所制ZIF-8微马达吸附剂对水中多西环素和刚果红的吸附量随吸附时间的关系曲线。图4(a)为本发明所制备的M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对多西环素的吸附量随吸附时间的关系曲线,可以看出在吸附平衡时,M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对多西环素的吸附量分别为260,263,281,289,,348,378和304mg·g-1,表明最终制备的ZIF-8磁性微马达对多西环素具有优异的吸附能力,且随着ZIF负载量的增加,吸附性能也随之提高。图4(b)为本发明所制备的M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对刚果红的吸附量随吸附时间的关系曲线,当到达吸附平衡时,M,ZIF-8MEOH,ZIF-8DMF,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对刚果红的吸附量分别为60,206,225,234,,352,387和400mg·g-1,表明所制备的ZIF-8磁性微马达对刚果红具有非常好的吸附能力。相比于纯的ZIF-8和M,复合后的ZIF-8微马达吸附剂兼具两者的多孔,比表面积大,孔隙率高等优点而对水中的多西环素和刚果红的表现出较高的吸附能力,且负载较小尺寸ZIF的ZIF-8微马达由于具有更高的比表面积以及能够暴露更多官能团和反应活性位点而更有利于对水中有机污染物的吸附。
图5为本发明所制ZIF-8微马达吸附剂对水中多西环素和刚果红的吸附前后的IR图。图5(a)为ZIF-8MEOH-M-F及ZIF-8DMF-M-F对水中多西环素吸附前后的IR图,通过对比吸附前后样品IR图中峰的变化,可以看到在吸附多西环素后,1112cm-1处属于酚醛C-O的振动增强,1027cm-1处属于DOC中-C-C伸缩振动峰的位置发生偏移,表明DOC通过与ZIF-8发生π-π堆叠作用而被吸附在ZIF-8磁性微马达上。图5(b)为ZIF-8MEOH-M-F及ZIF-8DMF-M-F对水中刚果红吸附前后的IR图,可以发现在吸附CR后,1132cm-1处的属于CR的S=O发生偏移,表明CR通过与ZIF微马达之间的静电作用被吸附,1386cm-1处峰强减弱表明CR中的芳香环与ZIF中的咪唑环发生了π-π堆叠,使得CR被吸附在ZIF-8微马达上。
图6为本发明所制ZIF-8微马达吸附剂在5%H2O2溶液环境中的运动截图。图6(a)为M在5%H2O2溶液环境中时间间隔为4s的运动截图,可以看到M中的MnO2可以有效的催化降解H2O2产生大量气泡,并从马达的一侧释放,M由于自身的结构不对称性,产生合力不为零的轴向力,并做自旋运动。图6(b)为ZIF-8MEOH-M-F在5%H2O2溶液环境中时间间隔为4s的运动截图,可以看出负载ZIF-8后,依然可以进行有效的快速运动,并没有对M的不对称管状结构造成太大影响,大量的气泡从马达一端不断释放,推动其运动。图6(c)为ZIF-8DMF-M-F在5%H2O2溶液环境中时间间隔为4s的运动截图,该马达表现出另一种运动行为,在气泡的推动下沿着一个方向做直线运动,这与马达自身的结构有关。
图7为本发明所制ZIF-8MEOH-M-F吸附剂在外加磁场下的运动截图,在3%H2O2溶液环境中,该马达初始时沿着一个方向做直线运动,在2s时外加一个磁场,该马达的运动方向发生了改变,沿着磁场方向做直线运动,4s时撤掉磁场,该马达恢复之前的运动方向,继续在气泡推动下做直线运动,表明所制备的ZIF-8磁性微马达具有较好的磁响应,可以在运动时施加一个磁场对其运动方向进行人为的控制,而且还能方便对其回收和再利用。
测试例2
测试本发明所制备的ZIF-8磁性微马达对水中多西环素和刚果红的动态吸附性能和静态吸附性能。
具体方法为:取30mg实施例1中所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F分别置于30mL 1.5mg/L的多西环素和刚果红溶液中,吸附1h,每隔一段时间取上清液用紫外-分光光度计测试其吸光度,多西环素的吸收波长为345nm,刚果红的吸收波长为497nm。动态吸附实验中,在多西环素和刚果红溶液中加入0.3%H2O2,静态吸附实验中不加H2O2。将吸光度换算成浓度以表征吸附剂对多西环素和刚果红的吸附效果。具体结果见图8。
图8为本发明所制ZIF-8微马达吸附剂在0.3%H2O2溶液环境中对多西环素和刚果红的动态吸附率随吸附时间的关系曲线及没有H2O2下对多西环素和刚果红的静态吸附率随吸附时间的关系曲线。图8(a)为M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F在0.3%H2O2溶液环境中对多西环素的动态吸附率随吸附时间的关系曲线,图8(c)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对多西环素的静态吸附率随吸附时间的关系曲线。通过对比图8(a)和图8(c),可以看出从图中可以看出在1h内ZIF-8微马达在0.3%H2O2的条件下对多西环素表现出较快的吸附率,具有较好的动态吸附性能,这是由于微马达的运动的富集效应,可以促进溶液中物质的传输,提高了吸附剂周围的物质浓度,从而提高了ZIF-8微马达吸附剂的吸附性能。图8(b)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F在0.3%H2O2溶液环境中对刚果红的动态吸附率随吸附时间的关系曲线,图8(d)为本发明所制备的M,ZIF-8MEOH-M-P,ZIF-8DMF-M-P,ZIF-8MEOH-M-F及ZIF-8DMF-M-F对刚果红的静态吸附率随吸附时间的关系曲线。通过对比可以发现,ZIF-8微马达在0.3%H2O2的条件对水中的刚果红表现出优异的动态吸附性能,缩短了到达吸附平衡的时间,提高了吸附效率和吸附能力。
测试例3
测试本发明所制备的ZIF-8磁性微马达在不同水体如蒸馏水、湖水以及自来水中的运动和吸附性能。
具体方法为:取30mg实例1中所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F分别置于30mL含有1.5mg/L的多西环素和刚果红湖水中,加入5%H2O2,吸附1h,每隔一段时间取上清液用紫外-分光光度计测试其吸光度。取30mg实例1中所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F分别置于30mL含有1.5mg/L的多西环素和刚果红自来水中,加入5%H2O2,吸附1h,每隔一段时间取上清液用紫外-分光光度计测试其吸光度。多西环素的吸收波长为345nm,刚果红的吸收波长为497nm。具体结果见图9。
图9为本发明所制ZIF-8微马达吸附剂在含5%H2O2不同水体中(蒸馏水,湖水和自来水)的运动速度和在含5%H2O2的湖水及自来水中对多西环素和刚果红在1h内的吸附率;
图9(a)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F在含5%H2O2的蒸馏水、湖水及自来水中的运动速度,可以看出ZIF-8微马达在真实水体如湖水及自来水中均可以进行有效的运动。ZIF-8MEOH-M-F在蒸馏水,湖水以及自来水中的运动速度分别为152,63以及29μm/s,ZIF-8DMF-M-F在蒸馏水,湖水以及自来水中的运动速度分别为105,88以及42μm/s。自来水中因含有较多人为添加的离子,对马达的运动稍微有些影响,但是在自然界水体湖水中,马达依然保持较快的运动速度,表明本发明所制备的ZIF-8微马达可以进一步应用于真实水体的环境处理。图9(b)为本发明所制备的ZIF-8MEOH-M-F及ZIF-8DMF-M-F在含5%H2O2的湖水及自来水中对多西环素和刚果红在1h内的吸附率。可以看出在真实水体中,ZIF-8微马达对水中有机污染物多西环素和刚果红均表现出较高的吸附性能,在短时间内吸附率均高达80%,表明本发明所制备的ZIF-8磁性微马达吸附剂具有非常好的实际应用前景。

Claims (9)

1.一种尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,它是采用下述方法制备的:
(1)磁性微管的制备:
将木棉浸渍到70ml混合液中浸渍20min,然后超声20min;将浸渍后的木棉烘干后进行煅烧,得到具有磁性的混合金属氧化物;所述混合液为硝酸铝乙醇溶液和硝酸铁乙醇溶液的混合液,其中硝酸铝浓度为0.71mol/L,硝酸铁浓度为0.142mol/L;
(2)磁性微管马达的制备:
将步骤(1)中得到的混合金属氧化物浸渍在20ml25%硝酸锰溶液中1h,取出烘干后煅烧,得到磁性微管马达,记为M;
(3)微米级ZIF的ZIF-8磁性微管马达的预制备:
将硝酸锌有机溶液与二甲基咪唑有机溶液等体积混合,取混合液160ml然后取步骤(2)中所制备的M0.5g加入上述混合溶液中搅拌5min,最终的混合溶液室温静置24h,然后对沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中活化得到预产物ZIF-8-M-P;
(4)取160ml硝酸锌有机溶液与二甲基咪唑有机溶液等体积混合的混合液,向其中加入0.5g步骤(3)所制备的ZIF-8-M-P,机械搅拌5min,将最终的混合溶液室温静置24h,然后对沉淀物进行过滤,用甲醇冲洗数次,随后放入干燥箱中活化后得到最终的ZIF-8磁性自驱动微管马达,记为ZIF-8-M-F。
2.根据权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述步骤(1)中木棉加入量为3g,烘干温度为80℃,烘干时间8h,煅烧温度为550℃,煅烧时间1h。
3.根据权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述步骤(2)中混合金属氧化物的质量为0.5g,烘干温度为80℃,烘干时间6h,煅烧温度为400℃,煅烧时间1h。
4.根据权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述硝酸锌有机溶液和二甲基咪唑有机溶液的溶剂为甲醇或N,N-二甲基甲酰胺。
5.根据权利要求4所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述硝酸锌有机溶液和二甲基咪唑有机溶液的浓度均为0.05mol/L。
6.根据权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述步骤(3)中干燥箱活化温度为150℃,活化时间为24h。
7.根据权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂,其特征在于,所述步骤(4)中干燥箱活化温度为150℃,活化时间为24h。
8.一种权利要求1所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂得应用,其特征在于,用于在含有H2O2的污水中高效的吸附水体中不同的有机污染物。
9.根据权利要求8所述的尺寸可控的ZIF-8磁性自驱动微管马达吸附剂得应用,其特征在于,所述有机污染物为抗生素和染料。
CN201910352280.5A 2019-04-29 2019-04-29 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用 Expired - Fee Related CN110038518B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910352280.5A CN110038518B (zh) 2019-04-29 2019-04-29 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910352280.5A CN110038518B (zh) 2019-04-29 2019-04-29 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用

Publications (2)

Publication Number Publication Date
CN110038518A true CN110038518A (zh) 2019-07-23
CN110038518B CN110038518B (zh) 2022-02-01

Family

ID=67280014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910352280.5A Expired - Fee Related CN110038518B (zh) 2019-04-29 2019-04-29 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用

Country Status (1)

Country Link
CN (1) CN110038518B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975796A (zh) * 2019-11-26 2020-04-10 昆明理工大学 一种纳米马达及其制备方法和应用
CN113499430A (zh) * 2021-06-09 2021-10-15 深圳大学 芬顿金属离子掺杂的金属-有机框架材料固化氧化代谢酶的纳米诊疗剂及制备方法与应用
CN114272926A (zh) * 2021-12-29 2022-04-05 济南大学 一种双功能催化型阴阳球微马达及其制备方法和应用
CN115634714A (zh) * 2022-10-18 2023-01-24 中国矿业大学 一种自驱动Mn/Fe复合植物纤维管状微马达催化剂的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551196A (zh) * 2013-11-11 2014-02-05 北京化工大学 一种具有介孔结构磁性金属有机骨架材料、制备及催化反应
CN109576986A (zh) * 2018-12-21 2019-04-05 福建工程学院 一种木棉纤维/二氧化锰构筑的多层自驱动管状微纳马达及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551196A (zh) * 2013-11-11 2014-02-05 北京化工大学 一种具有介孔结构磁性金属有机骨架材料、制备及催化反应
CN109576986A (zh) * 2018-12-21 2019-04-05 福建工程学院 一种木棉纤维/二氧化锰构筑的多层自驱动管状微纳马达及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110975796A (zh) * 2019-11-26 2020-04-10 昆明理工大学 一种纳米马达及其制备方法和应用
CN113499430A (zh) * 2021-06-09 2021-10-15 深圳大学 芬顿金属离子掺杂的金属-有机框架材料固化氧化代谢酶的纳米诊疗剂及制备方法与应用
CN114272926A (zh) * 2021-12-29 2022-04-05 济南大学 一种双功能催化型阴阳球微马达及其制备方法和应用
CN114272926B (zh) * 2021-12-29 2023-06-23 济南大学 一种双功能催化型阴阳球微马达及其制备方法和应用
CN115634714A (zh) * 2022-10-18 2023-01-24 中国矿业大学 一种自驱动Mn/Fe复合植物纤维管状微马达催化剂的制备方法及其应用
CN115634714B (zh) * 2022-10-18 2024-05-10 中国矿业大学 一种自驱动Mn/Fe复合植物纤维管状微马达催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN110038518B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN110038518A (zh) 一种尺寸可控的zif-8磁性自驱动微管马达吸附剂及其应用
Tan et al. A new MOFs/polymer hybrid membrane: MIL-68 (Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue
Liu et al. 3D printing of metal-organic frameworks decorated hierarchical porous ceramics for high-efficiency catalytic degradation
Gu et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption
Liu et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U (VI)
Xu et al. Coating sponge with multifunctional and porous metal-organic framework for oil spill remediation
Liu et al. General deposition of metal–organic frameworks on highly adaptive organic–inorganic hybrid electrospun fibrous substrates
Dai et al. One-step assembly of Fe (III)-CMC chelate hydrogel onto nanoneedle-like CuO@ Cu membrane with superhydrophilicity for oil-water separation
Li et al. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue
CN105170095B (zh) 一种In基有机骨架‑氧化石墨烯复合材料及其制备方法和应用
Xue et al. Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis
CN108893863A (zh) 一种zif-8/聚偏氟乙烯复合纳米纤维膜及其制备方法和应用
Xing et al. MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation
CN103406081A (zh) 一种阴离子β-环糊精磁性微球的制备方法及应用
CN104151600B (zh) 一种超疏水磁性海绵的制备方法
CN108940237A (zh) 一种磁性吸附材料的制备方法与应用
Diao et al. Super-stable non-woven fabric-based membrane as a high-efficiency oil/water separator in full pH range
CN105797596B (zh) 一种用于水净化的过滤膜的制备方法
Zhang et al. Elevating the stability and adsorption performance of metal-organic frameworks by chitosan and attapulgite for capturing methylene blue in the water
Yang et al. Investigation on synthesis of ion-imprinted mesoporous adsorbents by using ultrasound-and microwave-assisted preparation and their dynamic adsorption properties on heavy metals
Qiu et al. Micromembrane absorber with deep‐permeation nanostructure assembled by flowing synthesis
Jiang et al. Corrosion-resistant porous hydrophobic PVDF-CBC foam for the treatment of oil-water separation
CN110508157A (zh) 一种碳基复合薄膜及其制备方法
Liu et al. Switchable superlyophobic PAN@ Co-MOF membrane for on-demand emulsion separation and efficient soluble dye degradation
Yang et al. Study on adsorption performance of manganese titanium oxide composite biochar for removal of Rhodamine B

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220201

CF01 Termination of patent right due to non-payment of annual fee